
UCalgary ENSF619
Elements of Software Security

Instructor: Lorenzo De Carli (lorenzo.decarli@ucalgary.ca)
Partly based on slides by Drew Davidson, University of Kansas and

Robert Walls, WPI

Lecture #5: Heap Attacks

mailto:lorenzo.decarli@ucalgary.ca

Stack overflows aren’t the only memory
attacks
• Integer overflow: numerical variables controlling memory

allocation are overflown (see CWE 680)
• Small memory allocated instead of large memory
• Code accessing that memory will do bad stuff

• Environment variable overflow: programs use environment
variables without performing bound checking
• Heap overflow (see CWE 122 and today’s discussion)

How is heap overflow different from stack
smashing?
• Stack smashing gives us a direct way to control program

execution
• Heap overflow gives us no such thing

8c

Addr
1010
6488

Stack smashing: refresher

4

Program (meta)data

00

Addr
1010
647E

00

Addr
1010
647F

00

Addr
1010
6480

00

Addr
1010
6481

00

Addr
1010
6482

00

Addr
1010
6483

00

Addr
1010
6484

40

Addr
1010
6485

27

Addr
1010
6486

19

Addr
1010
6487

nm
caller’s

data

Addr
0x4B

Program instructions

f0

Addr
0x40

… …ef

Addr
0x41

70

Addr
0x42

81

Addr
0x43

e1

Addr
0x44

39

Addr
0x45

ac

Addr
0x46

00

Addr
0x47

ef

Addr
0x48

5b

Addr
0x49

76

Addr
0x4A

nm instructions

nm’s
data

int nm()
{
 char name[5];
 printf("Enter your name: ");
 gets(name);
 printf(“hi %s\n", name);
 return 0;
}

…

char name[5] Return addr.

64 72 65 10 006e41 64 7e 00

A n d r e LF LF d ~
0x41 0x72 0x65 0x10 0x00

(end)

0x640x6e 0x10 0x64 0x7e

The heap does not store control flow data

• You can “smash the heap” all you want, all you are going to do is
overwrite program data (and eventually write into unallocated
memory)
• There is no data, stored in the heap, that affects the control-flow

of a program (such as return addresses)
• So… how do we use the heap for exploits?

Let’s look at how the heap works

• We are going to use the (at this point ancient) dlmalloc
implementation from the article
• Designed by Doug Lea, SUNY Oswego, starting in the late ‘80s
• Details: https://gee.cs.oswego.edu/dl/html/malloc.html

https://gee.cs.oswego.edu/dl/html/malloc.html

Before we begin…

• Andrew Griffith’s Exploit Education has a version of the phrack
article’s exploit framed as a CTF challenge:
https://exploit.education/protostar/heap-three/
• LiveOverflow has an excellent rundown of the same:

https://youtu.be/gL45bjQvZSU
(I kept this explanation consistent with the video, so you need a
refresher can just go back and watch that one)
• There are also a number of related tutorials which I used:
• https://infosecwriteups.com/the-toddlers-introduction-to-heap-

exploitation-unsafe-unlink-part-4-3-75e00e1b0c68
• https://tc.gts3.org/cs6265/2019/tut/tut09-02-advheap.html

https://exploit.education/protostar/heap-three/
https://youtu.be/gL45bjQvZSU
https://infosecwriteups.com/the-toddlers-introduction-to-heap-exploitation-unsafe-unlink-part-4-3-75e00e1b0c68
https://infosecwriteups.com/the-toddlers-introduction-to-heap-exploitation-unsafe-unlink-part-4-3-75e00e1b0c68
https://tc.gts3.org/cs6265/2019/tut/tut09-02-advheap.html

Code example
(from Protostar
Heap #3)

https://exploit.education/protostar/heap-three/

Heap

What happens when malloc is called

Suppose I call malloc() three times:
1. a =malloc(32)
2. b = malloc(32)
3. c = malloc (32)

40

40

40

Higher
mem
addr.s

What happens when blocks are freed?

• Freed memory blocks are managed using a doubly-linked list
• Why? (this is actually pretty common any time you need to

manage free space, e.g. file systems)
• Where are the pointers between blocks stored? Within the blocks

themselves!

More about freeing

• When a block is freed, it is added to a linked list but…
• If it turns out that the chunks surrounding the current block are

also unused, they are merged to the current block, and the
resulting merged block is added to the list instead
• As a result, the preexisting blocks are removed from the list (using

the infamous unlink function)

Let’s see this in action

Preceding block (already free) Current block (being freed)

prev_size size fd bk prev_size size fd bk

#define unlink(P, BK, FD) {
FD = P->fd;
BK = P->bk;
FD->bk = BK;
BK->fd = FD;
}

P

Next free block in list

prev_size size fd bk

Previous free block in list

prev_size size fd bk

What can we conclude from this?

https://github.com/artiam99/Linux-Heap-Memory-Manager

Managed memory area

Management
code (invoked on

malloc/free)

Reads control
metadata from
memory

Writes control
metadata to
memory

The million
dollar question

What can we do
here that causes
the free() routines
to do our bidding?

… what is our
bidding?

…let’s talk about the paper
 ==Phrack Inc.==

 Volume 0x0b, Issue 0x39, Phile #0x09 of 0x12

|=---------------------=[Once upon a free()...]=-----------------------=|
|=---=|
|=--------------=[anonymous <d45a312a@author.phrack.org>]=-------------=|

On the Unix system, and later in the C standard library there are functions
to handle variable amounts of memory in a dynamic way. This allows programs
to dynamically request memory blocks from the system. The operating system
only provides a very rough system call 'brk' to change the size of a big
memory chunk, which is known as the heap.

On top of this system call the malloc interface is located, which provides
a layer between the application and the system call. It can dynamically
split the large single block into smaller chunks, free those chunks on
request of the application and avoid fragmentation while doing so. You can
compare the malloc interface to a linear file system on a large, but
dynamically sized raw device.

There are a few design goals which have to be met by the malloc interface:

 - stability
 - performance
 - avoidance of fragmentation
 - low space overhead

There are only a few common malloc implementations. The most common ones
are the System V one, implemented by AT&T, the GNU C Library implementation
and the malloc-similar interface of the Microsoft operating systems
(RtlHeap*).

Here is a table of algorithms and which operating systems use them:

Algorithm | Operating System
------------------------+--
BSD kingsley | 4.4BSD, AIX (compatibility), Ultrix
BSD phk | BSDI, FreeBSD, OpenBSD
GNU Lib C (Doug Lea) | Hurd, Linux
System V AT&T | Solaris, IRIX
Yorktown | AIX (default)
RtlHeap* | Microsoft Windows *
------------------------+--

It is interesting to see that most of the malloc implementations are very
easy to port and that they are architecture independent. Most of those
implementations just build an interface with the 'brk' system call. You can
change this behaviour with a #define. All of the implementations I have
come across are written in ANSI C and just do very minimal or even no
sanity checking. Most of them have a special compilation define that
includes asserts and extra checks. Those are turned off by default in the
final build for performance reasons. Some of the implementations also
offer extra reliability checks that will detect buffer overflows. Those
are made to detect overflows while development, not to stop exploitation
in the final release.

Storing management info in-band

Most malloc implementations share the behaviour of storing their own

Now… let’s attack the heap, shall
we?

Let’s go back to free memory management

First allocated block Second allocated block

prev_size size fd bk prev_size size fd bk

Suppose I have a way to overflow this block
(like in the vulnerable code)

Then, I can write whatever I want into this
one (not just in the allocated memory, but
also in the metadata!)

Recall the program is
vulnerable

Ok, I can overwrite the block, so what?

• Well, once you overwrite the block, you can write whatever you
want in FD and BK
• Unlink is just a bunch of memory writes
• Once the block is freed, it will be executed

#define unlink(P, BK, FD) {
FD = P->fd;
BK = P->bk;
FD->bk = BK;
BK->fd = FD;
}

If I control BK and FD, I
can cause free() to write
the content of BK to
FD+12

What I can do with this?

• Modern programs use a table called GOT (global address table) to
store the address of library functions such as printf
• A call to printf() will result in a lookup in the GOT to find the

function
• If I can overwrite data in the GOT for a given function…
• …whenever that function is called, execution will jump to an

attacker-controlled address instead!

Idea
1. Write an address, stored on the
head, to the GOT

2. Some content of the GOT is going to
be copied to our heap. This is
unavoidable, but we don’t care

3. The address pointed to by BK is also
on the heap (in the area we
overflowed). At that address, we took
care of writing our exploit code

Is it that simple?

• Not really! As usual, the devil is in the details
• For example, free() won’t believe a block is unused just because

the block says so. Metadata in the surrounding blocks must also
be consistent
• When exploiting the heap overflow vulnerability, must make sure

that both the new fake block and the following one are
consistently initialized
• There are a few additional fields that need to be set up (basically

must look at the code and ensure that all if conditions are
satisfied to get to unlink)

Some take-away points

• This style of exploits challenge the notion (from stack smashing
attacks) which must be able to manipulate control flow directly
• Instead, here we manipulate legitimate code so that it

manipulates data for us
• This attack is considerably more complicated than stack

smashing, as it requires to find the “right” sequence of memory
manipulations

Some take away points/2

• Reviewing this and the previous paper should
give us some sense of what exploit writers
look for
• You don’t need to search the entire code for

vulnerabilities
• What you are looking for is program

statements that (i) modify memory, based on
(ii) data indirectly or directly affected by
userinput

Other heap-based attacks

• You may have heard of heap
spraying
• This is not technically an attack,

but a support technique for other
attacks
• Suppose you have an attack that

entails jumping into attacker-
controlled memory
• Heap spraying helps by filling the

heap with multiple copies of your
code

(from Nozzle: A Defense Against Heap-spraying Code Injection Attacks,
USENIX 2009)

That’s all for today!

