
SysBumps: Exploiting Speculative Execution in System Calls for
Breaking KASLR in macOS for Apple Silicon

Hyerean Jang
Korea University

Seoul, Republic of Korea
hr_jang@korea.ac.kr

Taehun Kim
Korea University

Seoul, Republic of Korea
taehunk@korea.ac.kr

Youngjoo Shin
Korea University

Seoul, Republic of Korea
syoungjoo@korea.ac.kr

Abstract
Apple silicon is the proprietary ARM-based processor that powers
the mainstream of Apple devices. The move to this proprietary
architecture presents unique challenges in addressing security is-
sues, requiring huge research efforts into the security of Apple
silicon-based systems. In this paper, we study the security of KASLR,
the randomization-based kernel hardening technique, on the state-
of-the-art macOS system equipped with Apple silicon processors.
Because KASLR has been subject to many microarchitectural side-
channel attacks, the latest operating systems, including macOS,
use kernel isolation, which separates the kernel page table from
the userspace table. Kernel isolation in macOS provides a barrier
to KASLR break attacks. To overcome this, we exploit speculative
execution in system calls. By using Spectre-type gadgets in sys-
tem calls, an unprivileged attacker can cause translations of the
attacker’s chosen kernel addresses, causing the TLB to change ac-
cording to the validity of the address. This allows the construction
of an attack primitive that breaks KASLR bypassing kernel isolation.
Since the TLB is used as a side-channel source, we reverse-engineer
the hidden internals of the TLB on various M-series processors
using a hardware performance monitoring unit. Based on our at-
tack primitive, we implement SysBumps, the first KASLR break
attack on macOS for Apple silicon. Throughout evaluation, we
show that SysBumps can effectively break KASLR across different
M-series processors and macOS versions. We also discuss possible
mitigations against the proposed attack.

CCS Concepts
• Security and privacy→ Systems security;Operating systems
security; Hardware reverse engineering.

Keywords
KASLR breaking, Microarchitectural side-channel attack, Spectre-
type attack

This work is licensed under a Creative Commons Attribution
International 4.0 License.

CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA
© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0636-3/24/10
https://doi.org/10.1145/3658644.3690189

ACM Reference Format:
Hyerean Jang, Taehun Kim, and Youngjoo Shin. 2024. SysBumps: Exploit-
ing Speculative Execution in System Calls for Breaking KASLR in ma-
cOS for Apple Silicon. In Proceedings of the 2024 ACM SIGSAC Confer-
ence on Computer and Communications Security (CCS ’24), October 14–
18, 2024, Salt Lake City, UT, USA. ACM, New York, NY, USA, 15 pages.
https://doi.org/10.1145/3658644.3690189

1 Introduction
Apple recently began a transition from Intel-based processors to
Apple silicon, its custom-designed, proprietary ARM-based pro-
cessors for its products. While the move to this ARM-based ar-
chitecture increases the performance and efficiency, the inherent
nature of the proprietary processor creates challenges in addressing
security issues within the products. However, despite its impor-
tance, there are only a few studies on the security of Apple silicon
products [32, 49, 61] compared to studies on other commodity pro-
cessors [23, 25, 31, 34, 40], requiring huge research efforts into the
security of Apple silicon-based systems.

In line with this, this paper studies the security of the KASLR1
implementation on the latest Apple silicon-based macOS system.
KASLR is a primary kernel hardening technique tomitigatememory
corruption vulnerabilities in the kernel by randomizing the layout of
the kernel address space [52]. Since its introduction, KASLR imple-
mentations have been subject to microarchitectural side-channel at-
tacks [2, 10, 11, 23, 28, 35, 39, 40, 42, 63]. That is, using side-channel
techniques on caching hardware such as TLB2, unprivileged attack-
ers can construct a distinguishing oracle D(𝑣) that tells whether
a given target kernel address 𝑣 is valid (i.e., physically mapped to
memory) or not. By using the oracle, the attacker finds the first
valid kernel address, which determines the kernel base, and thus
breaks KASLR.

To mitigate such side-channel attacks against KASLR, the latest
operating systems use a kernel isolation mechanism inside the
kernel [21, 22, 48]. The kernel isolation separates the kernel page
table from the userspace page table. This isolation ensures that
the kernel’s portions of the address space are completely hidden
from user-mode processes, thus thwarting any attempts to access
or derive information about the kernel space. The macOS also
implements the kernel isolation, denoted double map, thus provides
a barrier to the previous attacks.

In this paper, we introduce SysBumps, the first KASLR break at-
tack on the macOS for Apple silicon with the state-of-the-art kernel
isolation technique enabled. The main idea to overcome the kernel
isolation barrier is to exploit speculative execution in system calls,

1Kernel Address Space Layout Randomization
2Translation Lookaside Buffer

64

https://orcid.org/0000-0003-4100-9338
https://orcid.org/0000-0002-1887-7009
https://orcid.org/0000-0003-4831-7392
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3658644.3690189
https://doi.org/10.1145/3658644.3690189
https://www.acm.org/publications/policies/artifact-review-and-badging-current

CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA Hyerean Jang, Taehun Kim, & Youngjoo Shin

through which unprivileged users from the userspace can make
arbitrary kernel memory access. System calls serve as interfaces
to the operating system for various system services. The system
call invoked in the user mode is handled by the operating system,
which means that the user-provided input data is manipulated in
the kernel mode. To protect the kernel from undesired user input,
the system call typically performs boundary checks on arguments,
especially pointer-type arguments. Hence, invoking a system call
with a kernel addresses-given argument that is supposed to accept
only userspace addresses will fail the boundary check.

We discover that during the boundary check, certain system calls
inmacOS exhibit a Spectre-type vulnerability [36] in the handling of
user-supplied arguments. Using the Spectre gadget, an unprivileged
attacker is able to create transient memory access to the attacker-
supplied kernel addresses, even where the kernel address space is
separated from the userspace by the kernel isolation. The transient
access to the kernel address will eventually cause the TLB to change
according to the validity of the address. That is, the TLB will cache
the translation result for the kernel address if it is a valid address
(i.e., physically mapped); otherwise, it will not. This allows the
attacker to infer the validity of any chosen target kernel address 𝑣 ,
enabling the construction of the distinguishing oracle D(𝑣), our
attack primitive for SysBumps attack.

Implementing the attack is not straightforward due to the lack
of publicly available information about the underlying hardware as
well as software. First of all, we need to understand the internals of
the TLB on Apple silicon, since our attack utilizes the TLB as a side-
channel source. To dissect the internals, we reverse-engineer the
TLB on various M-series Apple silicon processors. Specifically, we
utilize a performancemonitoring unit (PMU) built into the processor
for the reverse-engineering. As a result, we successfully uncover the
hidden details of the TLB architecture including its set-associativity,
hierarchy level, dTLB/iTLB structure, and in particular the property
of dTLB that it is shared between user and kernel mode at all levels,
which is sufficient to implement the prime+probe side-channel
technique [59] to observe the TLB status.

To facilitate a successful attack, we also perform an in-depth
analysis on the KASLR implementation in the macOS. In particular,
we conduct a static code analysis of the XNU, an open-source im-
plementation of the macOS kernel, as well as an empirical analysis
on the randomness of the KASLR. Our analysis reveals that the
macOS KASLR exhibits about 15 bits entropy of its randomness,
which is larger than other commodity operating systems such as
Linux [21] and Windows [31].

Based on our analysis results, we build an attack primitive that
distinguishes between a valid and invalid kernel address. Built upon
the attack primitive, we implement the SysBumps attack on the
macOS for Apple silicon. Our evaluation shows that SysBumps
successfully breaks the KASLR within 3 seconds with an average
96.28% accuracy under our test environments, including various
M-series processors and macOS releases. The evaluation result val-
idates the effectiveness of our attack in real-world attack scenarios,
as well as its impact of KASLR break bypassing the state-of-the-art
kernel isolation. We also discuss comprehensive mitigation strate-
gies including both software and hardware solutions to counter the
proposed attack.

The source code for the SysBumps attack is publicly available at
https://github.com/koreacsl/SysBumps.

Contributions of this paper. Our contributions are outlined as
follows:

• We discover a Spectre-type vulnerability in system calls in
macOS for Apple silicon that allows for transient access
to kernel addresses through speculative execution despite
kernel isolation.
• We successfully reverse-engineer the hidden internals TLB
of M-series CPUs by using the PMU, revealing architectural
details across various processors.
• We conduct analysis of the macOS KASLR implementation,
and reveal useful information, including the entropy for the
randomness, the alignment size and the range of the kernel
address space.
• We present SysBumps, the first KASLR break attack on ma-
cOS for Apple silicon, and propose possible effective mitiga-
tions against our attack.

Outline. The paper is organized as follows. Section 2 provides a
comprehensive background on our attack. Section 3 presents attack
primitives for the KASLR break attack, including details on reverse-
engineering the TLB. Section 4 presents our analysis of the macOS
KASLR implementation and describes our SysBumps attack in detail.
Section 5 and 6 presents potential mitigation strategies against the
proposed attack, and discusses attacks on other operating systems,
respectively. Section 7 presents related work. Finally, we conclude
the paper in Section 8.
Responsible disclosure.We reported our attack to Apple on April
29, 2024. In response, Apple has acknowledged that they have re-
produced our attack and are currently investigating its root cause.

2 Background
2.1 Address space layout randomization
Address space layout randomization (ASLR) is a securitymechanism
that introduces randomness into thememory address locations used
by a process. This randomization impacts vital memory compo-
nents such as the code, stack, and heap during process initialization.
KASLR extends this concept to the kernel space, ensuring each
system boot results in the non-deterministic allocation of kernel
code, data, and modules.

KASLR plays a crucial role in mitigating memory corruption
attacks [12, 13, 27, 65] on the kernel. These attacks typically rely on
an attacker’s in-depth knowledge of the kernel address space struc-
ture. By randomizing kernel addresses, KASLR makes it difficult to
predict the target address, effectively mitigating these threats. The
effectiveness of KASLR is measured by its entropy (i.e., the amount
of randomness); the higher the entropy, the less likely it is that an
attacker will be able to pinpoint the exact location needed for an
exploit. The entropy of the KASLR is usually determined by the
size of the kernel address space and the alignment size of the kernel
pages. For example, in the x86-64 Linux kernel, the address range
of the text section spans 1GiB, with the base address aligned to a 2
MiB boundary. This alignment results in a total of 512 offsets (i.e.,
slots), 9 bits entropy.

65

https://github.com/koreacsl/SysBumps

SysBumps: Exploiting Speculative Execution in System Calls for Breaking KASLR in macOS for Apple Silicon CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA

2.2 KASLR attack and kernel isolation
KASLR side-channel attack. Breaking KASLR is an attack that
allows unprivileged attackers to obtain secret information about
the kernel’s memory layout, which is randomized by KASLR. In
particular, attackers attempt to leak the kernel’s base address, from
which all sufficient information about the memory layout can be
inferred. The attack utilizes a distinguishing oracle D(𝑣) on a ker-
nel address 𝑣 . Given a target kernel address 𝑣 , the oracle returns
information about 𝑣 whether it is a valid address or not. To infer the
kernel base address, the attacker checks whether D(𝑣) = valid
for each 𝑣 ∈ K , where K is the kernel address space. The offset of
the first observed valid kernel address in K determines the kernel
base address.

Due to memory protection, it is a challenge for unprivileged
attackers to construct the oracle, as direct access to kernel memory
is prohibited. To overcome this, recent studies utilize microarchi-
tectural side-channel analysis techniques [24, 36, 39, 43, 44, 47, 51,
58, 59, 69] on constructing the oracle. In particular, they exploit
the fact that only translations for valid kernel addresses are loaded
onto the TLB. After attempting to indirectly load memory at 𝑣 from
a user process, they inspect the cache status by side-channel anal-
ysis on the TLB; only a valid address would cause the TLB status
to change. Previous work has exploited design or implementation
flaws in processors to indirectly induce kernel memory access from
a user process. For example, certain works [23, 40] use unprivileged
prefetch instructions in x86 processors to indirectly gain access to
kernel memory.
Kernel page table isolation. The previous implementation of op-
erating systems is vulnerable to the microarchitectural side-channel
attacks on KASLR. The main reason for this is that these operating
systems maintain both kernel and user address translation in a
single page table [18, 21]. Such a design cannot prevent indirect
access to kernel memory by a user process using means such as
unprivileged prefetch instructions. The fundamental solution to
mitigate this vulnerability is to change its design to split a page
table into two tables, one for the kernel and one for the user address
space, thus isolating the kernel from user processes [22]. Using the
same design principle, modern operating systems have their own
implementations of kernel isolation; for instance, there is KPTI [22]
for Linux, Kernel Virtual Address (KVA) Shadow [48] for Windows
and double map [21] for macOS.

In our work, we focus on double map for macOS with Apple
silicon. This implementation leverages Translation Table Base Reg-
isters (TTBRs), which are integrated within the ARMv8-64 architec-
ture, to achieve the desired kernel isolation. The TTBRs are a set of
registers responsible for storing the base addresses of the address
translation tables. They usually consist of two registers: TTBR0
for user process page tables and TTBR1 for the kernel. The macOS
for Apple silicon utilizes these TTBR registers to separate address
spaces, permitting access depending on the mode. In essence, ker-
nel addresses can exclusively be accessed through TTBR1 when
operating in kernel mode.

The double map implementation of the ARM-based macOS effec-
tively prevents translation for kernel addresses from unprivileged
attackers. Consequently, any such attempted access does not re-
sult in the caching of the target address in TLB, eliminating the

H
ea

de
r

Lo
ad

 c
om

m
an

d
N

…

Lo
ad

 c
om

m
an

d
1

…

Se
ct

io
n

1

Se
ct

io
n

2

Segment 1

… …

Se
ct

io
n

1

Se
ct

io
n

2

Segment N

…

Figure 1: Mach-O binary format.

possibility of exploiting timing differences based on kernel address
validity. This strategic separation of address spaces, enhanced by
the double mapping method on Apple silicon, provides a robust
defense against security threats.

2.3 Speculative execution attacks
Modern processors incorporate speculative execution techniques
to prevent pipeline stalls. This process involves predicting the next
instruction to be executed based on past execution history, allowing
potentially next instructions to be executed ahead of time. However,
this optimization technique has serious design flaws. Incorrect pre-
dictions result in the speculative instructions and their architectural
implications being discarded. However, traces of these actions are
retained in the microarchitectural state, such as in the cache [36]
and TLB [49], posing security risks.

Spectre attack is a type of microarchitectural side-channel at-
tack that exploits these design flaws [7–9, 19, 25, 36, 37, 41, 64].
This attack induces incorrect predictions, resulting in the loading
of security-sensitive data into the processor’s cache. Attackers fa-
cilitate these mispredictions by manipulating branch predictors,
which are specialized hardware designed to store the results of
successful predictions for the purpose of branch prediction. Once
sensitive data is maliciously loaded into the cache through this
manipulated speculative execution, attackers can extract this data
using cache side-channel techniques such as flush+reload [69] and
prime+probe [59].

Spectre attacks are classified based on the types of branch pre-
dictors they exploit. Common variants of Spectre include Spectre-
v1 [36], Spectre-v2 [7], and SpectreRSB [37, 46]. Spectre is consid-
ered much more difficult to mitigate than other microarchitectural
side-channel attacks, as its root origin lies in speculative execution,
a fundamental technique of modern CPUs.

2.4 Mach object file format
The Mach-O [15], short for Mach Object file format, is the standard
file format for executables, object code, shared libraries, and dynam-
ically loaded libraries within the XNU operating system framework
for macOS and iOS. Figure 1 shows the Mach-O binary format,
which consists of three main regions: header, load commands, and
segments. The file starts with a header structure that identifies the
file as a Mach-O format. The header contains information about
the target architecture, file type, and necessary flags for managing
instructions and data. The header is followed by the Load command,
which provides the necessary metadata about the file structure and

66

CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA Hyerean Jang, Taehun Kim, & Youngjoo Shin

Table 1: Devices used in our experiments.

CPU Device OS
M1 Mac Mini (2021) macOS Sonoma 14.3
M1 Pro MacBook Pro 16 macOS Ventura 13.5
M2 Mac Mini (2023) macOS Ventura 13.2
M2 Pro Mac Mini (2023) macOS Ventura 13.2
M2 Max MacBook Pro 14 macOS Ventura 13.4

system resources. These commands specify the initial layout of
files in virtual memory, their associations with shared libraries,
and other runtime essentials. Segments define large blocks of the
file that are mapped directly into memory during execution. These
include the TEXT segment for executable code, the DATA segment
for writable data, and the LINKEDIT segment, which contains raw
data used by the dynamic linker, such as symbols and strings. Each
segment contains one or more sections, which are subdivisions
specified to hold certain types of data.

3 Building attack primitive
To break KASLR, it is necessary to construct an attack primitive
D(𝑣) that determines whether a given target kernel address 𝑣 is
valid or not. In this section, we present the building blocks for
our attack primitive targeting KASLR on macOS for Apple silicon.
Our basic idea is to use TLB as a side-channel source, similar to
previous side-channel attacks [11, 23, 39, 40, 42]. However, unlike
the previous work, the challenge is to bypass double map, a robust
kernel isolation mechanism implemented in our target system.

Our novel approach to overcome this challenge is to exploit
speculative execution in system calls. Specifically, certain system
calls in macOS exhibit a Spectre-type vulnerability in the handling
of user-supplied arguments. Using the Spectre gadget within these
system calls, an unprivileged attacker can cause translations of the
attacker-supplied kernel addresses, which in turn causes the TLB
to change according to the validity of the address. This allows the
attacker to infer the validity of any chosen target kernel address,
enabling the construction of the attack primitive that bypasses the
double map.

To observe changes in the TLB state, we use the prime+probe [59]
technique on the TLB. This technique involves two stages: a prime
stage that fills the TLB with an eviction set corresponding to the
target address, and a probe stage that probes the target set to mea-
sure the latency to determine whether the translation of the target
address is cached in the TLB or not. Only the translation for a valid
address is loaded into the TLB, causing an eviction of the eviction
set filled at the prime stage. This will eventually result in measuring
high latency in the probe stage. Conversely, any translation for an
invalid address will not be cached, resulting in the low latency at
the probe stage.

Performing a prime+probe attack requires the creation of an
eviction set corresponding to the target address in the TLB. This
requires an understanding of the mapping function from virtual
addresses to TLB sets, as well as the structure of sets and ways in
the TLB. Since the microarchitectural details of the TLB onM-series
processors are not publicly known, we must reverse-engineer to
obtain the necessary information.

Table 2: Event information used in TLB reverse engineering.

Event Event number Description

L1I_TLB_MISS_DEMAND 0xD4 Instruction fetches that missed
in the L1 Instruction TLB

L1D_TLB_MISS_NONSPEC 0xC1 Load and store accesses
that missed the L1 Data TLB

L2_TLB_MISS_INSTRUCTION 0xA Instruction fetches
that missed in the L2 TLB

L2_TLB_MISS_DATA 0xB Loads and stores that
missed in the L2 TLB

In Section 3.1, we provide details on our reverse engineering
efforts to uncover the hidden TLB structure. In Section 3.2, we de-
scribe our exploitation technique that makes kernel address trans-
lation bypassing the kernel isolation. Finally, in Section 3.3, we
implement an attack primitive based on the results described in the
previous sections.

3.1 Reverse engineering TLB on Apple silicon
To use the prime+probe technique on Apple silicon’s TLB, it is
essential to understand several architectural properties of the TLB
such as set associativity and hierarchy levels. However, necessary
information about the TLB structure has not been publicly disclosed.
Therefore, we perform reverse engineering to uncover the hidden
properties of M-series CPUs. For this purpose, we utilize a hardware
performance monitoring unit (PMU) built into the processor, to
analyze the microarchitectural details of the TLB.

We implemented a performance monitoring tool based on kperf
[68], an open source tool that provides an interface to read perfor-
mance monitoring events from the M1 CPU. The PMU in Apple
silicon provides about 60 performance events related to the CPU
core, which can be retrieved in /usr/share/kpep/<CPU name>.plist.
For instance, performance events for M1 and M2 series chips are
listed in ‘a14.plist’. Among the available performance events, we
used four events related to the TLB, which are listed in Table 2, to
disclose the undocumented properties.

We used various M-series processors for the reverse engineering
and other experiments in the remaining sections. The devices and
processors used for our work are listed in Table 1.
Set associativity. We hypothesize that the TLB is W -way S-set as-
sociative cache, whereW denotes the number of ways and S denotes
the number of sets. We also assume that the TLB utilizes a linearly-
mapping hash function to determine a TLB set. This configuration
indicates that a TLB set is identified by some consecutive lower bits
of the virtual page number (VPN), by𝑇𝐿𝐵_𝑆𝐸𝑇 (𝑣𝑎) = 𝑉𝑃𝑁𝑣𝑎𝑚𝑜𝑑𝑆 .
In order to verify this hypothesis, we use the methodology proposed
by Gras et al. [20].

For this, we perform experiments with several combinations of S
andW. We first prepare a large size of memory block, wherein pages
are sequentially allocated. Then, we perform memory accesses at
W+1 pages with a stride of 𝑆 × 𝑃 , where 𝑃 is the size of a page (
𝑃 is 16 KiB for macOS). While repeating memory accesses with
such pattern 100,000 times, we measure L1D_TLB_MISS_NONSPEC
event. Algorithm 1 shows the pseudo code that we used for reverse
engineering the L1 dTLB structure.

67

SysBumps: Exploiting Speculative Execution in System Calls for Breaking KASLR in macOS for Apple Silicon CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA

Algorithm 1: Measuring performance monitoring event
for TLB reverse engineering.
Input: a base address of memory block base_addr, the

number of ways W and the number of sets S
Output: the number of measured events result

1 function profile(base_addr, w, s):
2 for i← 1 to 100 000 do
3 for j← 1 to w + 1 do
4 load(base_addr + w × s × page_size)
5 end
6 end
7 end
8

9 for w← 0 to W do
10 for s← 0 to S do
11 start_cnt← get_counter()
12 profile(base_addr, w, s)
13 end_cnt← get_counter()
14 end
15 result[w][s]← end_cnt - start_cnt
16 end

Figure 2 illustrates an experimental result on the M1’s L1 dTLB.
In the heatmap, each cell represents the number of measured events
based on the combination of W and S, where the brighter color
indicates a higher number of events than others. It is noteworthy
that the smallest combination of W and S that triggers L1 dTLB
misses is 5 and 32. The result indicates that the L1 dTLB of the M1
Pro is a 5-way 32-set associative cache with a linearly-mapping
hash function.

We also analyze the set associativity of the L1 iTLB. Unlike dTLB,
we allocate a large region of executable memory and then fill it with
ret instructions. Then, we execute these instructions at theW+1
pages with a stride of 𝑆 × 𝑃 . This results in the address translation
for the code page being loaded into the L1 iTLB. The rest of the
procedure is the same as for analyzing the L1 dTLB, except that
this time the L1I_TLB_MISS_DEMAND event is measured.

Following the approach for the L1 TLB, we also analyze the set
associativity of the L2 TLB. In this case, we use L2_TLB_MISS_DATA
and L2_TLB_MISS_INSTRUCTION events for L2 dTLB and L2 iTLB,
respectively. From the experiments, we obtain a heatmap that shows
a similar pattern in Figure 2, confirming that all the tested pro-
cessors use the L2 TLB of a set-associative cache with a linearly-
mapping hash function.
TLB hierarchy. To verify that L2 TLB is the last level cache in
Apple silicon, we conduct an experiment that investigates whether
an L2 TLB miss triggers a page table walk. For the experiment, we
construct an eviction set 𝐸, where |𝐸 |=W+1, that maps to the same
L2 TLB set. Then we make a memory access to each element in
𝐸, measuring page table walk events, i.e., MMU_TABLE_WALK_DATA
(number: 0x8), and MMU_TABLE_WALK_INSTRUCTION (number: 0x7).
From the experimental results, we observe that the last memory
access results in a page table walk, indicating that L2 TLB is the
last level translation cache.

Figure 2: Heatmap graph showing themeasured performance
monitoring events with various combinations of W and S.

Structure of dTLB and iTLB. Now, we examine whether the TLB
has a unified structure for dTLB and iTLB. For this, we perform an
experiment to check whether a TLB entry allocated by code pages
can be evicted by a data page, and vice versa. We construct eviction
set 𝐸𝐿1𝑖 and page 𝑃𝐿1𝑑 using the same set index bits for L1 iTLB and
L1 dTLB, respectively. Then, for each element of 𝐸𝐿1𝑖 , we execute
a branch instruction to fill the L1 iTLB set. After that, we access
𝑃𝐿1𝑑 and, while refilling the L1 iTLB with 𝐸𝐿1𝑖 , we measure the
L1I_TLB_MISS_DEMAND event. If the TLB has a unified structure, an
increase in the event would be observed. However, our experimental
result reveals no such increase in the event, suggesting a separation
of L1 dTLB and L1 iTLB. Extending our investigation on L2 TLB,
we similarly observe no L2 TLB miss events (i.e., L2_TLB_MISS_
INSTRUCTION, L2_TLB_MISS_DATA). Across all tested Apple silicon,
our findings disclose a separation between the dTLB and the iTLB.
TLB sharing between user and kernel. Although the TLB is
shared between the kernel and user processes on other processors
such as Intel and AMD, it has not been thoroughly analyzed on M-
series processors yet. Hence, we design an experiment to uncover
this property. In the experiment, we examine whether TLB entries
allocated by a user process can be evicted by a kernel process. To
make a memory access in kernel space at will, we implemented
a kext, a kernel extension for macOS, which enables running our
executable code with kernel privileges.

First, we examine the property of dTLB. In the first step of our
experiment, we choose a target address 𝑇 from valid kernel ad-
dresses; this can easily be done by picking the address of a variable
in our kext module. We then construct an eviction set 𝐸𝐿1𝑑 against
T, consisting of userspace addresses, and fill the L1 dTLB set with
𝐸𝐿1𝑑 . Next, we perform a memory access on T through our kext
module, and measure L1D_TLB_MISS_NONSPEC event after reload-
ing 𝐸𝐿1𝑑 . If the L1 dTLB is shared between a user and kernel, the
reload would result in L1 dTLB misses. From the experiment, we
observed a noticeable increase in dTLB miss events, indicating that
dTLB is shared between a user and the kernel. We also performed

68

CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA Hyerean Jang, Taehun Kim, & Youngjoo Shin

Table 3: Properties of TLB on Apple silicon.

M1 M1 Pro M2 M2 Pro M2 Max
L1 dTLB
Number of sets 32 32 64 64 64
Number of ways 5 5 4 4 4
Hash function Linear Linear Linear Linear Linear
Sharing with kernel space ✓ ✓ ✓ ✓ ✓

L1 iTLB†

Number of sets 32 32 32 32 32
Number of ways 6 6 6 6 6
Hash function Linear Linear Linear Linear Linear
Sharing with kernel space ✗ ✗ ✗ ✗ ✗

L2 dTLB
Number of sets 256 256 256 256 256
Number of ways 12 12 12 12 12
Hash function Linear Linear Linear Linear Linear
Sharing with kernel space ✓ ✓ ✓ ✓ ✓

L2 iTLB†

Number of sets 256 256 256 256 256
Number of ways 12 12 12 12 12
Hash function Linear Linear Linear Linear Linear
Sharing with kernel space ✗ ✗ ✗ ✗ ✗

† iTLB for userspace

the experiment for L2 dTLB, and obtained the same result as for
the L1 dTLB.

We next examine the property of the iTLB. For this, we imple-
ment a function foo() in our kext module and set the target address
T to the start address of the function. Then, we construct an eviction
set 𝐸𝐿1𝑖 against T, consisting of branch instructions in userspace,
and fill the L1 iTLB set by jumping to each element in 𝐸𝐿1𝑖 . After
that, our kext module performs branching to T and measures L1I_
TLB_MISS_DEMAND event while branching to each element in 𝐸𝐿1𝑖
again. In this case, we cannot observe any TLB miss events on L1
iTLB from the experiment. The same result was obtained for the L2
iTLB. This observation indicates that the TLB has separate iTLBs
for a user and the kernel.

To sum up, Table 3 lists the disclosed TLB properties of Apple
silicon, and Figure 3 illustrates the TLB structure. It is noteworthy
that a user and kernel share the same dTLB, potentially resulting
in contention on it. With this knowledge, we observe the kernel’s
memory access behavior through dTLB to break KASLR.
Comparison to other work. Ravichandran et al. [49] attempted
to reverse engineer the internals of the TLB on Apple silicon, which
is similar to our work, but has a different research goal of exposing
the ARM pointer authentication vulnerability. The main difference
in the reverse-engineering approach is that while they rely on a
timestamp counter, we use a PMU for our analysis. Because the PMU
provides rich data on microarchitectural behavior, we were able to
obtain more detailed information on the TLB, which even gave us
slightly different results from the previous work. For instance, the
authors claim that a TLB entry evicted from L1 iTLB is loaded into
L1 dTLB due to their hierarchical relationship [49]. To verify this, we
conducted an experiment with our M1 CPU-equipped device. First,
we constructed an eviction set 𝐸 for the L1 iTLB, where |𝐸 | =𝑊 + 1,
and𝑊 is the number of ways of the cache. For the M1 CPU, |𝐸 |
is 7 because𝑊 for the L1 iTLB is 6. Next, we filled the iTLB with

dTLB

L1
dTLB

L2
dTLB

iTLB

L1
User iTLB

L2
User iTLB

L1
Kernel iTLB

L2
Kernel iTLB

Figure 3: Hierarchy of TLB on Apple silicon.

𝐸 by executing a branch for each element 𝑒 ∈ 𝐸. This triggers an
eviction from the L1 iTLB set. During the experiment, we measured
the counter L1D_TLB_FILL (number: 0x5). If the L1 dTLB serves as
a backing cache for the L1 iTLB, an increase in the counter might be
observed because the last element in 𝐸 results in an entry allocation
in the L1 dTLB. However, we have not observed such results.

Recently, Apple released the Apple Silicon CPU Optimization
Guide [16], concurrent with our work3. The document contains in-
formation on the TLB structure of various M-series processors. We
confirm that our findings about the TLB, such as the TLB hierarchy
(e.g., L1 and L2 TLBs) and the TLB size (e.g., 3,072 entries in the L2
TLB), are consistent with the document. However, the document
lacks more detailed information about the TLB internals, such as set
associativity, mapping function, and user/kernel separation, which
are necessary to implement the prime+probe attack. In our work,
we performed reverse engineering and uncovered those hidden
details about the TLB. For instance, we revealed that the L2 dTLBs
in all M-series processors commonly have 256 sets and 12 ways
on each, with a linear mapping function, shared between user and
kernel mode. Those information is not contained in the Apple’s doc-
ument. Our findings from the reverse engineering efforts provide
the essentials for implementing our attack.

3.2 Speculative execution inside system call
The kernel isolation in macOS prevents unprivileged users from

causing translation for arbitrary kernel addresses, which is essen-
tial for the construction of an attack primitive. Our approach to
bypassing kernel isolation is to use certain system calls that take
arguments from user-supplied addresses to indirectly cause access
to a kernel address. However, these system calls internally perform
validation checks on the user input, such as boundary checking or
address range checking, to filter out any undesired input [55, 66, 67].
Because of the validation checks, invoking the system calls with
invalid arguments, such as specifying a kernel address for argu-
ments that only accept userspace addresses, will not result in kernel
memory access.

However, we find that it is possible to bypass this validation by
inducing misspeculative execution within the system call. This ap-
proach is similar to the Spectre-v1 [36] technique, which transiently
manipulates the control flow of conditional branches. To illustrate
this, we give an example of a chdir(user_addr_t path) system
call. It takes a string address path as an argument and passes it to
the copyinstr() function. Figure 4 shows a snippet of code from
copyinstr(), where user_addr is the user input address provided
by chdir(). The copy_validate() function actually performs a

3The publication date of the document is March 21, 2024.

69

SysBumps: Exploiting Speculative Execution in System Calls for Breaking KASLR in macOS for Apple Silicon CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA

Figure 4: Code snippet that validates user input address.

1 int copyinstr(const user_addr_t user_addr, char *kernel_addr, vm_size_t nbytes, vm_size_t *lencopied)
2 {
3 int result;
4 ...
5 result = copy_validate(user_addr, (uintptr_t)kernel_addr, nbytes, COPYIO_IN);
6 if (__improbable(result)) {
7 // When user_addr is invalid
8 return result;
9 }
10
11 // When user_addr is valid
12 user_access_enable();
13 result = _bcopyinstr((const char *)user_addr, kernel_addr, nbytes, &bytes_copied);
14 user_access_disable();
15 ...
16 }

validation check on user_addr (at line 5 in Figure 4) to see if the ad-
dress falls within the user’s address space. The conditional branch
in line 6 determines subsequent control flows based on the results
of the bounds check. If the user_addr is valid, it is passed to the
_bcopyinstr() function (line 13), which copies the data stored in
user_addr to the kernel memory space (kernel_addr). Otherwise,
the function returns immediately (line 8).

We find a Spectre-type gadget inside the copyinstr() function
around the conditional branch in line 6. With the gadget, we cre-
ate a speculative execution on the system call to make a transient
memory access to a target kernel address. Specifically, through
the deliberate mistraining of the branch predictor, we can trigger
transient execution of the memory access, regardless of the vali-
dation result. Although this execution will be subsequently rolled
back, it leaves a trace in the TLB if the target address is valid (i.e.,
mapped to physical memory). Consequently, these traces allow us
to determine whether a target kernel address is valid or not.

Validation of Spectre-type gadgets. To validate that transient
access to kernel addresses really does occur in the Spectre-type
gadgets in Figure 4, we perform an additional experiment. To do
this, we modified the macOS kernel binary to insert certain bar-
rier instructions DSB and ISB for ARM64 before the conditional
branch (between lines 5 and 6 in Figure 4). The barrier instructions
prohibit any speculative execution in the conditional branch. We
then compare the experimental result of our attack primitive on
the unmodified macOS, which is detailed in the next section, with
the result on the patched macOS. From the comparison, we see no
timing difference on the patched macOS, while we see a timing
difference (Figure 6) on the unmodified version, indicating that
transient memory access occurs in the conditional branch.

3.3 Attack primitive
Based on the observation of speculative execution in system calls,
we can build an attack primitive that allows us to know whether
a given target kernel address 𝑣 is valid or not. This attack primi-
tive uses the prime+probe technique on the TLB. To implement
the prime+probe attack, we leverage the knowledge gained from
reverse-engineering the TLB described in Section 3.1. Specifically,
we construct an eviction set that targets the L1 or L2 dTLB as it is
shared between user and kernel space, allowing us to evict kernel

Figure 5: Pseudocode of attack primitive.

1 /*---
2 char * kernel_addr : a target kernel address (𝑣)
3 int sys_num : a system call number
4 ---*/
5 int validity_test (char * kernel_addr, int sys_num){
6 // Step1. training with an arbitrary userspace address
7 syscall(sys_num, user_addr);
8 syscall(sys_num, user_addr);
9
10 // Step2. priming the TLB with an eviction set
11 prime();
12
13 // Step3. invoking a system call with 𝑣

14 syscall(sys_num, kernel_addr);
15
16 // Step4. probing the TLB state
17 if(probe(kernel_addr) < THRESHOLD)
18 return false; // 𝑣 is an invalid address.
19 else
20 return true; // 𝑣 is a valid address.
21 }

addresses using the eviction set of user addresses. Figure 5 shows
a code snippet for our attack primitive. It consists of four steps
described below.
Step1 (Training) Invoke system calls with an argument of a valid

user address (lines 7-8), to mistrain the conditional branch
within the system call. For Apple silicon processors, two
invocations of system calls are enough to train the branch
predictor.

Step2 (Prime) Fill the dTLB set corresponding to 𝑣 with the eviction
set (line 11).

Step3 (Access) Invoke the system call again, but with an argument
of 𝑣 (line 14). This will lead to a misprediction in the internal
conditional branch, subsequently resulting in a transient
execution that performs memory access to 𝑣 . The execution
may affect the dTLB depending on the target address; the
dTLB will load a translation of 𝑣 if it is valid, otherwise, not.

Step4 (Probe) Probe the eviction set and measure its latency (line
17). The measured latency reflects the state of the dTLB; A
cycle higher than the predetermined threshold indicates that
𝑣 is physically backed up (i.e., a valid address), while a cycle
lower than the threshold indicates that 𝑣 is not.

70

CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA Hyerean Jang, Taehun Kim, & Youngjoo Shin

460 480 500 520 540
Probing cycle

0%

50%

100%

Fr
eq

ue
nc

y

(a) L1 dTLB

valid kern addr invalid kern addr

1200 1400 1600 1800 2000
Probing cycle

0%

50%

100%

Fr
eq

ue
nc

y

(b) L2 dTLB

Figure 6: Measurement for two kernel addresses on the M1
CPU.

The threshold used in Step 4 varies depending on the TLB levels.
In the attack, the threshold can be determined through multiple
tests.

Evaluation. To validate its effectiveness, we performed an experi-
ment for our attack primitive with two kernel addresses: 𝑣1, which
is physically backed (i.e., a valid address), and 𝑣2, which is not (i.e.,
an invalid address). Figure 6 (a) and (b) show the probing cycles
measured for these addresses on the L1 and L2 dTLB on the M1
CPU, respectively. For a valid address 𝑣1, denoted ‘valid kern
addr’ in the figure, it shows high probing cycles as the address
has evicted one of our elements primed at Step2, resulting in high
latency in probing at Step4. On the other hand, it has low probing
cycles for the invalid address 𝑣2, denoted ‘invalid kern addr’,
as its translation has not been cached on the TLB. We obtained the
same experimental results for all the devices listed in Table 1.

We also observe from the result that probing cycles for 𝑣1 and 𝑣2
are more distinguishable on L2 dTLB than L1 dTLB. We attribute
this to the different inherent properties of these TLBs. For L1 dTLB,
its small size leads to frequent evictions, resulting in a high chance
of false positives. In addition, the difference in L1 dTLB probing
cycles based on address validity is less than that of L2 dTLB, which
could lead to high error rates in TLB probing due to noise. Indeed,
our tests have shown that attacks monitored at the L1 dTLB level
significantly drop in accuracy compared to those conducted at the
L2 dTLB level. In conclusion, we decide to use the L2 dTLB in our
attack primitive to achieve better accuracy in SysBumps attack
introduced in Section 4.
Identifying exploitable system calls.We manually investigate
to identify vulnerable system calls that can be exploited as our at-
tack primitives. The ‘syscall.master’ file in the XNU source code [6]
enumerates all 565 system calls available for the macOS. We look
for system calls that take pointer-type arguments, excluding those

related to inter-process communication (IPC) and process manage-
ment, as they may have unexpected side effects. This leaves 80
system calls.

To verify the exploitability of the remaining 80 system calls, we
performed experiments with our attack primitive using these sys-
tem calls. We succeeded in the attack with 25 out of them, such as
chdir() and fgetxaddr(), all of which are listed in Appendix A.
These vulnerable system calls typically take pointer-type argu-
ments. For instance, chdir() takes a path to the specified directory,
which is of type const char*. fgetxaddr() takes an attribute
value of type user_addr_t, which is also one of pointer types.

To examine the underlying root cause, we analyze the XNU
source code of the vulnerable system calls. Through the analysis,
we discover that copyinstr() or copyin() functions are internally
invoked within all these system calls. Both functions aim to copy
data from userspace to kernel space. We also find out Spectre-
type gadgets inside both copyinstr() and copyin(), as shown in
Figure 4.

4 Breaking KASLR on macOS for Apple silicon
In this section, we first examine the implementation details of
KASLR in macOS for Apple Silicon. Next, we analyze the kernel
memory layout of the macOS using the attack primitive that we
build in Section 3. Finally, based on these analyses, we implement
SysBumps, our KASLR breaking attack targeting macOS for Apple
silicon.

4.1 KASLR entropy analysis
TheKASLR breaking attack requires an understanding of the KASLR
implementation including the range of kernel base addresses and its
alignment size. Since details of the underlying implementation in
macOS have not been disclosed, we attempt to uncover it through
both static code analysis and empirical analysis on the XNU kernel.
Static code analysis. First, we analyze the source code of the XNU
in an attempt to identify the KASLR implementation. From the
source code [4], we find that the kernel base address is determined
as follows.

𝐾𝑒𝑟𝑛𝑒𝑙_𝑏𝑎𝑠𝑒 = 0xfffffe0007004000 + slide. (1)

The kernel base address is actually dependent on the slide, which
is an offset randomly generated at boot time. However, we have
not been able to find the implementation of slide generation in
the source code, suggesting that it is outside the kernel and that a
bootloader is in charge of slide generation.
Empirical analysis. As the actual implementation of the random
generation of slide is not made public, we decide to perform an
empirical analysis on its distribution. Specifically, we try to figure
out the actual range of slide by measuring the allocated kernel
base addresses, from which the value of slide is determined by
Eq.1. To do this, we implemented another kext module that records
the current kernel base address at boot time. In the experiment,
we collected 50,000 different kernel base addresses for each device
listed in Table 1.

Figure 7 shows the distribution of these collected kernel base
addresses, and Table 4 presents the measurement results in detail.
The result shows that all tested devices have the same maximum

71

SysBumps: Exploiting Speculative Execution in System Calls for Breaking KASLR in macOS for Apple Silicon CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA

 0xfffffe000f000000 0xfffffe002f000000
Addresses

0

500

1000

1500

Fr
eq

ue
nc

y
(C

ou
nt

s)

Figure 7: Distribution of kernel base addressesmeasured over
50,000 reboots.

Table 4: Measurements for kernel base range.

CPU Min Max GCD #Slots (bits)
M1 0xfffffe000f3f4000 0xfffffe002f000000 0x4000 32,515 (14.98)
M1 Pro 0xfffffe000f0f4000 0xfffffe002f000000 0x4000 32,707 (14.99)
M2 0xfffffe000f0e0000 0xfffffe002f000000 0x4000 32,712 (14.99)
M2 Pro 0xfffffe000f1bc000 0xfffffe002f000000 0x4000 32,657 (14.99)
M2 Max 0xfffffe000f1c4000 0xfffffe002f000000 0x4000 32,655 (14.99)

kernel base address, while they have different minimum addresses.
We also observe from the result that the greatest common divisor
(GCD) of these collected kernel base addresses is 16 KiB, aligning
with the system’s page size. It is important to note that the GCD
of kernel addresses is a multiple of the alignment size, and these
alignment sizes are typically set as a multiple of the page size for
system performance reasons. Consequently, based on these findings,
we can infer that the alignment size for kernel base addresses is
indeed set to 16 KiB.

From our experimental observations, we determine that the ac-
tual range of kernel base addresses is at least 32,515 (= 214.98)
possible slots (i.e., the allocated unit of kernel base address), expos-
ing approximately 15 bits of entropy to attackers.

4.2 Kernel layout analysis
To gain an insight into the construction of the SysBumps attack, we
analyze howmuch information about the kernel memory layout can
be obtained by our attack primitive. Specifically, we run the attack
primitive for the full set of possible kernel slots and measure the
latency (i.e., the probing cycle). All themeasurements are performed
on the same KASLR instance of a device equipped with an M1 CPU.

Figure 8 shows the measured latency for kernel slots (shown
below in the figure) as well as the actual kernel memory layout
(shown above), both of which are aligned with the slot numbers. In
the figure, some regions exhibited persistently high probing cycles
(e.g., the region of slot numbers between 16,384 and 17,918), indicat-
ing that they have valid kernel address spaces. On the other hand,
certain regions have both high and low cycles for two consecutive
slots (e.g., the region between 14,000 and 16,383), implying that they
are invalid address spaces. We attribute the observation of high
cycles in the invalid address region to noise generated by our at-
tack primitive, since it involves multiple executions of system calls.

DATA
Seg.

Aux
KC

Kernel
base

End of
DATA Seg.

Kernel region

𝑂𝑓𝑓𝑠𝑒𝑡! 𝑆𝑖𝑧𝑒!

Threshold

Figure 8: Probing with the attack primitive over the kernel
base range.

Despite a certain amount of noise, we observe that high latency
slots occur continuously in the valid address regions, allowing a
clear distinction between valid and invalid areas.

As shown in Figure 8, there is a slight discrepancy between the
actual kernel base, indicated by a red line in the figure, and the
start slot measured as valid, indicated by a red dashed line. Further
analysis reveals that the region in front of the kernel base, shown
as a shaded area in red in the figure, is occupied by Auxiliary kernel
collection (AuxKC). The AuxKC is a preserved space allocated for
third-party kernel extensions (kext) [3]. The size of the AuxKC
varies depending on the kext modules installed on the macOS,
which is unknown to unprivileged users. The presence of such
regions poses a significant challenge to finding the exact location of
the kernel base, as it requires the ability to determine the size of the
AuxKC region in unprivileged mode, which is quite challenging.

On the other hand, we observe that there are a number of slots
that are measured as valid at the end of the kernel region (e.g., slots
21,148 - 21,233 in Figure 8). Through further analysis, we confirm
that the valid slots are consistently aligned with the end of the
kernel’s DATA segment, as indicated by the blue line in the figure.
The size of the DATA segment and its offset are always consistent
throughout the main kernel image, and any unprivileged user can
obtain this information by examining the load commands of a kernel
cache file, which is a pre-linked executable that contains the kernel
and essential drivers4.
Attack strategy. Based on our analysis, we establish a strategy for
our SysBumps attack that instead of the kernel base address, we
choose to find out the end address of the DATA segment. Once the
location of the DATA segment has been identified, we are able to
determine the kernel base address with the information about the
size and offset of the segment.
Further observation.We discover that there are certain regions
(e.g., slots 17,919 - 18,303 in Figure 8) showing low cycles in the
4The kernel cache file is typically located at /private/var/db/KernelExtensionManag-
ement/KernelCollections/BootKernelCollection.kc.

72

CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA Hyerean Jang, Taehun Kim, & Youngjoo Shin

Table 5: The attack performance.

chdir() getxattr() pathconf()
Accuracy Time(s) Accuracy Time(s) Accuracy Time(s)

M1 98.8% 2.34 96.6% 2.35 98.0% 2.33
M1 Pro 95.7% 2.54 92.1% 2.52 94.5% 2.50
M2 97.6% 2.11 97.9% 2.12 97.0% 2.09
M2 Pro 96.3% 2.21 94.9% 2.21 95.9% 2.15
M2 Max 97.0% 2.15 95.9% 2.14 96.0% 2.09

latency, thus measured as invalid, while belonging to the valid ker-
nel regions. This suggests that the translations for kernel addresses
in such regions are not cached in the TLB, which requires further
analysis. However, the uncertainty about the region does not affect
our KASLR breaking attack, since it is sufficient to use the end
address of the DATA segment to determine the kernel base address.

4.3 SysBumps
4.3.1 Threat model. In this attack, we assume an unprivileged
attacker, who can execute arbitrary code on a user process, but
does not have any privileges over the operating system. The at-
tacker aims to exploit memory corruption vulnerabilities in the
kernel space using software exploitation techniques [13, 50, 56, 70],
which requires bypassing KASLR. The target system employs robust
kernel isolation techniques (i.e., double map) to mitigate KASLR
breaking attacks using microarchitectural side-channel techniques.
Therefore, the attacker’s goal is to bypass KASLR by overcoming
these mitigation measures.

4.3.2 Attack procedure. Following the attack strategy presented in
the previous section, an unprivileged attacker performs the attack
through the following steps.
Step 1. The attacker gets the information about the DATA segment
of the main kernel image including its offset, denoted𝑂𝑓 𝑓 𝑠𝑒𝑡𝑑 , and
the size, denoted 𝑆𝑖𝑧𝑒𝑑 . This information can be easily obtained
by examining load commands in the kernel cache file with the
otool [60], which is a tool that enumerates specific information in
Mach-O format binaries.
Step 2. The attacker looks for the end address of the DATA segment
of the kernel image, which is denoted 𝐴𝑑𝑑𝑟𝑒𝑛𝑑𝐷 using the attack
primitive introduced in Section 3. To find out 𝐴𝑑𝑑𝑟𝑒𝑛𝑑𝐷 , he/she
starts at the address of the highest kernel slot, and continues by
decreasing the slot number until the first valid slot, where the attack
primitive (Figure 5) returns true, is found. Since our attack exhibits
some measurement errors, the attacker repeats the examination
over the kernel slots several times and then gets the averaged
results to minimize the error. The attacker further reduces the
false positives with a strategy that instead of looking for a single
valid slot, he/she looks for continuous multiple valid slots, as this
indicates high evidence of the valid DATA section.
Step 3. With the information obtained in Step 1 and 2, the attacker
is able to determine the kernel base address Kern_base using the
following equation.

𝐾𝑒𝑟𝑛_𝑏𝑎𝑠𝑒 = 𝐴𝑑𝑑𝑟𝑒𝑛𝑑𝐷 − {𝑂𝑓 𝑓 𝑠𝑒𝑡𝑑 + 𝑆𝑖𝑧𝑒𝑑 }. (2)

4.3.3 Evaluation. To validate the effectiveness of our attack, we
evaluate its performance in terms of accuracy and execution time.

The evaluation is performed with our tested devices listed in Table 1,
which covers a variety of Apple silicon processors as well as macOS
release versions from 13.1 to 14.3. We choose three system calls
chdir(), getxattr(), and pathconf() for our evaluation among
the possible system calls enumerated in Appendix A.
Attack accuracy. For each target device, we ran the following
experiment when the device was booted; so, the kernel base remains
the same under the same experiment. The experiment is that we ran
the SysBumps attack 10 times, selected the most frequent answers
for Kern_base among them, and then compared the answer with the
real kernel base address. We then repeated the above experiment
100 times by rebooting the system, each time with a different kernel
base address.

Table 5 shows the evaluation result. We observe from the result
that an averaged success rate ranges from 94.1% to 97.8%, indicat-
ing the high accuracy in finding out the kernel base address. It is
noteworthy that in the failed cases, the answers returned by the
attack were only 1 or 2 slots away from the real kernel base address.
We attribute this discrepancy to false positives due to the noise
introduced by the attack. Even in cases of such errors, the detected
kernel base was significantly close to the actual address, effectively
reducing the entropy of KASLR.
Attack execution time. We also evaluate the execution time of
our attack under the same experimental environments. The attack
execution time means the time elapsed from the start of the attack
to the time when the answer is returned. The execution time is most
likely affected by the real kernel base address, since its occupied
slot determines the number of slots to examine in our attack.

In light of this observation, we consider a worst-case scenario
where the kernel base is located at the lowest of all possible kernel
slots. Table 5 also shows the evaluation results of the execution
time. From the result, we conclude that our attack is able to deter-
mine the kernel base address within about 3 seconds, showing its
effectiveness in a real-world attack scenario.

5 Countermeasures
In this section, we discuss potential mitigations against the Sys-
Bumps attack at the hardware and software levels.
Partitioning dTLB between user and kernel space. Apple M-
series CPUs currently employ a dTLB design that is shared by both
a user and a kernel. This design poses a security concern, as an
attacker can infer memory access patterns of the kernel by ob-
serving contention on the dTLB. Hence, one possible mitigation
approach is to partition the dTLB between a user and a kernel, com-
pletely eliminating contention on the dTLB. As shown in Section 3.1,
we revealed that the iTLB of Apple silicon is already partitioned
into two separate hardware resources based on the privilege level.
This prevents the SysBumps attack from using the iTLB to break
KASLR [39, 40]. Similarly, we expect that employing such a design
to dTLB would be effective in mitigating the SysBumps attack.
Allocating TLB entry for invalid address. The main idea be-
hind SysBumps attack for breaking KASLR is to distinguish valid
addresses from invalid ones. This has been achieved by the TLB
design, where the TLB allows an unprivileged user to allocate
a TLB entry for kernel space as long as the memory address is

73

SysBumps: Exploiting Speculative Execution in System Calls for Breaking KASLR in macOS for Apple Silicon CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA

valid. By observing the change in the TLB state, an attacker can
identify the base address of the kernel. Most microarchitectural
side-channel attacks that de-randomize KASLR also rely on this
methodology [21, 31, 39, 40]. Therefore, modifying the TLB design
to allocate TLB entries even for invalid addresses could be an effec-
tive mitigation. With this approach, SysBumps is unable to break
KASLR since an attacker can no longer differentiate valid kernel
addresses from invalid ones through the TLB. We believe that this
mitigation could prove effective against existing attacks that exploit
the TLB design to break KASLR.
Preventing speculative execution with a fence. SysBumps at-
tack exploits speculative execution that occurs during the execu-
tion of system calls. Given that the SysBumps gadget aligns with
Spectre-v1, one possible short-term solution is to insert serializing
instruction, such as DSB, ISB for ARM64, before the conditional
branch (e.g., line 6 in Figure 4) [30, 38, 62]. We confirmed earlier in
Section 3.3 that, after applying this mitigation, the timing differ-
ences depending on the address validity are no longer detected.

While this mitigation effectively protects against threats aris-
ing from speculative execution, it may lead to some performance
degradation when performing system calls. To evaluate this impact,
we measured the execution time of system calls on macOS with
and without employing the mitigation. We focused on three system
calls—chdir(), getxattr(), and pathconf()—previously used for
performance evaluation. We executed each system call 100,000
times across different kernel versions. The experimental results
indicated that the performance overhead caused by the serializing
instruction is so negligible that the difference between the pre- and
post-mitigation states is indistinguishable. This result demonstrates
that inserting serializing instructions can be employed without sig-
nificant performance compromise. However, this solution does not
address the root cause of the SysBumps attack, allowing an attacker
to break KASLR with other potential code gadgets.
Restricting speculative execution window to reach target in-
struction.While SysBumps utilizes code gadgets similar to Spectre-
v1, the control flow executed during speculative execution differs.
Unlike Spectre-v1, the SysBumps attack aims to speculatively ex-
ecute instructions outside of an if statement, specifically in the
control flow where the conditional branch is false. Therefore, one
solution is to allow speculative execution but limit the execution
of the target instruction within the speculative execution window.
This can be achieved by reordering the code sequence to place
the target instruction farther away from the conditional branch,
beyond the reach of the speculative execution window. Fortunately,
as we will describe in Section 6, macOS running on Intel proces-
sors do not perform memory access with an attacker-controlled
input immediately after the conditional branch. As a result, the
target instruction is not within the speculative execution window,
preventing SysBumps attack from breaking KASLR. Employing a
similar approach to macOS running on Apple silicon can serve as a
short-term defense against SysBumps attack.

6 Discussion
In this section, we investigate the feasibility of the SysBumps attack
on different operating systems. To this end, we have performed this
attack on macOS, Ubuntu Linux, and Windows on Intel processors.

Attack on macOS for Intel CPUs. In the experiment, we at-
tempted the SysBumps attack on macOS Ventura 13.6 with an Intel
Core i9-9800H processor. As a result, SysBumps failed to determine
the base address of the macOS kernel. To understand this failure,
we performed a detailed analysis of the system call implementation
in macOS for an x86-64 system [5]. From the analysis, we find that
there is a significant difference of the system call implementation
between macOS for Apple silicon and macOS for x86-64. For the
macOS x86-64, memory accesses with the system call arguments do
not occur immediately after conditional branches in the validation
check. As a result, these memory accesses do not happen within
the speculative execution window, making the attack infeasible.
Attack on Ubuntu Linux. For this attack, we set up an experimen-
tal environment on an Intel Core i5-9600K running Ubuntu 20.04.6
LTS (kernel version: 5.15.0-91-generic). SysBumps also failed to
determine the base address from userspace. Throughout the analy-
sis, we could not find any Spectre-type gadgets in the system call
implementation in the Linux kernel, unlike the macOS for Apple
silicon, which has the gadgets as shown in Figure 4.
Attack on Windows. We attempted the attack on Windows 10
(version: 22H2) running on an Intel core i9-10900. The attack failed
because invoking a system call with arguments of arbitrary kernel
addresses results in a segmentation fault; this different behavior is
not observed in other operating systems.

7 Related Work
KASLR side-channel attacks.Ongoing research efforts have been
made to break KASLR through microarchitectural attack vectors.
The key aspect of the attack is to create an attack primitive that
distinguishes between valid and invalid kernel addresses. All of the
work commonly exploit the state change in the microarchitecture
such as TLB, but have different approaches in building the attack
primitive. Table 6 provides a summary of these attacks.

Most previous work attempts to infer the validity of the target
address by observing the TLB state, exploiting the fact that the TLB
only caches valid kernel address translations. Double page fault [28]
and Drk [31] attacks take advantage of the timing difference in han-
dling page faults, where the difference comes from the way handles
valid and invalid addresses. The attacks proposed by Gruss et al. [21]
and Lipp et al. [40], and the EntryBleed attack [45] utilize the timing
difference in the execution of unprivileged prefetch instructions on
x86 processors to observe the TLB state. AVX-TSCHA [33] attack
exploits AVX’s masked operations which have timing differences
in its execution depending on the validity of target kernel address.
PLATYPUS [42] and the attack proposed by Lipp et al. [40] exploit
the difference in power consumption, which is correlated with the
TLB state, instead of the execution time using the Running Average
Power Limit (RAPL) interface [29]. Evtyushkin et al.’s work [17]
and TagBleed [39] showed de-randomizing KASLR by inducing
collisions in BTB and TLB, respectively.

Some of the work is aimed at making access to kernel addresses
by creating transient executions. These attacks leave a detectable
trace for valid kernel addresses during the transient execution,
allowing attackers to infer the validity of the address. The Flush-
Conflict attack [63] exploits Intel’s non-temporal moves (MOVNT)

74

CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA Hyerean Jang, Taehun Kim, & Youngjoo Shin

Table 6: Comparison of existing KASLR breaking attacks.

Attack CPU OS Entropy†

(bit)
Leakage source TechniqueLinux Windows macOS

Double page fault [28] Intel, AMD ✓ ✓ 9 / 13 TLB Page fault handling
Gruss et al [23] Intel ✓ 13 TLB Software-based prefetch

Evtyushkin et al. [17] Intel ✓ 9 Branch target buffer Transient execution
Drk [31] Intel ✓ ✓ ✓∗ 9 / 13 / 8 TLB Intel TSX

Data Bounce [10] Intel ✓ 9 TLB Transient execution
TagBleed [39] Intel ✓ 9 TLB TLB information leak
EchoLoad [11] Intel ✓ ✓ 9 / 13 Reorder buffer Transient execution
PLATYPUS [42] Intel ✓ 9 TLB RAPL interface
FlushConflict [63] Intel ✓ 9 TLB Transient execution
Lipp et al. [40] AMD ✓ 9 TLB RAPL interface

AVX-TSCHA [33] Intel, AMD ✓ ✓ ✓∗ 9 / 13 / 8 TLB AVX instruction
EntryBleed [45] Intel ✓ 9 TLB Software-based prefetch

SysBumps
(This work) Apple silicon ✓ 15 TLB Transient execution

† Linux - 9 bits / Windows - 13 bits / macOS for Intel - 8 bits / macOS for Apple silicon - 15 bits
∗ macOS for Intel processors

instruction, which can cause transient execution for subsequent in-
structions based on the validity of the target address. EchoLoad [11]
exploits the vulnerability in the incomplete Meltdown mitigation
that accesses to valid kernel addresses are not stalled but just zeroed
out. Data Bounce [10] takes advantage of the fact that store-load
forwarding is performed using inaccessible kernel addresses, even
if only some of the addresses match during transient execution.

Our work is different from the previous work in two aspects.
First, we mainly focus on breaking KASLR on macOS for Apple
silicon, which has not been explored yet in the research community.
Although some previous works [31, 33] have demonstrated attacks
against KASLR in macOS, they exploited hardware flaws in x86
processors, not Apple silicon. Moreover, these attacks have already
beenmitigated in the latest version of macOS by the kernel isolation.
To the best of our knowledge, our work introduces the first attack
that successfully breaks KASLR on macOS for Apple silicon. Our
attack demonstrates the capability to effectively circumvent KASLR,
despite the high entropy characteristics of macOS for Apple silicon.

Second, our work targets the KASLR implementation with the
kernel isolation enabled, which mitigates most of the attacks pro-
posed by previous work. There are some works [11, 33, 40, 63] that
provide attack on the kernel isolation enabled KASLR implemen-
tations. They use small kernel stub codes mapped into user-space
page tables for their attack. However, our experiment shows that
there is no such code space in macOS for Apple silicon, making
these attacks infeasible. Unlike the previous work, SysBumps does
not depend on these code stubs, but instead uses system calls to gain
transient access to kernel addresses in kernel mode. As a result, our
attack can successfully bypass KASLR on macOS for Apple silicon,
where the kernel isolation is enabled.
Side-channel attacks on Apple silicon. Although not abundant,
there have been a few studies that have uncovered side-channel
vulnerabilities on Apple silicon processors. These vulnerabilities
have been found at both the microarchitectural and architectural
levels of the hardware.

Most of the previous work focuses on vulnerabilities in microar-
chitectural components in the processor, in particular, a cache on
Apple silicon. Shusterman et al. [53] disclosed a cache side-channel
vulnerability on an M1 CPU, demonstrating an attack that leaks the
secret of a web browser. The 𝑆2C [71] discloses a vulnerability in
LoadLinked/Store-Conditional (LL/SC) instructions, and introduces
a timerless cross-core cache attack by exploiting the vulnerability.
Cronin et al. [14] explores the feasibility of creating a cache occu-
pancy channel [54] on the M1 CPU and demonstrates a website
fingerprinting attack that utilizes this channel. Augury [61] exploits
a vulnerability in a data memory-dependent prefetcher (DMP), de-
signed to prefetch irregular address patterns, to leak arbitrary data
in the cache. Branch difference [26] showed that Spectre attacks
are still effective on Apple silicon. iLeakage [32] also exploits the
Spectre-v1 vulnerability [36] on the Apple silicon processor and
demonstrates an attack that extracts secret information from a
Safari browser.

There are other works that focus on vulnerabilities in the archi-
tectural features of Apple silicon processors. M1racle [1] demon-
strated a cross-process covert channel attack by leveraging some
implementation flaws in the system registers of the processor. Hot
Pixels [57] introduced a hybrid attack utilizing software to measure
physical properties in Dynamic Voltage Frequency Scaling (DVFS)
to conduct a website fingerprinting attack on Apple Silicon.

Similar to our work, PACMAN [49] introduced a TLB-targeted
attack on Apple silicon-based devices, specifically focusing on by-
passing the ARM pointer authentication by exploiting the Spectre-
v1 vulnerability. As discussed in Section 3.1, our work differs from
PACMAN in that our primary goal is to break KASLR in macOS for
Apple silicon, and we use a more advanced PMU-based methodol-
ogy to reverse-engineer the internals of the TLB.

8 Conclusion
In this paper, we presented SysBumps, the first speculative exe-
cution attack aimed at circumventing KASLR within macOS for

75

SysBumps: Exploiting Speculative Execution in System Calls for Breaking KASLR in macOS for Apple Silicon CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA

Apple silicon. We introduced a novel technique that allows unpriv-
ileged attackers to transiently access kernel memory, despite the
barrier of double map, the kernel isolation defenses implemented
in macOS. With this technique, we built an attack primitive that
enables distinguishing between valid and invalid kernel addresses
by observing the TLB state, which is necessary for the KASLR break
attack. We also performed reverse-engineering the hidden internals
of the TLB on various M-series processors using a PMU, through
which we successfully implemented the SysBumps attack. Through-
out the evaluation, we demonstrated that SysBumps can effectively
break KASLR across different M-series processors and macOS re-
leases. We also proposed comprehensive mitigation strategies that
include both software and hardware solutions. These mitigations
can address the underlying vulnerabilities exposed by our attack
and provide a more resilient defense against sophisticated attacks.

Acknowledgments
This research was supported by a National Research Foundation
of Korea (NRF) grant, funded by the Korean government (MSIT)
(No.2023R1A2C2006862).

References
[1] [n. d.]. M1ssing Register Access Controls Leak EL0 State. https://m1racles.com/
[2] Ayush Agarwal, Sioli O’Connell, Jason Kim, Shaked Yehezkel, Daniel Genkin,

Eyal Ronen, and Yuval Yarom. 2022. Spook. js: Attacking Chrome strict site
isolation via speculative execution. In 2022 IEEE Symposium on Security and
Privacy (S&P). IEEE, 699–715.

[3] Apple. 2021. Kernel extensions in macOS. https://support.apple.com/fr-ml/guide/
security/sec8e454101b/web

[4] Apple. 2023. xnu/osfmk/arm/arm_init.c. https://github.com/apple-oss-
distributions/xnu/blob/main/osfmk/arm/arm_init.c

[5] Apple. 2023. xnu/osfmk/armx86_64/copyio.c. https://github.com/apple-oss-
distributions/xnu/blob/main/osfmk/x86_64/copyio.c

[6] Apple. 2024. xnu/bsd/kern/syscalls.master. https://github.com/apple-oss-
distributions/xnu/blob/main/bsd/kern/syscalls.master

[7] Enrico Barberis, Pietro Frigo, Marius Muench, Herbert Bos, and Cristiano Giuf-
frida. 2022. Branch History Injection: On the Effectiveness of Hardware Mit-
igations Against Cross-Privilege Spectre-v2 Attacks. In 31st USENIX Security
Symposium (USENIX Security 22). 971–988.

[8] Mohammad Behnia, Prateek Sahu, Riccardo Paccagnella, Jiyong Yu, Zirui Neil
Zhao, Xiang Zou, Thomas Unterluggauer, Josep Torrellas, Carlos Rozas, Adam
Morrison, et al. 2021. Speculative interference attacks: Breaking invisible spec-
ulation schemes. In Proceedings of the 26th ACM International Conference on
Architectural Support for Programming Languages and Operating Systems. 1046–
1060.

[9] Atri Bhattacharyya, Andrés Sánchez, Esmaeil M. Koruyeh, Nael Abu-Ghazaleh,
Chengyu Song, and Mathias Payer. 2020. SpecROP: Speculative Exploitation of
ROP Chains. In 23rd International Symposium on Research in Attacks, Intrusions
and Defenses (RAID 2020). 1–16.

[10] Claudio Canella, Daniel Genkin, Lukas Giner, Daniel Gruss, Moritz Lipp, Marina
Minkin, Daniel Moghimi, Frank Piessens, Michael Schwarz, Berk Sunar, et al.
2019. Fallout: Leaking data on meltdown-resistant cpus. In Proceedings of the 2019
ACM SIGSAC Conference on Computer and Communications Security. 769–784.

[11] Claudio Canella, Michael Schwarz, Martin Haubenwallner, Martin Schwarzl, and
Daniel Gruss. 2020. KASLR: Break it, fix it, repeat. In Proceedings of the 15th ACM
Asia Conference on Computer and Communications Security. 481–493.

[12] Weiteng Chen, Xiaochen Zou, Guoren Li, and Zhiyun Qian. 2020. KOOBE:
Towards Facilitating Exploit Generation of Kernel Out-Of-Bounds Write Vulner-
abilities. In 29th USENIX Security Symposium (USENIX Security 20). 1093–1110.

[13] Mauro Conti, Stephen Crane, Lucas Davi, Michael Franz, Per Larsen, Marco
Negro, Christopher Liebchen, Mohaned Qunaibit, and Ahmad-Reza Sadeghi.
2015. Losing control: On the effectiveness of control-flow integrity under stack
attacks. In Proceedings of the 22nd ACM SIGSAC Conference on Computer and
Communications Security. 952–963.

[14] Patrick Cronin, Xing Gao, HainingWang, and Chase Cotton. 2021. An exploration
of ARM system-level cache and GPU side channels. In Proceedings of the 37th
Annual Computer Security Applications Conference. 784–795.

[15] Apple Developer. 2014. Overview of the Mach-O Executable Format.
https://developer.apple.com/library/archive/documentation/Performance/

Conceptual/CodeFootprint/Article
[16] Apple Developer. 2024. Apple Silicon CPU Optimization Guide. https://developer.

apple.com/documentation/apple-silicon/cpu-optimization-guide
[17] Dmitry Evtyushkin, Dmitry Ponomarev, and Nael Abu-Ghazaleh. 2016. Jump

over ASLR: Attacking branch predictors to bypass ASLR. In 2016 49th Annual
IEEE/ACM International Symposium on Microarchitecture (MICRO). IEEE, 1–13.

[18] David Gens, Orlando Arias, Dean Sullivan, Christopher Liebchen, Yier Jin, and
Ahmad-Reza Sadeghi. 2017. Lazarus: Practical side-channel resilient kernel-space
randomization. In 20th International Symposium on Research in Attacks, Intrusions
and Defenses (RAID 2017). 238–258.

[19] Enes Göktas, Kaveh Razavi, Georgios Portokalidis, Herbert Bos, and Cristiano
Giuffrida. 2020. Speculative probing: Hacking blind in the Spectre era. In Pro-
ceedings of the 2020 ACM SIGSAC Conference on Computer and Communications
Security. 1871–1885.

[20] Ben Gras, Kaveh Razavi, Herbert Bos, and Cristiano Giuffrida. 2018. Translation
leak-aside buffer: Defeating cache side-channel protections with TLB attacks. In
27th USENIX Security Symposium (USENIX Security 18). 955–972.

[21] Daniel Gruss, Dave Hansen, and Brendan Gregg. 2018. Kernel isolation: From
an academic idea to an efficient patch for every computer. ;login: 43, 4 (2018),
10–14.

[22] Daniel Gruss, Moritz Lipp, Michael Schwarz, Richard Fellner, ClémentineMaurice,
and Stefan Mangard. 2017. Kaslr is dead: long live kaslr. In Engineering Secure
Software and Systems: 9th International Symposium, ESSoS 2017, Bonn, Germany,
July 3-5, 2017, Proceedings 9. 161–176.

[23] Daniel Gruss, Clémentine Maurice, Anders Fogh, Moritz Lipp, and Stefan Man-
gard. 2016. Prefetch Side-Channel Attacks: Bypassing SMAP and Kernel ASLR. In
Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications
Security. 368–379.

[24] Daniel Gruss, Raphael Spreitzer, and Stefan Mangard. 2015. Cache template
attacks: Automating attacks on inclusive Last-Level caches. In 24th USENIX
Security Symposium (USENIX Security 15). 897–912.

[25] Mathé Hertogh, Sander Wiebing, and Cristiano Giuffrida. 2024. Leaky Address
Masking: Exploiting Unmasked Spectre Gadgets with Noncanonical Address
Translation. In 2024 IEEE Symposium on Security and Privacy (S&P). IEEE, 158–
158.

[26] LorenzHetterich andMichael Schwarz. 2022. BranchDifferent-Spectre Attacks on
Apple Silicon. In International Conference on Detection of Intrusions and Malware,
and Vulnerability Assessment. 116–135.

[27] Ralf Hund, Thorsten Holz, and Felix C Freiling. 2009. Return-oriented rootkits:
Bypassing kernel code integrity protection mechanisms. In 18th USENIX security
symposium (USENIX Security 09). 383–398.

[28] Ralf Hund, Carsten Willems, and Thorsten Holz. 2013. Practical timing side
channel attacks against kernel space ASLR. In 2013 IEEE Symposium on Security
and Privacy (S&P). IEEE, 191–205.

[29] Intel. 2024. Intel 64 and IA-32 Architectures Software Developer Manu-
als. https://www.intel.com/content/www/us/en/developer/articles/technical/
intel-sdm.html

[30] Hyerean Jang and Youngjoo Shin. 2023. MicroCFI: Microarchitecture-Level
Control-Flow Restrictions for Spectre Mitigation. IEEE Access (2023).

[31] Yeongjin Jang, Sangho Lee, and Taesoo Kim. 2016. Breaking kernel address space
layout randomization with intel TSX. In Proceedings of the 2016 ACM SIGSAC
Conference on Computer and Communications Security. 380–392.

[32] Jason Kim, Stephan van Schaik, Daniel Genkin, and Yuval Yarom. 2023. iLeakage:
Browser-based Timerless Speculative Execution Attacks on Apple Devices. In
Proceedings of the 2023 ACM SIGSAC Conference on Computer and Communications
Security. 2038–2052.

[33] Suryeon Kim, Seungwon Shin, and Hyunwoo Choi. 2023. AVX-TSCHA: Leaking
information through AVX extensions in commercial processors. Computers &
Security 134 (2023), 103437.

[34] Taehun Kim, Hyeongjin Park, Seokmin Lee, Seunghee Shin, Junbeom Hur, and
Youngjoo Shin. 2023. DevIOus: Device-Driven Side-Channel Attacks on the
IOMMU. In 2023 IEEE Symposium on Security and Privacy (S&P). IEEE, 2288–
2305.

[35] Taehun Kim and Youngjoo Shin. 2022. ThermalBleed: A Practical Thermal Side-
Channel Attack. IEEE Access (2022).

[36] Paul Kocher, Jann Horn, Anders Fogh, Daniel Genkin, Daniel Gruss, Werner
Haas, Mike Hamburg, Moritz Lipp, Stefan Mangard, Thomas Prescher, et al. 2020.
Spectre attacks: Exploiting speculative execution. Commun. ACM 63, 7 (2020),
93–101.

[37] Esmaeil Mohammadian Koruyeh, Khaled N. Khasawneh, Chengyu Song, and
Nael Abu-Ghazaleh. 2018. Spectre Returns! Speculation Attacks using the Return
Stack Buffer. In 12th USENIX Workshop on Offensive Technologies (WOOT 18).
USENIX Association.

[38] Esmaeil Mohammadian Koruyeh, Shirin Haji Amin Shirazi, Khaled N Khasawneh,
Chengyu Song, and Nael Abu-Ghazaleh. 2020. Speccfi: Mitigating spectre attacks
using cfi informed speculation. In 2020 IEEE Symposium on Security and Privacy
(S&P). IEEE, 39–53.

76

https://m1racles.com/
https://support.apple.com/fr-ml/guide/security/sec8e454101b/web
https://support.apple.com/fr-ml/guide/security/sec8e454101b/web
https://github.com/apple-oss-distributions/xnu/blob/main/osfmk/arm/arm_init.c
https://github.com/apple-oss-distributions/xnu/blob/main/osfmk/arm/arm_init.c
https://github.com/apple-oss-distributions/xnu/blob/main/osfmk/x86_64/copyio.c
https://github.com/apple-oss-distributions/xnu/blob/main/osfmk/x86_64/copyio.c
https://github.com/apple-oss-distributions/xnu/blob/main/bsd/kern/syscalls.master
https://github.com/apple-oss-distributions/xnu/blob/main/bsd/kern/syscalls.master
https://developer.apple.com/library/archive/documentation/Performance/Conceptual/CodeFootprint/Article
https://developer.apple.com/library/archive/documentation/Performance/Conceptual/CodeFootprint/Article
https://developer.apple.com/documentation/apple-silicon/cpu-optimization-guide
https://developer.apple.com/documentation/apple-silicon/cpu-optimization-guide
https://www.intel.com/content/www/us/en/developer/articles/technical/intel-sdm.html
https://www.intel.com/content/www/us/en/developer/articles/technical/intel-sdm.html

CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA Hyerean Jang, Taehun Kim, & Youngjoo Shin

[39] Jakob Koschel, Cristiano Giuffrida, Herbert Bos, and Kaveh Razavi. 2020. Tag-
Bleed: Breaking KASLR on the isolated kernel address space using tagged TLBs.
In 2020 IEEE European Symposium on Security and Privacy (EuroS&P). 309–321.

[40] Moritz Lipp, Daniel Gruss, and Michael Schwarz. 2022. AMD prefetch attacks
through power and time. In 31st USENIX Security Symposium (USENIX Security
22). 643–660.

[41] Moritz Lipp, Daniel Gruss, Raphael Spreitzer, Clémentine Maurice, and Stefan
Mangard. 2016. ARMageddon: Cache attacks on mobile devices. In 25th USENIX
Security Symposium (USENIX Security 16). 549–564.

[42] Moritz Lipp, Andreas Kogler, David Oswald, Michael Schwarz, Catherine Easdon,
Claudio Canella, and Daniel Gruss. 2021. PLATYPUS: Software-based power
side-channel attacks on x86. In 2021 IEEE Symposium on Security and Privacy
(S&P). IEEE, 355–371.

[43] Moritz Lipp, Michael Schwarz, Daniel Gruss, Thomas Prescher, Werner Haas,
Anders Fogh, Jann Horn, Stefan Mangard, Paul Kocher, Daniel Genkin, Yuval
Yarom, and Mike Hamburg. 2018. Meltdown: Reading Kernel Memory from User
Space. In 27th USENIX Security Symposium (USENIX Security 18). 973–990.

[44] Fangfei Liu, Yuval Yarom, Qian Ge, Gernot Heiser, and Ruby B Lee. 2015. Last-
level cache side-channel attacks are practical. In 2015 IEEE Symposium on Security
and Privacy (S&P). IEEE, 605–622.

[45] William Liu, Joseph Ravichandran, and Mengjia Yan. 2023. EntryBleed: A Univer-
sal KASLR Bypass against KPTI on Linux. In Proceedings of the 12th International
Workshop on Hardware and Architectural Support for Security and Privacy. 10–18.

[46] Giorgi Maisuradze and Christian Rossow. 2018. ret2spec: Speculative execution
using return stack buffers. In Proceedings of the 2018 ACM SIGSAC Conference on
Computer and Communications Security. 2109–2122.

[47] Andrea Mambretti, Alexandra Sandulescu, Alessandro Sorniotti, William Robert-
son, Engin Kirda, and Anil Kurmus. 2021. Bypassing memory safety mechanisms
through speculative control flow hijacks. In 2021 IEEE European Symposium on
Security and Privacy (EuroS&P). 633–649.

[48] Microsoft. 2018. KVA Shadow: Mitigating Meltdown on Windows. https://msrc.
microsoft.com/blog/2018/03/kva-shadow-mitigating-meltdown-on-windows/

[49] Joseph Ravichandran, Weon Taek Na, Jay Lang, and Mengjia Yan. 2022. PACMAN:
attacking ARM pointer authentication with speculative execution. In Proceedings
of the 49th Annual International Symposium on Computer Architecture. 685–698.

[50] Ryan Roemer, Erik Buchanan, Hovav Shacham, and Stefan Savage. 2012. Return-
Oriented Programming: Systems, Languages, and Applications. In ACM Transac-
tions on Information and System Security (TISSEC). 1–34.

[51] Michael Schwarz, Moritz Lipp, Daniel Moghimi, Jo Van Bulck, Julian Steck-
lina, Thomas Prescher, and Daniel Gruss. 2019. ZombieLoad: Cross-Privilege-
Boundary Data Sampling. In Proceedings of the 2019 ACM SIGSAC Conference on
Computer and Communications Security. 753––768.

[52] Hovav Shacham, Matthew Page, Ben Pfaff, Eu-Jin Goh, Nagendra Modadugu,
and Dan Boneh. 2004. On the effectiveness of address-space randomization. In
Proceedings of the 11th ACM SIGSAC Conference on Computer and Communications
Security. 298–307.

[53] Anatoly Shusterman, Ayush Agarwal, Sioli O’Connell, Daniel Genkin, Yossi Oren,
and Yuval Yarom. 2021. Prime+Probe 1, JavaScript 0: Overcoming Browser-based
Side-Channel Defenses. In 30th USENIX Security Symposium (USENIX Security
21). 2863–2880.

[54] Anatoly Shusterman, Lachlan Kang, Yarden Haskal, Yosef Meltser, Prateek Mittal,
Yossi Oren, and Yuval Yarom. 2019. Robust Website Fingerprinting Through
the Cache Occupancy Channel. In 28th USENIX Security Symposium (USENIX
Security 19). 639–656.

[55] Hao Sun, Yuheng Shen, Jianzhong Liu, Yiru Xu, and Yu Jiang. 2022. KSG: Aug-
menting Kernel Fuzzing with System Call Specification Generation. In 2022
USENIX Annual Technical Conference (USENIX ATC 22). 351–366.

[56] Laszlo Szekeres, Mathias Payer, Tao Wei, and Dawn Song. 2013. Sok: Eternal war
in memory. In 2013 IEEE Symposium on Security and Privacy (S&P). IEEE, 48–62.

[57] Hritvik Taneja, Jason Kim, Jie Jeff Xu, Stephan van Schaik, Daniel Genkin, and
Yuval Yarom. 2023. Hot Pixels: Frequency, Power, and Temperature Attacks on
GPUs and Arm SoCs. In 32nd USENIX Security Symposium (USENIX Security 23).
6275–6292.

[58] Youssef Tobah, Andrew Kwong, Ingab Kang, Daniel Genkin, and Kang G. Shinn.
2022. SpecHammer: Combining Spectre and Rowhammer for New Speculative
Attacks. In 2023 IEEE Symposium on Security and Privacy (S&P). 681–698. https:
//doi.org/10.1109/SP46214.2022.9833802

[59] Tromer, Eran, Dag Arne Osvik, and Adi Shamir. 2010. Efficient cache attacks on
AES, and countermeasures. Journal of Cryptology 23, 1 (2010), 37–71.

[60] The UNIX and Linux Forums. 2005. otool(1) [osx man page]. https://www.unix.
com/man-page/osx/1/otool/

[61] Jose Rodrigo Sanchez Vicarte, Michael Flanders, Riccardo Paccagnella, Grant
Garrett-Grossman, AdamMorrison, ChristopherW Fletcher, and David Kohlbren-
ner. 2022. Augury: Using data memory-dependent prefetchers to leak data at
rest. In 2022 IEEE Symposium on Security and Privacy (S&P). IEEE, 1491–1505.

[62] Guanhua Wang, Sudipta Chattopadhyay, Ivan Gotovchits, Tulika Mitra, and
Abhik Roychoudhury. 2019. oo7: Low-overhead defense against spectre attacks
via program analysis. IEEE Transactions on Software Engineering 47, 11 (2019),

2504–2519.
[63] Daniel Weber, Ahmad Ibrahim, Hamed Nemati, Michael Schwarz, and Christian

Rossow. 2021. Osiris: Automated discovery of microarchitectural side channels.
In 30th USENIX Security Symposium (USENIX Security 21). 1415–1432.

[64] Johannes Wikner and Kaveh Razavi. 2022. RETBLEED: Arbitrary Speculative
Code Execution with Return Instructions. In 31st USENIX Security Symposium
(USENIX Security 22). 3825–3842.

[65] Wei Wu, Yueqi Chen, Xinyu Xing, and Wei Zou. 2019. KEPLER: Facilitating
Control-flow Hijacking Primitive Evaluation for Linux Kernel Vulnerabilities. In
28th USENIX Security Symposium (USENIX Security 19). 1187–1204.

[66] Jidong Xiao, Hai Huang, and Haining Wang. 2015. Kernel data attack is a realistic
security threat. In Security and Privacy in Communication Networks: 11th EAI
International Conference, SecureComm 2015, Dallas, TX, USA, October 26-29, 2015,
Proceedings 11. Springer, 135–154.

[67] Wen Xu, Juanru Li, Junliang Shu, Wenbo Yang, Tianyi Xie, Yuanyuan Zhang,
and Dawu Gu. 2015. From collision to exploitation: Unleashing use-after-free
vulnerabilities in linux kernel. In Proceedings of the 22nd ACM SIGSAC Conference
on Computer and Communications Security. 414–425.

[68] YaoYuan. 2023. XNU kperf/kpc demo. https://gist.github.com/ibireme/
173517c208c7dc333ba962c1f0d67d12

[69] Yuval Yarom and Katrina Falkner. 2014. FLUSH+RELOAD: A High Resolution,
Low Noise, L3 Cache Side-Channel Attack. In 23rd USENIX Security Symposium
(USENIX Security 14). 719–732.

[70] Tingting Yin, Zicong Gao, Zhenghang Xiao, Zheyu Ma, Min Zheng, and Chao
Zhang. 2023. KextFuzz: Fuzzing macOS Kernel EXTensions on Apple Silicon via
Exploiting Mitigations. In 32nd USENIX Security Symposium (USENIX Security
23). 5039–5054.

[71] Jiyong Yu, Aishani Dutta, Trent Jaeger, David Kohlbrenner, and Christopher W.
Fletcher. 2023. Synchronization Storage Channels (S2C): Timer-less Cache Side-
Channel Attacks on the Apple M1 via Hardware Synchronization Instructions.
In 32nd USENIX Security Symposium (USENIX Security 23). 1973–1990.

77

https://msrc.microsoft.com/blog/2018/03/kva-shadow-mitigating-meltdown-on-windows/
https://msrc.microsoft.com/blog/2018/03/kva-shadow-mitigating-meltdown-on-windows/
https://doi.org/10.1109/SP46214.2022.9833802
https://doi.org/10.1109/SP46214.2022.9833802
https://www.unix.com/man-page/osx/1/otool/
https://www.unix.com/man-page/osx/1/otool/
https://gist.github.com/ibireme/173517c208c7dc333ba962c1f0d67d12
https://gist.github.com/ibireme/173517c208c7dc333ba962c1f0d67d12

SysBumps: Exploiting Speculative Execution in System Calls for Breaking KASLR in macOS for Apple Silicon CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA

Table 7: List of exploitable system calls.

Syscall
no. Prototype Description

5 int access(const char *path, int amode) Check access permissions of a file or pathname
9 int link(user_addr_t path, user_addr_t link) Make a hard file link
10 int unlink(user_addr_t path) Remove directory entry
12 int chdir(user_addr_t path) Change current working directory
15 int chmod(user_addr_t path, int mode) Change mode of file
34 int chflags(char *path, int flags) Set file flags
56 int revoke(char *path) Revoke file access
57 int symlink(char *path, char *link) Make symbolic link to a file
58 int readlink(char *path, char *buf, int count) Read value of a symbolic link
136 int mkdir(user_addr_t path, int mode) Make a directory file
165 int quotactl(user_addr_t path, int mode) Manipulate filesystem quotas
188 int stat(const char *path, int cmd, ...) Get file status
190 int lstat(user_addr_t path, user_addr_t ub) Get file status
191 int pathconf(char *path, int name) Get configurable pathname variables
200 int truncate(char *path, off_t length) Truncate or extend a file to a specified length
220 int getattrlist(const char *path, struct attrlist *alist, ...) Get file system attributes
221 int setattrlist(const char *path, struct attrlist *alist, ...) Set file system attributes
223 int exchangedata(const char *path1, const char *path2, ...) Atomically exchange data between two files
234 user_ssize_t getxattr(user_addr_t path, user_addr_t attrname, ...) Get an extended attribute value
235 user_ssize_t fgetxattr(int fd, user_addr_t attrname, ...) Get an extended attribute value
236 int setxattr(user_addr_t path, user_addr_t attrname, ...) Set an extended attribute value
237 int fsetxattr(int fd, user_addr_t attrname, ...) Set an extended attribute value
238 int removexattr(user_addr_t path, user_addr_t attrname, ...) Remove an extended attribute value
239 int fremovexattr(int fd, user_addr_t attrname, ...) Remove an extended attribute value
240 user_ssize_t listxattr(user_addr_t path, user_addr_t namebuf, ...) List an extended attribute value

A Exploitable system calls list
Table 7 presents a list of system calls that are identified as poten-
tial attack vectors in Section 3.2. Arguments critical to executing
SysBumps attack are underlined; these arguments permit the speci-
fication of user and kernel addresses, facilitating our attack. These
arguments are typically of the ‘char *’ type or ‘user_addr_t’
type, representing a path or attribute name (attrname), which cor-
respond to user-space memory addresses.

78

	Abstract
	1 Introduction
	2 Background
	2.1 Address space layout randomization
	2.2 KASLR attack and kernel isolation
	2.3 Speculative execution attacks
	2.4 Mach object file format

	3 Building attack primitive
	3.1 Reverse engineering TLB on Apple silicon
	3.2 Speculative execution inside system call
	3.3 Attack primitive

	4 Breaking KASLR on macOS for Apple silicon
	4.1 KASLR entropy analysis
	4.2 Kernel layout analysis
	4.3 SysBumps

	5 Countermeasures
	6 Discussion
	7 Related Work
	8 Conclusion
	Acknowledgments
	References
	A Exploitable system calls list

