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Content of this lecture

1. Memory-based exploits: what are those?
2. Why is understanding memory management important?
• (from a security point of view)

3. How memory works in traditional computing architectures
4. What comes next



Software exploits

• Software can be attacked in many ways
• We discussed possible threats/attacker goals last time
• But what are the strategies being used?

• Typically, an attacker constructs one or more exploits to achieve 
their goal
• “Exploit: a method or piece of code that takes advantage of vulnerabilities 

in software” (https://en.wikipedia.org/wiki/Exploit_(computer_security))

• A successful exploit (or chain of exploit) may result in the attacker gaining 
control of execution, accessing sensitive data, and/or crashing the 
program

https://en.wikipedia.org/wiki/Exploit_(computer_security)


Memory-based software exploits

• Some exploits take advantage of high-level design flaws, human 
weaknesses, misconfigurations, etc.
• Other (the oldest and arguably most pernicious form of attack) 

take advantage of flaws in program binaries themselves
• These exploits flaws in the way programs manage their memory
• (thus called memory-based attacks/exploits)



Are these exploits relevant?

• Let’s look at CWE Top 25 2024

• (from https://cwe.mitre.org/top25/archive/2024/2024_cwe_top25.html)



Let’s dig deeper!

https://cwe.mitre.org/data/definitions/787.html

Program action

Acts upon memory



How can one exploit program memory?

• This is typically accomplished by feeding the program 
malformed/incorrect input
• Programs use their working memory to:
• Store input
• Process input

• Both tasks can be commandeered if the program exhibit specific 
types of bugs
• The end result is that the attacker can control the control-flow 

of the program



Which kinds of software can be exploited?

• Programs can be hardened against these exploits by 
incorporating various kind of checks
• E.g., checking that a memory object has enough capacity to 

accommodate data being written to it

• These checks may be expensive to incorporate  in runtimes as 
they need to be performed frequently
• Interpreted languages will oftentimes incorporate these checks, 

while native programs may not for efficiency reasons
• Thus, while exceptions abound, these issues typically affect 

native (binary) code



Types of software exploits

• Overflows
• In the stack
• In the heap

• Return-oriented programming
• More advanced form that bypasses some defenses against overflows



Understanding memory management

• Memory-based attacks can be simpler or complex, but typically 
exploits low-level details of how memory is managed
• They cannot be understood without a basic grasps of how 

programs manage memory
• In the rest of this lecture, we’ll review basic concepts of memory 

management



A brief review of memory 
management



Caveat

• We are going to keep the discussion as architecture-
independent as possible
• The principles discussed here apply to a broad range of 

computer architectures (x86, ARM, etc.) and OS’es (Windows, 
Linux etc.)
• To make the discussion more concrete, we are going to refer to 

Linux on x86



0xFFFF

0x0000

Stack

Heap

Text

> The virtual address space is abstraction of the 
physical memory that makes memory simple for the 
process, e.g., a byte stream.

> Each byte in memory is associated with an address, 
allowing the process to access the memory location.

> We’ve divided the address space into three segments:

- stack: used to support function calls and local 
variables, grows and shrinks during execution.

- heap: used for dynamically-allocated, user-
managed memory.

- text: the instructions of the program

- We also need to set aside some space for the 
operating system and for libraries.

Virtual address space



Who creates/manages the virtual address space

> The OS! Whenever a new process is created, the OS 
initialize the relevant data structures and hardware 
controls

> Together, OS+HW to provide the virtual address space 
abstraction 

> After the address space is initialized by the kernel, memory 
management of that space is largely up to the process

> OS only intervene in case of memory errors!



Example: memory map
1 #include <stdio.h>
2 #include <stdlib.h>
3 
4 int main() {
5 int x = 777;
6 printf("location of code: %p\n", (void *) main);
7 printf("location of heap: %p\n", (void *) malloc(1));
8 printf("location of stack: %p\n", (void *) &x);
9 printf("location of printf: %p\n", (void *) printf);

10 printf("location of malloc: %p\n", (void *) malloc);
11 return 0;
12 }

> Let’s run this code and make some observations.

1
5



> We can also view the memory map in GDB. 

> Every address matches the previous printout, except for the 
stack. This is due to Address Space Layout Randomization
(ASLR)

> Note, the heap won’t appear in this map until after the call to 
malloc. 

main and 
the PLT

heap

stack

libc



The stack

> The stack is used for local variables and all of the data needed to make function calling 
work: 

- function arguments, return addresses, saved stack pointers, saved frame pointers.

> The stack is an example of implicitly managed memory, also known as automatic 
memory. 

- This means that the programmer doesn’t need to explicitly allocate and deallocate 
memory on the stack.

> Every change to the stack pointer is either an allocation or deallocation of memory. 

> Let’s look at a simple example…



> Consider how the stack supports this function call.

> The compiler must allocate memory for the arguments to 
foo (a, b, c), the local variable buf, and control metadata.



> The call instruction pushes the return address to the 
stack. This push is a memory allocation. 

foo called
return address
saved

arguments placed
in registers



foo called
return address
saved

Stack 
pointer

Stack grows toward lower addresses



foo called
return address
saved

Stack 
pointer

saved ret.

Stack grows toward lower addresses



saved ret.

Stack grows toward lower addresses

Stack 
pointer

saved rbp

Saving main’s
frame pointer



saved ret.

Stack grows toward lower addresses

Allocating memory 
on the stack for 
args, and local vars

Stack 
pointer

saved rbp



saved ret.

Stack grows toward lower addresses

Stack 
pointer

saved rbp

Moving args onto 
the stack

arg3 arg2 arg1



saved ret.

Stack grows toward lower addresses

Stack 
pointer

saved rbparg3 arg2 arg1

Deallocating 
memory by loading 
the prev.
stack pointer value



Allocating memory 
on the stack for 
args, and local vars

Moving args onto 
the stack

Deallocating 
memory by loading 
the prev.
stack pointer value

saved rbp

Prev. Stack 
pointer

Stack 
pointer
(rsp)

saved ret.

Stack grows toward lower addresses

arg3 arg2 arg1

Frame 
pointer
(rbp)

canary



The heap

> The heap is used for user-managed, dynamically allocated memory. One common 
interface to the heap is Libc’s  malloc() and free() functions. 

> malloc(size) allocates a size number of bytes from the heap and returns a void 
pointer to those bytes. 

- int *x = (int *) malloc(sizeof(int));

> free() takes a pointer to some previously allocated heap memory and deallocates 
that memory, making available for future use.
- free(x);

> Under the hood, these functions using system calls (e.g., sbrk) to request memory 
from the OS. 



How does the heap internally work?

> In general, functions such as 
malloc will request a bunch 
of memory from the OS, and 
then each call to allocate 
memory will reserve a block 
within this memory

> Thus, the heap must be 
explicitly managed using a 
dedicated data structure

https://github.com/artiam99/Linux-Heap-Memory-Manager



Heap usage example

> Calls to malloc() 
results in new blocks 
being allocated in 
the area managed as 
the heap

#include <stdio.h>
#include <stdlib.h>

int main() {
int* array = (int*)malloc(sizeof(int)*10);

array[0] = 24;
array[9] = 42;

printf("Location of array pointer: %p\n", &array);
printf("Location pointed by pointer: %p\n", array);
printf("Location of first element of array: %p\n", 
&(array[0]));
printf("Content of first element of array: %d\n", array[0]);
printf("Location of last element of array: %p\n", &(array[9]));
printf("Content of last element of array: %d\n", array[9]);
}



What comes next?

> We are going to discuss memory exploits with increasing level of 
complexity:
- Stack overflow (next lecture)
- Heap exploits (two lectures from now)
- Return-oriented programming (three lectures from now)



See you next week!


