Lecture #3: Background for
memory-based attacks

UCalgary ENSF619
Elements of Software Security

Instructor: Lorenzo De Carli (lorenzo.decarli@ucalgary.ca)

Content of this lecture

1. Memory-based exploits: what are those?

2. Why is understanding memory management important?
* (from a security point of view)

3. How memory works in traditional computing architectures
4. What comes next

Software exploits

 Software can be attacked in many ways
* We discussed possible threats/attacker goals last time
 But what are the strategies being used?

* Typically, an attacker constructs one or more exploits to achieve
their goal

* “Exploit: a method or piece of code that takes advantage of vulnerabilities
in software” (https://en.wikipedia.org/wiki/Exploit (computer security))

* A successful exploit (or chain of exploit) may result in the attacker gaining
control of execution, accessing sensitive data, and/or crashing the
program

https://en.wikipedia.org/wiki/Exploit_(computer_security)

Memory-based software exploits

* Some exploits take advantage of high-level design flaws, human
weaknesses, misconfigurations, etc.

* Other (the oldest and arguably most pernicious form of attack)
take advantage of flaws in program binaries themselves

* These exploits flaws in the way programs manage their memory
* (thus called memory-based attacks/exploits)

Are these exploits relevant?

* Let’s look at CWE Top 25 2024

Improper Neutralization of Input During Web Page Generation ('Cross-site Scripting')
CWE-79 | CVEs in KEV: 3 | Rank Last Year: 2 (up 1) A

Out-of-bounds Write
CWE-787 | CVEs in KEV: 18 | Rank Last Year: 1 (down 1) ¥

Improper Neutralization of Special Elements used in an SQL Command ('SQL Injection')
CWE-89 | CVEs in KEV: 4 | Rank Last Year: 3

Cross-Site Request Forgery (CSRF)
CWE-352 | CVEs in KEV: 0 | Rank Last Year: 9 (up 5) A

B Improper Limitation of a Pathname to a Restricted Directory (‘Path Traversal')

CWE-22 | CVEs in KEV: 4 | Rank Last Year: 8 (up 3) A

¢ (from https://cwe.mitre.org/top25/archive/2024/2024_cwe_top25.html)

Let’s dig deeper!

The product writes data past the end, or
before the beginning, of the intended
buffer.

https://cwe.mitre.org/data/definitions/787.html

Acts upon memory

<——— Memory >

E ’x [Intended Buffer J 7\] Leads to:
\ / >] Corruption of Data

Write Data Write Data
‘r \ / Crash

Program action

OIBIO,

Code Execution

How can one exploit program memory?

* This is typically accomplished by feeding the program
malformed/incorrect input

* Programs use their working memory to:
e Store input
* Process input

* Both tasks can be commandeered if the program exhibit specific
types of bugs

* The end resultis that the attacker can control the control-flow
of the program

Which kinds of software can be exploited?

* Programs can be hardened against these exploits by
Incorporating various kind of checks

* E.g., checking that a memory object has enough capacity to
accommodate data being written to it

* These checks may be expensive to incorporate in runtimes as
they need to be performed frequently

* Interpreted languages will oftentimes incorporate these checks,
while native programs may not for efficiency reasons

* Thus, while exceptions abound, these issues typically affect
native (binary) code

Types of software exploits

e Overflows
* |[n the stack
* Inthe heap

* Return-oriented programming
* More advanced form that bypasses some defenses against overflows

Understanding memory management

* Memory-based attacks can be simpler or complex, but typically
exploits low-level details of how memory is managed

* They cannot be understood without a basic grasps of how
programs manage memory

* |[n the rest of this lecture, we’ll review basic concepts of memory
management

A brief review of memory
management

Caveat

* We are going to keep the discussion as architecture-
independent as possible

* The principles discussed here apply to a broad range of
computer architectures (x86, ARM, etc.) and OS’es (Windows,

Linux etc.)

* To make the discussion more concrete, we are going to refer to
Linux on x86

Virtual address space

> The virtual address space is abstraction of the

physical memory that makes memory simple for the
process, e.g., a byte stream.

Stack > Each byte in memory is associated with an address,
allowing the process to access the memory location.
> We’ve divided the address space into three segments:
T - stack: used to support function calls and local

variables, grows and shrinks during execution.

- heap: used for dynamically-allocated, user-
managed memory.

- text: the instructions of the program

Text - We also need to set aside some space for the
operating system and for libraries.

Who creates/manages the virtual address space

> The OS! Whenever a new process is created, the OS

Initialize the relevant data structures and hardware
controls

> Together, OS+HW to provide the virtual address space
abstraction

> After the address space is initialized by the kernel, memory
management of that space is largely up to the process

> OS only intervene in case of memory errors!

Example: memory map

#include <stdio.h>
#include <stdlib.h>

main () {
X = ’

printf (- *) main);
printf (- *) malloc(l));
printf (r *) &%) ;
printf (;o *) printf);
printf (r *) malloc);
return 0O;

}

> Let’s run this code and make some observations.

-

® (] 1. docker
+pwndbg> info proc map
process 324

Mapped address spaces:

main and

the PLT
Start Addr End Addr Size Offset objfile
0x400000 0x401000 0x1000 0x0 /root/host-share/memory_layout
0x600000 0x601000 0x1000 0x0 /root/host-share/memory_layout
0x601000 0x602000 0x1000 0x1000 /root/host-share/memory_layout
0x602000 0x623000 0x21000 0x0 [heap]
}15351!) OX/ffff7a0d000 Ox7ffff7bcd00d 0x1c0000 0x0 /1ib/x86_64-1inux-gnu/libc-2.23.
Ox7ffff7bcd0oo Ox7ffff7dcdo0d 0x200000 0x1c0000 /1ib/x86_64-1inux-gnu/libc-2.23.
Ox7ffff7dcdooo Ox7ffff7dd1000 0x4000 0x1c0000 /1ib/x86_64-1inux-gnu/libc-2.23.
Ox7ffff7dd1000 Ox7ffff7dd3000 0x2000 ©0x1c4000 /1ib/x86_64-1inux-gnu/libc-2.23.
Ox7ffff7dd3000 Ox7ffff7dd7000 0x4000 0x0
. Ox7ffff7dd7000 Ox7ffff7dfdooo 0x26000 0x0 /1ib/x86_64-1inux-gnu/1d-2.23.s0
libc Ox7ffff7fe8000 Ox7ffff7feb00o 0x3000 0x0
OX7ffff7ff7000 Ox7ffff7ffa000 0x3000 0x0 [vvar]
Ox7ffff7ffa000 Ox7ffff7ffco00 0x2000 0x0 [vdso]
OX7ffff7ffco00 Ox7ffff7ffdooo 0x1000 0x25000 /1ib/x86_64-1inux-gnu/1d-2.23.so0
Ox7ffff7ffdooo OX7ffff7ffe000 0x1000 0x26000 /1ib/x86_64-1inux-gnu/1d-2.23.s0
OX7ffff7ffe000 OX7ffff7fff000 0x1000 0x0
stack Ox7ffffffde000 Ox7ffffffffoo0 0x21000 0x0 [stack]

Oxffffffffffo00000 Oxffffffffff601000
+pwndbg> I

0x1000

ox0

[vsyscall]

> We can also view the memory map in GDB.

> Every address matches the previous printout, except for the
stack. This is due to Address Space Layout Randomization

(ASLR)

> Note, the heap won’t appear in this map until after the call to

malloc.

The stack

> The stack is used for local variables and all of the data needed to make function calling
work:

- function arguments, return addresses, saved stack pointers, saved frame pointers.

> The stack is an example of implicitly managed memory, also known as automatic
memory.

- This means that the programmer doesn’t need to explicitly allocate and deallocate
memory on the stack.

> Every change to the stack pointer is either an allocation or deallocation of memory.

> Let’s look at a simple example...

1. vim

1 void foo(int a, int b, int c) {
char* buf[16];
3

int main() {
foo(l, 2, 3);
3

2
3
4
5
6
7

"stack.c" 8L, 84C written

> Consider how the stack supports this function call.

> The compiler must allocate memory for the arguments to
foo (a, b, c), the local variable buf, and control metadata.

@® 2. docker
+pwndbg> disass *main
Dump of assembler code for function main:

0x0000000000400589 <+0>: push rbp arguments placed

0x000000000040058a <+1>: mov rbp,rsp : :

0x000000000040058d <+4>: mov edx,0x3 In registers

0x0000000000400592 <+9>: mov esi,0x2

0x0000000000400597 <+14>: mov edi,Ox1

0x000000000040059Cc <+19>: call 0x400546 <foo>

0x00000000004005a01 <+24>: mov eax,0x0

0x0000000000400506 <+29>: pop rbp

0x00000000004005a7 <+30>: ret

End of assembler dump. foo called
return address
saved

+pwndbg> I

> The call instruction pushes the return address to the
stack. This push is a memory allocation.

OJ

+pwndbg> disass *main

2. docker

Dump of assembler code for function main:
0x0000000000400589 <+0>:
0x000000000040058a <+1>:
0x000000000040058d <+4>:
0x0000000000400592 <+9>:

0x0000000000400597 <+14>:
0x000000000040059Cc <+19>:
0x00000000004005a01 <+24>:
0x0000000000400506 <+29>:
0x00000000004005a07 <+30>:

End of assembler dump.

+pwndbg> I

push
mov
mov
mov
mov
call
mov
pop
ret

rbp

rbp,rsp
edx,0x3
esi,0x2
edi,Ox1
0x400546 <foo>
eax,0x0

rbp

foo called
return address
saved

Stack
pointer

v

h Stack grows toward lower addresses

@® @® 2. docker

+pwndbg> disass *main

Dump of assembler code for function main:
0x0000000000400589 <+0>: push rbp
0x000000000040058a <+1>: mov rbp,rsp
0x000000000040058d <+4>: mov edx,0x3
0x0000000000400592 <+9>: mov esi,0x2
0x0000000000400597 <+14>: mov edi,Ox1
0x000000000040059Cc <+19>: call 0x400546 <foo>
0x00000000004005a01 <+24>: mov eax,0x0
0x0000000000400506 <+29>: pop rbp
0x00000000004005a7 <+30>: ret

End of assembler dump. foo called
db
+pandbg> | return address
saved

Stack
pointer

v

saved ret.

h Stack grows toward lower addresses

®@ e 2. docker
+pwndbg> disass *foo
Dump of assembler code for function foo:
0x0000000000400546 <+0>: push rbp
0x0000000000400547 <+1>: mov rbp,rsp
0x000000000040054a <+4>: sub rsp,@xad
0x0000000000400551 <+11>: mov DWORD PTR [rbp-0x94],edi
0x0000000000400557 <+17>: mov DWORD PTR [rbp-0x98],esi
0x000000000040055d <+23>: mov DWORD PTR [rbp-0x9c],edx
0x0000000000400563 <+29>: mov rax,QWORD PTR fs:0x28
0x000000000040056¢Cc <+38>: mov QWORD PTR [rbp-0x8],rax
0x0000000000400570 <+42>: xor eax,eax
0x0000000000400572 <+44>: nop
0x0000000000400573 <+45>: mov rax,QWORD PTR [rbp-0x8]
0x0000000000400577 <+49>: xor rax,QWORD PTR fs:0x28
0x0000000000400580 <+58>: je 0x400587 <foo+65>
0x0000000000400582 <+60>: call 0x400420 <__stack_chk_fail@plt>
0x0000000000400587 <+65>: leave
0x0000000000400588 <+66>: ret
End of assembler dump.
+pwndbg> I

Stack
pointer

v

saved rbp saved ret.

h Stack grows toward lower addresses

End of assembler dump.

+pwndbg> disass *foo
Dump of assembler code for function foo:

Py

A J

0x0000000000400546
0x0000000000400547
0x000000000040054a
0x0000000000400551
0x0000000000400557
0x000000000040055d
0x0000000000400563
0x000000000040056¢
0x0000000000400570
0x0000000000400572
0x0000000000400573
0x0000000000400577
0x0000000000400580
0x0000000000400582
0x0000000000400587
0x0000000000400588

+pwndbg> I

Stack

pointer

v

<+0>:
<+1>:
<+4>:

<+11>:
<+17>:
<+23>:
<+29>:
<+38>:
<+42>:
<+44>:
<+45>:
<+49>:
<+58>:
<+60>:
<+65>:
<+66>:

push
mov
sub
mov
mov
mov
mov
mov
xor
nop
mov
xor
je
call
leave
ret

2. docker

rbp

rbp,rsp
rsp,0xad

DWORD PTR [rbp

DWORD PTR [rbp-0x98],esi
DWORD PTR [rbp-0x9c],edx
rax,QWORD PTR fs:0x28

QWORD PTR [rbp-0x8],rax

eax,eax

rax,QWORD PTR [rbp-0x8]
rax,QWORD PTR fs:0x28

0x400587 <foo+65>

0x400420 <__stack_chk_fail@plt>

saved rbp

h Stack grows toward lower addresses

saved ret.

End of assembler dump.

+pwndbg> disass *foo
Dump of assembler code for function foo:

Py

A J

0x0000000000400546
0x0000000000400547
0x000000000040054a
0x0000000000400551
0x0000000000400557
0x000000000040055d
0x0000000000400563
0x000000000040056¢
0x0000000000400570
0x0000000000400572
0x0000000000400573
0x0000000000400577
0x0000000000400580
0x0000000000400582
0x0000000000400587
0x0000000000400588

+pwndbg> I

Stack

pointer

v

arg3 | arg2

<+0>:
<+1>:
<+4>:

<+11>:
<+17>:
<+23>:
<+29>:
<+38>:
<+42>:
<+44>:
<+45>:
<+49>:
<+58>:
<+60>:
<+65>:
<+66>:

push
mov
sub
mov
mov
mov
mov
mov
xor
nop
mov
xor
je
call
leave
ret

argl

h Stack grows toward lower addresses

2. docker

rbp
rbp,rsp
rsp,0xad

DWORD PTR [rbp-0x94],edi
DWORD PTR [rbp-0x98],esi
DWORD PTR [rbp-0x9c],edx
PTR fs:0x28

QWORD PTR [rbp-0x8],rax

rax,QWORD
eax,eax

rax,QWORD

PTR [rbp-0x8]
rax,QWORD PTR fs:0x28

0x400587 <foo+65>

0x400420 <__stack_chk_fail@plt>

saved rbp

saved ret.

-

®@ e 2. docker
+pwndbg> disass *foo
Dump of assembler code for function foo:
0x0000000000400546 <+0>: push rbp
0x0000000000400547 <+1>: mov rbp,rsp
0x000000000040054a <+4>: sub rsp,@xad
0x0000000000400551 <+11>: mov DWORD PTR [rbp-0x94],edi
0x0000000000400557 <+17>: mov DWORD PTR [rbp-0x98],esi
0x000000000040055d <+23>: mov DWORD PTR [rbp-0x9c],edx
0x0000000000400563 <+29>: mov rax,QWORD PTR fs:0x28
0x000000000040056¢Cc <+38>: mov QWORD PTR [rbp-0x8],rax
0x0000000000400570 <+42>: xor eax,eax
0x0000000000400572 <+44>: nop
0x0000000000400573 <+45>: mov rax,QWORD PTR [rbp-0x8]
0x0000000000400577 <+49>: xor rax,QWORD PTR fs:0x28
0x0000000000400580 <+58>: je 0x400587 <foo+65>
0x0000000000400582 <+60>: call __stack_chk_fail@plt>
0x0000000000400587 <+65>: leave
0x0000000000400588 <+66>: ret
End of assembler dump.
+pwndbg> I

Stack
pointer

v

saved ret.

h Stack grows toward lower addresses

Py

®@ e 2. docker
+pwndbg> disass *foo
Dump of assembler code for function foo:
0x0000000000400546 <+0>: push rbp
0x0000000000400547 <+1>: mov rbp,rsp
0x000000000040054a <+4>: sub rsp,@xad
0x0000000000400551 <+11>: mov DWORD PTR [rbp-0x94],edi
0x0000000000400557 <+17>: mov DWORD PTR [rbp-0x98],esi
0x000000000040055d <+23>: mov DWORD PTR [rbp-0x9c],edx
0x0000000000400563 <+29>: mov rax,QWORD PTR fs:0x28
0x000000000040056¢Cc <+38>: mov QWORD PTR [rbp-0x8],rax
0x0000000000400570 <+42>: xor eax,eax
0x0000000000400572 <+44>: nop
0x0000000000400573 <+45>: mov rax,QWORD PTR [rbp-0x8]
0x0000000000400577 <+49>: xor rax,QWORD PTR fs:0x28
0x0000000000400580 <+58>: je 0x400587 <foo+65>
0x0000000000400582 <+60>: call __stack_chk_fail@plt>
0x0000000000400587 <+65>: leave
0x0000000000400588 <+66>: ret
End of assembler dump.
+pwndbg> I

Stack Frame
pointer pointer Prt_av. Stack
(rsp) (rbp) pointer
i m -
v v v
arg3 | arg2 argl canary saved rbp saved ret.

h Stack grows toward lower addresses

The heap

> The heap is used for user-managed, dynamically allocated memory. One common
interface to the heapis Libc’s malloc () and free () functions.

> malloc (size) allocates a size number of bytes from the heap and returns a void
pointer to those bytes.

- 1nt *x = (1nt *) malloc(sizeof (int));

> free () takes a pointer to some previously allocated heap memory and deallocates
that memory, making available for future use.

- free (x);

> Under the hood, these functions using system calls (e.g., sbrk) to request memory
from the OS.

How does the heap internally work?

> |n general, functions such as
malloc will request a bunch
of memory from the OS, and
then each call to allocate
memory will reserve a block
within this memory

> Thus, the heap must be
explicitly managed using a
dedicated data structure

free_block_priority_list

by Debarshi Maitra

https://github.com/artiam99/Linux-Heap-Memory-Manager

Heap usage example

#include <stdio.h>
> CallS tO. mauOC() #include <stdlib.h>
results in new blocks
] . int main() {
bell‘lg allocated in int*x array = (intx)malloc(sizeof(int)x*10);
the area managed as

array|[0] 24;
the heap array[9] = 42;

printf("Location of array pointer: %p\n'", &array);
printf("Location pointed by pointer: %p\n'", array);
printf("Location of first element of array: %p\n",
&(array[0]));

printf("Content of first element of array: %d\n", arrayl[0]);
printf("Location of last element of array: %p\n", &(arrayl[9]));
printf("Content of last element of array: %d\n", arrayl[9]);

}

What comes next?

> We are going to discuss memory exploits with increasing level of
complexity:
- Stack overflow (next lecture)
- Heap exploits (two lectures from now)

- Return-oriented programming (three lectures from now)

See you next week!

