Lecture #6: ROP

UCalgary ENSF619

Elements of Software Security

Instructor: Lorenzo De Carli (lorenzo.decarli@ucalgary.ca)

mailto:lorenzo.decarli@ucalgary.ca

The context

* Stack overflow is a recurring problem
* Overwriting the stack is not too hard
* But... memory protection makes it more difficult!

Memory protection bits

int nm()

{
char name[5];
printf ("Enter your name: "); _Z&_ N Cj_ Y EE LF LF Ci_ ™~ (end)
gets (name) ;
printf (“hi $s\n", name) : Ox41 O0x6e 0x64 0x72 O0x65 Ox10 0x10 O0x64 O0x7e 0x00
return O;

}

Make this memory write only

Program instructions Program (meta)data

Addr Addr Addr Addr Addr Addr Addr Addr Addr Addr Addr
Addr Addr Addr Addr Addr Addr Addr Addr Addr Addr Addr Addr 1P10 1010 1010 1010 1010 1010 1010 1010 1010 1010 1010
0x40 Ox41 Ox42 0x43 O0x44 0x45 0x46 Ox47 0x48 Ox49 Ox4A 0x4B ©ff7E 647F 6480 6481 6482 6483 6484 6485 6486 6487 6488

2] 53 0 O EE ES E D LT e T_LT G T z

Y char name[5] Return addr
nm instructions ’ nm
il caller’s
Make this memory execute only data date ’

How can we move beyond this?

* Fundamental issue: now we cannot add our own code to the
program

* |t seems like this is game over, but...
* First (limited) approach to overcoming this: return into libc

* Core idea: rather than adding our own code, we are going to
leverage code which is in the memory space of the program

Virtual address space

Program memory layout

® ® 1. docker
+pwndbg> info proc map

process 324

Mapped address spaces:

Start Addr
0x400000
0x600000
0x601000
0x602000

Ox7ffff7a0d000
Ox7ffff7bcd000
Ox7ffff7dcdooo
Ox7ffff7dd1000
Ox7ffff7dd3000
Ox7ffff7dd7000
Ox7ffff7fe8000
Ox7ffff7ff7000
Ox7ffff7ffa000
Ox7ffff7ffco00
Ox7ffff7ffdooo
Ox7ffff7ffe000
Ox7ffffffde000

End Addr

0x401000

0x601000

0x602000

0x623000
Ox7ffff7bcd000
Ox7ffff7dcdooo
Ox7ffff7dd1000
Ox7ffff7dd3000
Ox7ffff7dd7000
Ox7ffff7dfdooo
Ox7ffff7feb000
Ox7ffff7ffa000
Ox7ffff7ffco00
Ox7ffff7ffdooo
Ox7ffff7ffe000
Ox7ffff7fffo00
OX7ffffffffoo0

Size
0x1000
0x1000
0x1000

0x21000
0x1c0000
0x200000
0x4000
0x2000
0x4000
0x26000
0x3000
0x3000
0x2000
0x1000
0x1000
0x1000
0x21000

Offset
ox0
0x0

0x1000
ox0
0x0

0x1c0000
0x1c0000
0x1c4000
0x0

ox0

0x0

0x0

ox0
0x25000
0x26000
ox0

ox0

objfile
/root/host-share/mewiory_layout
/root/host-sharé/memorv_tdyout
/root/host<share/memory_layout
Lheap]
/1ib/x86_64-1inux-gnu/libc-2.23.
/1ib/x86_64-1inux-gnu/libc-2.23.
/1ib/x86_64-1inux-gnu/libc-2.23.
/1ib/x86_64-1inux-gnu/libc-2.23.

/1ib/x86_64-1inux-gnu/1d-2.23.s0

[vvar]
[vdso]
/1ib/x86_64-1inux-gnu/1d-2.23.s0
/1ib/x86_64-1inux-gnu/1d-2.23.s0

[stack]

Oxffffffffffo00000 Oxffffffffffc01000 0x1000 0x0 [vsyscall]
+pwndbg> I

How can we use this code?

* [n a return-into-libc attack, an attacker takes control of the stack...
 ...and causes execution to jump into a libc function
* Not very powerful/expressive

e Cantryto run a syscall such as system()
* Runs a shell or similar

* Not much else!

Can we do better?

* For a while, it sounded like stack smashing could be somehow
contained using memory protection bits etc.

* Until Hovav Sacham came along

Let’s talk about the paper

The Geometry of Innocent Flesh on the Bone:
Return-into-libc without Function Calls (on the x86)

Hovav Shacham*
hovav@cs.ucsd.edu

Abstract

We present new techniques that allow a return-into-libc attack to be mounted on x86 exe-
cutables that calls no functions at all. Our attack combines a large number of short instruction
sequences to build gadgets that allow arbitrary computation. We show how to discover such
instruction sequences by means of static analysis. We make use, in an essential way, of the
properties of the x86 instruction set.

1 Introduction

We present new techniques that allow a return-into-libc attack to be mounted on x86 executables
that is every bit as powerful as code injection. We thus demonstrate that the widely deployed
“WoX” defense, which rules out code injection but allows return-into-libc attacks, is much less
useful than previously thought.

Attacks using our technique call no functions whatsoever. In fact, the use instruction sequences
from libc that weren’t placed there by the assembler. This makes our attack resilient to defenses
that remove certain functions from libc or change the assembler’s code generation choices.

Unlike previous attacks, ours combines a large number of short instruction sequences to build
gadgets that allow arbitrary computation. We show how to build such gadgets using the short
sequences we find in a specific distribution of GNU libc, and we conjecture that, because of the
properties of the x86 instruction set, in any sufficiently large body of x86 executable code there will
feature sequences that allow the construction of similar gadgets. (This claim is our thesis.) Our
paper makes three major contributions:

10,000 feet view of the approach

2. ldentify set of 3. Build exploit
gadgets performing program as
operations of sequence of
interest gadgets

1. Scan libc version
of choice for

gadgets

Treat gadgets as
atomic instructions to
build program of
interest

Step 1: some context

* A static analysis algorithm scans the libc binary, looking for useful
instruction sequences and organizing them in tries

e Whatis a trie?

Lookup tries

* Trie: tree data structure used to store values associated with a set
of strings

* Each node represents a prefix of one or more strings in the set

* Allows compact encoding, particularly when many strings share
prefixes

11

Trie- example

* Example: need to store the following keys and
values:

e Calgary: 27
 Calendar: 43 A
* Crazy: 12

12

How are they used in the context of ROP?

* The algorithm instantiates a trie with a return instruction (“RET”)
as root node

* The rest of the trie is constructed by:

* Finding ret instructions

* Parsing the binary backward from the ret instruction, interpreting itin
every possible way until a ’boring” instruction is found

* "Boring” instruction: instruction that would prevent execution from
reaching ret

* At the end, the trie represents every possible linear sequence of
Instructions ending with a RET

Step 2: gadgets — some more context

e Xx86 has various “return from call” instructions; the one used in the
paper is “near return to calling procedure”, encoded as byte C3

* (There are other ones, but this is pretty much the only one used
with a flat, virtually-addressed memory model)

* RET takes no parameters

* [t will

* Pop the word on top of the stack
* Load itinto the IP register (index pointer, AKA address of next instruction)

...even more context

* X86 is an old, poorty-designed complex instruction set

* Many instructions have variable length and take different parameters

 Given arandom sequence of bytes, it is somewhat likely that that
sequence will contain at least some valid instructions

* Consequence: a binary code segment will contain many
instruction sequences ending with RET
* Some of them are the actual instructions in the program

 Some of them are accidental - misaligned sequences of bytes that just
happen to look exactly like legitimate instructions

Example (from the paper)

7 c7 ©7 ©0 00 00,6 of 95 45 c3

\) }

\ Y /l Yll Ik)
test $0x00000007, %edi setnzb -61(%ebp)
. Ju

| I 1]

movl $0x01000000, (%edi) xchg %ebp, %eax inc %ebp ret

What are those gadgets anyway?

* Small, cutesy sequences of instructions

* Basically, each gadget implements a basic op
* E.g., sums, conditionals, load/store, etc.

* Put together the gadgets, and you have a
Turing-complete language!

* ...whatis a Turing-complete language?

1111111

Ty
0777-7 "

.Hll
=

U

— 1 || a9

\ 1 | ;

4 - om °

) ul 2

LI\ o

. .r‘ 1

) IBEE |0

s ||| |°

0

How do those gadgets look?

e LOAD CONSTANT instruction:

Oxdeadbeef

> pop Y%edx
ret

%esp —»

Figure 2: Load the constant Oxdeadbeef into %edx.

How do those gadgets look? /2

* STORE value into memory:

™ movl %eax, 24(%edx)
ret

%esp —»

+ 24 >

> pop Y%edx
ret

Figure 4: Store %eax to a word in memory.

Putting it all together...

e Overflow stack

* Store sequences of addresses of gadgets in memory
 Sequence should match the program that needs to be executed
* Program is the composition of multiple gadgets

* When the function being exploited returns, control will transfer
to the first gadget...

e ...then the second...
e ...and soon...

Some considerations

Does this really work?

* Yes!

* |t may sounds unlikely to be able to find all the correct gadgets
but...

* ... libc contains millions of bytes in its binary code
* ...you only need one of each gadget!

* Difficult... again, you only need one

Is Less Really More? Why Reducing Code Reuse Gadget Counts via
Software Debloating Doesn’t Necessarily Indicate Improved Security

Michael D. Brown, Georgia Institute of Technology =~ Santosh Pande, Georgia Institute of Technology

Abstract

Nearly all modern software suffers from bloat that negatively
impacts its performance and security. To combat this prob-
lem, several automated techniques have been proposed to
debloat software. A key metric used in many of these works
to demonstrate improved security is code reuse gadget count
reduction. The use of this metric is based on the prevailing
idea that reducing the number of gadgets available in a soft-
ware package reduces its attack surface and makes mounting
a gadget-based code reuse exploit such as return-oriented
programming (ROP) more difficult for an attacker.

In this paper, we challenge this idea and show through a va-
riety of realistic debloating scenarios the flaws inherent to the
gadget count reduction metric. Specifically, we demonstrate
that software debloating can achieve high gadget count re-
duction rates, yet fail to limit an attacker’s ability to construct
an exploit. Worse yet, in some scenarios high gadget count
reduction rates conceal instances in which software debloat-
ing makes security worse by introducing new, useful gadgets.

To address these issues, we propose a set of four new metrics
for measuring security improvements realized through soft-
ware debloating that are quality-oriented rather than quantity-
oriented. We show that these metrics can identify when
debloating negatively impacts security and be efficiently cal-
culated using our static binary analysis tool, the Gadget Set
Analyzer. Finally, we demonstrate the utility of these metrics
in two realistic case studies: iterative debloating and
debloater evaluation.

libraries such as 1ibc typically only require a small number
of functions provided by the library, but load the entire library
into the program’s memory space at runtime.

Software bloat also occurs laterally within software packages
suffering from feature creep [23]. Examples include software
such as cUrl, which can be used to transfer data via 23 differ-
ent protocols, and iTunes, which features a media player,
ecommerce platform, and hardware device interface within a
single package. Since end users are unlikely to use every fea-
ture within these packages, the code associated with unused
features contributes to software bloat.

Recently, several software debloating techniques [2-5, 20,
24-27] have been proposed that promise to improve software
security by removing code bloat at various stages of the soft-
ware lifecycle. One frequently utilized metric for measuring
security improvements realized via debloating is the reduc-
tion in total count of code reuse gadgets available to an at-
tacker, which we refer to as gadget count reduction. Several
recent debloating publications [3-5, 24-27] claim their meth-
ods improve security citing gadget count reduction data as
one form of evidence.

The relationship between gadget count reduction and im-
proved security is based on the premise that reducing the total
number of code reuse gadgets available in a software package
reduces its attack surface. In turn, this decreases the likeli-
hood of an attacker successfully constructing a code reuse ex-
ploit using techniques such as return, jump, or call-oriented
programming (also known as ROP, JOP, and COP [7-9, 21]).

Can we try to have less gadgets in binaries?

Table 3: Quality Gadget Counts and Average Quality

Debloated Quality ROP Average ROP
Variant Gadgets Gadget Quality
libmodbus (C) 228 (61) 0.81(0.10)
libmodbus (M) 231 (58) 0.86 (0.05)
libmodbus (A) 205 (84) 0.76 (0.14)
Bftpd (C) 246 (16) 0.96 (-0.02)
Bftpd (M) 227 (35) 093 (0.01)
E Bftpd (A) 197 (65) 091 (0.03)
5 libcurl (C) 1800 (25) 0.86 (0.00)
libeurl (M) 1619 (206) 0.85(0.01)
libeurl (A) 1331 (494) 0.84 (0.03)
Mongoose (C) 436 (8) 1.07 (0.02)
Mongoose (M) 422 (22) 1.07 (0.02)
Mongoose (A) 400 (44) 1.05 (0.03)
bzip2 96 (55) 1.30 (-0.20)
chown 99 (124) 1.35 (-0.01)
date 100 (120) 1.01 (0.14)
2 | erep 277 (106) 1.13 (0.17)
g gzip 90 (75) 1.13 (0.00)
O | mkdir 66 (46) 1.10 (0.05)
rm 72 (155) 123 (0.11)
tar 123 (298) 1.15 (0.44)
uniq 66 (78) 123 (0.04)

Do we even need to have access to the bin?

* Not really! ...provided that a certain conditions are met

Hacking Blind

Andrea Bittau, Adam Belay, Ali Mashtizadeh, David Mazieres, Dan Boneh

Stanford University

Abstract—We show that it is possible to write remote stack
buffer overflow exploits without possessing a copy of the target
binary or source code, against services that restart after a crash.
This makes it possible to hack proprietary closed-binary services,
or open-source servers manually compiled and installed from
source where the binary remains unknown to the attacker. Tra-
ditional techniques are usually paired against a particular binary
and distribution where the hacker knows the location of useful
gadgets for Return Oriented Programming (ROP). Our Blind
ROP (BROP) attack instead r tely finds gh ROP gadget
to perform a write system call and transfers the vulnerable
binary over the network, after which an exploit can be completed
using known techniq This is ac plished by leaking a
single bit of information based on whether a process crashed
or not when given a particular input string. BROP requires a
stack vulnerability and a service that restarts after a crash. We
implemented Braille, a fully automated exploit that yielded a shell
in under 4,000 requests (20 mi) inst a c porary
nginx vulnerability, yaSSL + MySQL, and a toy proprietary
server written by a colleague. The attack works against modern
64-bit Linux with address space layout randomization (ASLR),
no-execute page protection (NX) and stack canaries.

I. INTRODUCTION

Attackers have been highly successful in building exploits
with varying degrees of information on the target. Open-source
software is most within reach since attackers can audit the code
to find vulnerabilities. Hacking closed-source software is also
possible for more motivated attackers through the use of fuzz
testing and reverse engineering. In an effort to understand an
attacker’s limits, we pose the following question: is it possible
for attackers to extend their reach and create exploits for

One advantage attackers often have is that many servers
restart their worker processes after a crash for robustness. No-
table examples include Apache, nginx, Samba and OpenSSH.
Wrapper scripts like mysgld_safe.sh or daemons like
systemd provide this functionality even if it is not baked into
the application. Load balancers are also increasingly common
and often distribute connections to large numbers of identically
configured hosts executing identical program binaries. Thus,
there are many situations where an attacker has potentially
infinite tries (until detected) to build an exploit.

We present a new attack, Blind Return Oriented Program-
ming (BROP), that takes advantage of these situations to build
exploits for proprietary services for which both the binary
and source are unknown. The BROP attack assumes a server
application with a stack vulnerability and one that is restarted
after a crash. The attack works against modern 64-bit Linux
with ASLR (Address Space Layout Randomization), non-
executable (NX) memory, and stack canaries enabled. While
this covers a large number of servers, we can not currently
target Windows systems because we have yet to adapt the
attack to the Windows ABI. The attack is enabled by two new
techniques:

1) Generalized stack reading: this generalizes a known
technique, used to leak canaries, to also leak saved
return addresses in order to defeat ASLR on 64-bit
even when Position Independent Executables (PIE)
are used.

2) Blind ROP: this technique remotely locates ROP
gadgets.

What is this “hacking blind” business?

* Just a fancy technique to copy the content of a binary from
memory to the network

* Requires that the binary restarts when crashed (e.g., web server
service)

* Keep trying a ROP attack until identifies an address that causes
write to a network socket before crashing

* Then, use that repeatedly to exfiltrate in-memory binary data

* Once enough binary exfiltrated, can use standard tools to carry a
ROP attacks

Do ROP attacks only work on x867

* No! They also work on fixed-width instruction architectures
such as ARM

At face value, ARM is a terrible architecture for ROP
* ARM has 32-bit instructions that are memory-alighed
* Jumping in the middle of an instruction will cause the program to crash!
* Thereis not even a proper RET instruction!

Fear not! There’s a solution for that

* Modern tools can find plenty of ROP gadgets even within the
constraints of alighed instructions
* Plus, ARM has two modes, regular and 16-bit (THUMB)

* |f you can find a gadget to switch CPU modes you get:
* Double the gadgets

* Double the fun (OK, | got this one from reddit)
* While it is true that there is no RET, there are other instructions
 E.g., POP{PC}
* Pops the top of the stack into the program counter
* Tomato, tomato

What was the impact of this paper?

* This is a foundational paper in system security
* ROP techniques are used in countless modern exploits

* ...oftentimes, together with other circumvention techniques
such as stack pivoting

* Probably as important as the Fun & Profit paper

ROP tools

ropper
Standalone ROP gadget finder written in Python, can also display useful information about binary files.
It has coloured output, interactive search and supports bad character lists. Check out the github page
for more information.

ROPGadget

Another powerful ROP gadget finder, doesn't have the interactive search or colourful output that
ropper features but it has stronger gadget detection when it comes to ARM architecture. It too has a
github page.

pwntools

CTF framework written in Python. Simplifies interaction with local and remote binaries which makes
testing your ROP chains on a target a lot easier. Check out the github page. After solving this site's first
"ret2win" challenge, consider browsing an example solution written by the developer/maintainer of
pwntools.

radare2

radare2 is a disassembler, debugger and binary analysis tool amongst many other things. It's absurdly
powerful and you have more or less everything you need to complete the challenges on this site
entirely within the radare2 framework. It's actively developed and you can find more detail on their
github page which also hosts a cheatsheet.

pwndbg

pwndbg is a GDB plugin that greatly enhances its exploit development capability. It can make it much
easier to understand your environment when debugging your solution to a challenge. The project has a
homepage and is hosted on github. Also worth checking out are the list of features and cheatsheet.

https://ropemporium.com/guide.html

See you in the next lecture!

