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`smash the stack` [C programming] n. On many C implementations it is possible to corrupt the 
execution stack by writing past the end of an array declared auto in a routine. Code that does this is 
said to smash the stack, and can cause return from the routine to jump to a random address. This 
can produce some of the most insidious data-dependent bugs known to mankind. Variants include 
trash the stack, scribble the stack, mangle the stack; the term mung the stack is not used, as this is 
never done intentionally. See spam; see also alias bug, fandango on core, memory leak, precedence 
lossage, overrun screw.

Introduction

Over the last few months there has been a large increase of buffer overflow vulnerabilities being both 
discovered and exploited. Examples of these are syslog, splitvt, sendmail 8.7.5, Linux/FreeBSD mount, Xt 
library, at, etc. This paper attempts to explain what buffer overflows are, and how their exploits work. Basic 
knowledge of assembly is required. An understanding of virtual memory concepts, and experience with gdb are 
very helpful but not necessary. We also assume we are working with an Intel x86 CPU, and that the operating 
system is Linux. Some basic definitions before we begin: A buffer is simply a contiguous block of computer 
memory that holds multiple instances of the same data type. C programmers normally associate with the word 
buffer arrays. Most commonly, character arrays. Arrays, like all variables in C, can be declared either static or 
dynamic. Static variables are allocated at load time on the data segment. Dynamic variables are allocated at run 
time on the stack. To overflow is to flow, or fill over the top, brims, or bounds. We will concern ourselves only 
with the overflow of dynamic buffers, otherwise known as stack-based buffer overflows.

Process Memory Organization

To understand what stack buffers are we must first understand how a process is organized in memory. Processes 
are divided into three regions: Text, Data, and Stack. We will concentrate on the stack region, but first a small 
overview of the other regions is in order. The text region is fixed by the program and includes code 
(instructions) and read-only data. This region corresponds to the text section of the executable file. This region 
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CONSIDER THE H ISTORY OF COMPUTATION

The earliest devices recognized as computers were built to 

perform some specific type of computation
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CONSIDER THE H ISTORY OF COMPUTATION

The earliest devices recognized as computers were built to 

perform some specific type of computation

ALGORITHMIC PURPOSE SPECIFIED BY HARDWARE

Consider the theory analogy: a Turing Machine to compute a 

Fibonacci Sequence

- Fibonacci computation encoded into the state machine

- Input number encoded into the tape at start

- Output number encoded onto the tape at halt
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A MAJOR PARADIGM SHIFT: THE UNIVERSAL 
COMPUTATION MACHINE
The hardware contains generally-useful instructions

A particular algorithm is encoded in terms of those instructions

THE THEORY: THE UNIVERSAL TURING MACHINE

Consider the theory analogy: a Turing Machine that computes 

any function

- “Instruction set” encoded into the state machine

- Desired algorithm encoded into the tape at start

- Input to the algorithm encoded into the tape at start as well

- Output number encoded onto the tape at halt
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A MAJOR PARADIGM SHIFT: THE UNIVERSAL 
COMPUTATION MACHINE

The hardware contains generally-useful instructions

A particular algorithm is encoded in terms of those instructions

THE THEORY: THE UNIVERSAL TURING MACHINE

Consider the theory analogy: a Turing Machine that computes 

any function

- “Instruction set” encoded into the state machine

- Desired algorithm encoded into the tape at start

- Input to the algorithm encoded into the tape at start as well

- Output number encoded onto the tape at halt

Operations as symbols

Symbols as numbers

Numbers as stored voltage levels

Data and Code
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Operations as symbols

Symbols as numbers

Numbers as stored voltage levels

Code is data
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THE VON NEUMANN ARCHITECTURE

Another big idea: Code and data share memory

Good 
news!

Programs can write code just 
like any other form of data

Code is data

Bad 
news!



Why is this “bad news?

• Well, fundamentally data and code share the same memory
• Normally, programs will be architected in such a way that:
• Code has its own region (text segment)
• Data has its own region(s) (stack, heap, globals)

• However, this is an artificial limitations!
• There is no fundamental region why code could not exist among 

data
• Code itself is nothing special… just another sequence of bytes

1/16/25 9



How do computers execute?

• We have seen how the stack works in the last lecture
• The only missing piece is code execution itself
• It uses a little register called the program counter
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A 1-D ARRAY

Program instructions (binary sequences) Program data & metadata (binary sequences)

Load 4 bytes 
from memory[G]
to register a
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Store register a into 4 bytes memory[K]
More ops …
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Program instructions (binary sequences) Program data & metadata (binary sequences)

main instructions

All the code in function main()
All the code in function foo()
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Code Data

Global variable G
foo’s local variable K

main datafoo instructions

Assume main calls foo
foo (recursively) calls foo

foo call 1
data
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Program instructions (binary sequences) Program data & metadata (binary sequences)
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Program instructions (binary sequences) Program data & metadata (binary sequences)
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Program instructions (binary sequences) Program data & metadata (binary sequences)
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Program instructions (binary sequences) Program data & metadata (binary sequences)
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Some more key points

• The instruction or program counter (IC/PC) is a hardware register that 
indicates the next instruction to execute—the PC is also called the 
instruction pointer.

• Arguments are passed to functions via registers in 64-bit x86 as defined by 
the calling convention.  

• The PC will be incremented sequentially until the program has a 
conditional instruction, or a function call/return

• The program uses a stack-like data structure to track calls and returns
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Program (meta)data
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data

Addr
0x4B

Program instructions
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foo’s
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foo(){
   int c = getc(stdout);
   *((int *)c) = 2;
}

…

int c Return addr.
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Buffer Overflows
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Program (meta)data
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nm instructions

nm’s
data

int nm()
{
    char name[5];
    printf("Enter your name: ");
    gets(name);
    printf(“hi %s\n", name);
    return 0;
}

…

char name[5] Return addr.

44 72 65 77 00

D r e w
0x44 0x72 0x65 0x77 0x00

(end)
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Program (meta)data
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nm instructions
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int nm()
{
    char name[5];
    printf("Enter your name: ");
    gets(name);
    printf(“hi %s\n", name);
    return 0;
}

…

char name[5] Return addr.

64 72 65 77 006e41

A n d r e w
0x41 0x72 0x65 0x77 0x00

(end)

0x640x6e
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Addr
1010
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Script Injection
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nm instructions
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data

int nm()
{
    char name[5];
    printf("Enter your name: ");
    gets(name);
    printf(“hi %s\n", name);
    return 0;
}

…

char name[5] Return addr.

64 72 65 10 006e41 64 7e 00

A n d r e LF  LF d ~  
0x41 0x72 0x65 0x10 0x00

(end)

0x640x6e 0x10 0x64 0x7e



How big of a deal is this exactly?

• … a pretty big one!
• Let’s have a chat about what we think of this paper



So… is this a big deal?

• <<This paper forever changed the cybersecurity landscape by 
shedding light on stack-based buffer overflows>> (Raymond A. 
Hagen)
• <<Aleph One’s excellent Smashing the Stack for Fun and Profit 

article from 1996 has long been the go-to for anyone looking to 
learn how buffer overflow attacks work>> (Jon Gjengset)
• << the article has become a milestone in memory vulnerability 

research and exploit development.>> (ARM developer hub)



Memory bugs in the mid-90s

• Lots of code written in C (interpreted languages existed, but 
mostly used for scripting due to overhead)
• Not much awareness about secure code development
• Bugs, use of insecure functions such as strcpy

• No protection against buffer overflow attacks
• Many software applications sitting ducks for this type of exploits



Was it bad that this article was published?

• No! It called attention to the issue. People already knew about 
these attacks, but it was not at the forefront of the community
• By bringing this type of memory exploits in the spotlight, it spurred 

a debate on their significance and how to contain them
• Speaking of…



Defending against stack overflow 
attacks
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Stack canaries

• Stack canaries are a type of software defense that attempts to 
mitigate buffer overflow attacks.

• Idea: Place a known value on the stack in between the local variables 
and the return address. If an attacker attempts to overflow the local 
buffer, then that overflow will also modify the canary.



> Note: the return address won’t be 
used if the canary check fails. 

<+4> This 
allocation also 
makes room for the 
canary

<+29-42> Retrieve 
the known canary 
value and place a 
copy on the stack.

<+45-60> Compare 
the stack’s canary 
to the known value, 
call a special 
function if they don’t 
match.



> The canary itself is a random value. 



Stack canaries

• Stack canaries are automatically added by modern compilers for 
functions with buffers that might overflow.

- Is this example, the buf buffer is never used so it can’t be overflowed, but the 
compiler doesn’t realize that.  

• As stack canaries can be added automatically by the compiler and they 
have low-overhead they are an attractive defense.

• However, their protections are limited; there are many known ways to 
bypass them. 



ASLR
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What is ASLR about?

• Observation: stack smashing relies on having an approximate 
idea of where stuff is located in memory
• The idea is to make these locations unpredictable
• The program is still going to run correctly, but…
• … the location of libraries, stack, heap, etc., is going to be 

randomized
• (not that useful for our simple example, but actual exploits rely on 

that knowledge to work)



How does ASLR look?

https://www.daniloaz.com/en/differences-between-aslr-kaslr-and-karl/

In different program 
runs, the layout of the 
virtual address space 
will look different



Works (?) for the kernel too

• KASLR is designed to prevent similar attacks in kernel space
• … why is this a problem?
• There is still some debate on its usefulness
• Kernel has more constraints than user-space programs
• Certain addresses are hardware-specific and cannot be trivially 

randomized
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Abstract
Apple silicon is the proprietary ARM-based processor that powers
the mainstream of Apple devices. The move to this proprietary
architecture presents unique challenges in addressing security is-
sues, requiring huge research e!orts into the security of Apple
silicon-based systems. In this paper, we study the security of KASLR,
the randomization-based kernel hardening technique, on the state-
of-the-art macOS system equipped with Apple silicon processors.
Because KASLR has been subject to many microarchitectural side-
channel attacks, the latest operating systems, including macOS,
use kernel isolation, which separates the kernel page table from
the userspace table. Kernel isolation in macOS provides a barrier
to KASLR break attacks. To overcome this, we exploit speculative
execution in system calls. By using Spectre-type gadgets in sys-
tem calls, an unprivileged attacker can cause translations of the
attacker’s chosen kernel addresses, causing the TLB to change ac-
cording to the validity of the address. This allows the construction
of an attack primitive that breaks KASLR bypassing kernel isolation.
Since the TLB is used as a side-channel source, we reverse-engineer
the hidden internals of the TLB on various M-series processors
using a hardware performance monitoring unit. Based on our at-
tack primitive, we implement SysBumps, the "rst KASLR break
attack on macOS for Apple silicon. Throughout evaluation, we
show that SysBumps can e!ectively break KASLR across di!erent
M-series processors and macOS versions. We also discuss possible
mitigations against the proposed attack.

CCS Concepts
• Security and privacy→ Systems security;Operating systems
security; Hardware reverse engineering.
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KASLR breaking, Microarchitectural side-channel attack, Spectre-
type attack
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1 Introduction
Apple recently began a transition from Intel-based processors to
Apple silicon, its custom-designed, proprietary ARM-based pro-
cessors for its products. While the move to this ARM-based ar-
chitecture increases the performance and e#ciency, the inherent
nature of the proprietary processor creates challenges in addressing
security issues within the products. However, despite its impor-
tance, there are only a few studies on the security of Apple silicon
products [32, 49, 61] compared to studies on other commodity pro-
cessors [23, 25, 31, 34, 40], requiring huge research e!orts into the
security of Apple silicon-based systems.

In line with this, this paper studies the security of the KASLR1
implementation on the latest Apple silicon-based macOS system.
KASLR is a primary kernel hardening technique tomitigatememory
corruption vulnerabilities in the kernel by randomizing the layout of
the kernel address space [52]. Since its introduction, KASLR imple-
mentations have been subject to microarchitectural side-channel at-
tacks [2, 10, 11, 23, 28, 35, 39, 40, 42, 63]. That is, using side-channel
techniques on caching hardware such as TLB2, unprivileged attack-
ers can construct a distinguishing oracle D(𝐿) that tells whether
a given target kernel address 𝐿 is valid (i.e., physically mapped to
memory) or not. By using the oracle, the attacker "nds the "rst
valid kernel address, which determines the kernel base, and thus
breaks KASLR.

To mitigate such side-channel attacks against KASLR, the latest
operating systems use a kernel isolation mechanism inside the
kernel [21, 22, 48]. The kernel isolation separates the kernel page
table from the userspace page table. This isolation ensures that
the kernel’s portions of the address space are completely hidden
from user-mode processes, thus thwarting any attempts to access
or derive information about the kernel space. The macOS also
implements the kernel isolation, denoted double map, thus provides
a barrier to the previous attacks.

In this paper, we introduce SysBumps, the "rst KASLR break at-
tack on the macOS for Apple silicon with the state-of-the-art kernel
isolation technique enabled. The main idea to overcome the kernel
isolation barrier is to exploit speculative execution in system calls,

1Kernel Address Space Layout Randomization
2Translation Lookaside Bu!er
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