
UCalgary ENSF619
Elements of Software Security

Instructor: Lorenzo De Carli (lorenzo.decarli@ucalgary.ca)

Lecture #6: ROP

mailto:lorenzo.decarli@ucalgary.ca

The context

• Stack overflow is a recurring problem
• Overwriting the stack is not too hard
• But… memory protection makes it more difficult!

Memory protection bits

8c

Addr
1010
6488

3

Program (meta)data

00

Addr
1010
647E

00

Addr
1010
647F

00

Addr
1010
6480

00

Addr
1010
6481

00

Addr
1010
6482

00

Addr
1010
6483

00

Addr
1010
6484

40

Addr
1010
6485

27

Addr
1010
6486

19

Addr
1010
6487

nm
caller’s

data

Addr
0x4B

Program instructions

f0

Addr
0x40

… …ef

Addr
0x41

70

Addr
0x42

81

Addr
0x43

e1

Addr
0x44

39

Addr
0x45

ac

Addr
0x46

00

Addr
0x47

ef

Addr
0x48

5b

Addr
0x49

76

Addr
0x4A

nm instructions

nm’s
data

int nm()
{
 char name[5];
 printf("Enter your name: ");
 gets(name);
 printf(“hi %s\n", name);
 return 0;
}

…

char name[5] Return addr.

64 72 65 10 006e41 64 7e 00

A n d r e LF LF d ~
0x41 0x72 0x65 0x10 0x00

(end)

0x640x6e 0x10 0x64 0x7e

Make this memory write only

Make this memory execute only

How can we move beyond this?

• Fundamental issue: now we cannot add our own code to the
program
• It seems like this is game over, but…
• First (limited) approach to overcoming this: return into libc
• Core idea: rather than adding our own code, we are going to

leverage code which is in the memory space of the program

Program memory layout 0xFFFF

0x0000

Stack

Heap

libc

Virtual address space

Lots of code
here!

How can we use this code?

• In a return-into-libc attack, an attacker takes control of the stack…
• …and causes execution to jump into a libc function
• Not very powerful/expressive
• Can try to run a syscall such as system()
• Runs a shell or similar

• Not much else!

Can we do better?

• For a while, it sounded like stack smashing could be somehow
contained using memory protection bits etc.
• Until Hovav Sacham came along

Let’s talk about the paper

10,000 feet view of the approach

1. Scan libc version
of choice for

gadgets

2. Identify set of
gadgets performing

operations of
interest

3. Build exploit
program as

sequence of
gadgets

Treat gadgets as
atomic instructions to

build program of
interest

Step 1: some context

• A static analysis algorithm scans the libc binary, looking for useful
instruction sequences and organizing them in tries
• What is a trie?

Lookup tries

• Trie: tree data structure used to store values associated with a set
of strings
• Each node represents a prefix of one or more strings in the set
• Allows compact encoding, particularly when many strings share

prefixes

11

• Example: need to store the following keys and
values:
• Calgary: 27
• Calendar: 43
• Crazy: 12

Trie- example

C

razy al

gary endar

12

How are they used in the context of ROP?

• The algorithm instantiates a trie with a return instruction (“RET”)
as root node
• The rest of the trie is constructed by:
• Finding ret instructions
• Parsing the binary backward from the ret instruction, interpreting it in

every possible way until a ”boring” instruction is found
• ”Boring” instruction: instruction that would prevent execution from

reaching ret

• At the end, the trie represents every possible linear sequence of
instructions ending with a RET

Step 2: gadgets – some more context

• x86 has various “return from call” instructions; the one used in the
paper is “near return to calling procedure”, encoded as byte C3
• (There are other ones, but this is pretty much the only one used

with a flat, virtually-addressed memory model)
• RET takes no parameters
• It will
• Pop the word on top of the stack
• Load it into the IP register (index pointer, AKA address of next instruction)

…even more context

• x86 is an old, poorly designed complex instruction set
• Many instructions have variable length and take different parameters
• Given a random sequence of bytes, it is somewhat likely that that

sequence will contain at least some valid instructions

• Consequence: a binary code segment will contain many
instruction sequences ending with RET
• Some of them are the actual instructions in the program
• Some of them are accidental – misaligned sequences of bytes that just

happen to look exactly like legitimate instructions

Example (from the paper)

f7 c7 07 00 00 00 0f 95 45 c3

test $0x00000007, %edi setnzb -61(%ebp)

movl $0x0f000000, (%edi) xchg %ebp, %eax inc %ebp ret

What are those gadgets anyway?

• Small, cutesy sequences of instructions
• Basically, each gadget implements a basic op
• E.g., sums, conditionals, load/store, etc.

• Put together the gadgets, and you have a
Turing-complete language!
• … what is a Turing-complete language?

How do those gadgets look?

• LOAD CONSTANT instruction:

How do those gadgets look? /2

• STORE value into memory:

Putting it all together…

• Overflow stack
• Store sequences of addresses of gadgets in memory
• Sequence should match the program that needs to be executed
• Program is the composition of multiple gadgets

• When the function being exploited returns, control will transfer
to the first gadget…
• …then the second…
• … and so on…

Some considerations

Does this really work?

• Yes!
• It may sounds unlikely to be able to find all the correct gadgets

but…
• … libc contains millions of bytes in its binary code
• … you only need one of each gadget!

Can we try to have less gadgets in binaries?

• Difficult… again, you only need one

Do we even need to have access to the bin?

• Not really! ...provided that a certain conditions are met

Hacking Blind

Andrea Bittau, Adam Belay, Ali Mashtizadeh, David Mazières, Dan Boneh

Stanford University

Abstract—We show that it is possible to write remote stack

buffer overflow exploits without possessing a copy of the target

binary or source code, against services that restart after a crash.

This makes it possible to hack proprietary closed-binary services,

or open-source servers manually compiled and installed from

source where the binary remains unknown to the attacker. Tra-

ditional techniques are usually paired against a particular binary

and distribution where the hacker knows the location of useful

gadgets for Return Oriented Programming (ROP). Our Blind

ROP (BROP) attack instead remotely finds enough ROP gadgets

to perform a write system call and transfers the vulnerable

binary over the network, after which an exploit can be completed

using known techniques. This is accomplished by leaking a

single bit of information based on whether a process crashed

or not when given a particular input string. BROP requires a

stack vulnerability and a service that restarts after a crash. We

implemented Braille, a fully automated exploit that yielded a shell

in under 4,000 requests (20 minutes) against a contemporary

nginx vulnerability, yaSSL + MySQL, and a toy proprietary

server written by a colleague. The attack works against modern

64-bit Linux with address space layout randomization (ASLR),

no-execute page protection (NX) and stack canaries.

I. INTRODUCTION

Attackers have been highly successful in building exploits
with varying degrees of information on the target. Open-source
software is most within reach since attackers can audit the code
to find vulnerabilities. Hacking closed-source software is also
possible for more motivated attackers through the use of fuzz
testing and reverse engineering. In an effort to understand an
attacker’s limits, we pose the following question: is it possible
for attackers to extend their reach and create exploits for
proprietary services when neither the source nor binary code
is available? At first sight this goal may seem unattainable
because today’s exploits rely on having a copy of the target
binary for use in Return Oriented Programming (ROP) [1].
ROP is necessary because, on modern systems, non-executable
(NX) memory protection has largely prevented code injection
attacks.

To answer this question we start with the simplest possible
vulnerability: stack buffer overflows. Unfortunately these are
still present today in popular software (e.g., nginx CVE-2013-
2028 [2]). One can only speculate that bugs such as these
go unnoticed in proprietary software, where the source (and
binary) has not been under the heavy scrutiny of the public
and security specialists. However, it is certainly possible for
an attacker to use fuzz testing to find potential bugs through
known or reverse engineered service interfaces. Alternatively,
attackers can target known vulnerabilities in popular open-
source libraries (e.g., SSL or a PNG parser) that may be used
by proprietary services. The challenge is developing a method-
ology for exploiting these vulnerabilities when information
about the target binary is limited.

One advantage attackers often have is that many servers
restart their worker processes after a crash for robustness. No-
table examples include Apache, nginx, Samba and OpenSSH.
Wrapper scripts like mysqld_safe.sh or daemons like
systemd provide this functionality even if it is not baked into
the application. Load balancers are also increasingly common
and often distribute connections to large numbers of identically
configured hosts executing identical program binaries. Thus,
there are many situations where an attacker has potentially
infinite tries (until detected) to build an exploit.

We present a new attack, Blind Return Oriented Program-
ming (BROP), that takes advantage of these situations to build
exploits for proprietary services for which both the binary
and source are unknown. The BROP attack assumes a server
application with a stack vulnerability and one that is restarted
after a crash. The attack works against modern 64-bit Linux
with ASLR (Address Space Layout Randomization), non-
executable (NX) memory, and stack canaries enabled. While
this covers a large number of servers, we can not currently
target Windows systems because we have yet to adapt the
attack to the Windows ABI. The attack is enabled by two new
techniques:

1) Generalized stack reading: this generalizes a known
technique, used to leak canaries, to also leak saved
return addresses in order to defeat ASLR on 64-bit
even when Position Independent Executables (PIE)
are used.

2) Blind ROP: this technique remotely locates ROP
gadgets.

Both techniques share the idea of using a single stack
vulnerability to leak information based on whether a server
process crashes or not. The stack reading technique overwrites
the stack byte-by-byte with possible guess values, until the
correct one is found and the server does not crash, effectively
reading (by overwriting) the stack. The Blind ROP attack
remotely finds enough gadgets to perform the write system
call, after which the server’s binary can be transferred from
memory to the attacker’s socket. At this point, canaries, ASLR
and NX have been defeated and the exploit can proceed using
known techniques.

The BROP attack enables robust, general-purpose exploits
for three new scenarios:

1) Hacking proprietary closed-binary services. One may
notice a crash when using a remote service or dis-
cover one through remote fuzz testing.

2) Hacking a vulnerability in an open-source library
thought to be used in a proprietary closed-binary
service. A popular SSL library for example may have

What is this “hacking blind” business?

• Just a fancy technique to copy the content of a binary from
memory to the network
• Requires that the binary restarts when crashed (e.g., web server

service)
• Keep trying a ROP attack until identifies an address that causes

write to a network socket before crashing
• Then, use that repeatedly to exfiltrate in-memory binary data
• Once enough binary exfiltrated, can use standard tools to carry a

ROP attacks

Do ROP attacks only work on x86?

• No! They also work on fixed-width instruction architectures
such as ARM
• At face value, ARM is a terrible architecture for ROP
• ARM has 32-bit instructions that are memory-aligned
• Jumping in the middle of an instruction will cause the program to crash!
• There is not even a proper RET instruction!

Fear not! There’s a solution for that

• Modern tools can find plenty of ROP gadgets even within the
constraints of aligned instructions
• Plus, ARM has two modes, regular and 16-bit (THUMB)
• If you can find a gadget to switch CPU modes you get:

• Double the gadgets
• Double the fun (OK, I got this one from reddit)

• While it is true that there is no RET, there are other instructions
• E.g., POP {PC}
• Pops the top of the stack into the program counter
• Tomato, tomato

What was the impact of this paper?

• This is a foundational paper in system security
• ROP techniques are used in countless modern exploits
• …oftentimes, together with other circumvention techniques

such as stack pivoting
• Probably as important as the Fun & Profit paper

ROP tools

https://ropemporium.com/guide.html

See you in the next lecture!

