Lecture #7: ASLR

UCalgary ENSF619

Elements of Software Security

Instructor: Lorenzo De Carli (lorenzo.decarli@ucalgary.ca)
Slides partly based on SysBumps, Jang etal., ACM CCS 2024

mailto:lorenzo.decarli@ucalgary.ca

Today’s lecture is about KASLR

e But whatis it?

* First, let’s refresh our knowledge of what ASLR is in the first place

* Observation: most memory exploits work by causing execution
to jump into a memory region which contains useful code
* Typically libc or the executable itself

* Jumping elsewhere risks ending up into unmapped or non-X memory

What does ASLR do?

* The previous observation suggests an insight:
* |If we map relevant memory regions at random offsets...
 ...then exploit writers won’t be able to jump at the correct location

* ASLR randomizes the location of relevant memory regions
* Typically stack, heap, text, libraries

* Attacker must get creative to guess the right location before an
exploit can be carried

ASLR - example

With ASLR

[ensf619@ensf619: $./memory.out
location of code: 0x60ce8adaal69

location of heap: 0x60ce8b34e6b0

location of stack: Ox7ffe6dd8d9b4

location of printf: 0x755c8be600f0

location of malloc: 0x755c8bead640

[ensf619@ensf619: $./memory.out
location of code: 0x5ef7el1115169

location of heap: 0x5ef7fb0196b0O

location of stack: Ox7ffc78c934c4

location of printf: 0x7d476aa600f0

location of malloc: 0x7d476aaad640

Without ASLR

lensf619@ensf619: $ cat /proc/sys/kernel/randomize va space
p

[ensf619@ensf619: $ sudo bash

[[sudo] password for ensf619:

[root@ensf619:/home/ensf619/class/ensf619w25/lecture03# echo 0 > /proc/sys/kernel/randomize va space
lroot@ensf619:/home/ensf619/class/ensf619w25/lectured3# exit

exit

[ensf619@ensf619: $./memory.out

location of code: 0x555555555169

location of heap: 0x5555555596b0

location of stack: Ox7fffffffe224

location of printf: Ox7ffff7c600f0

location of malloc: Ox7ffff7cad640

[ensf619@ensf619: $./memory.out

location of code: 0x555555555169

location of heap: 0x5555555596b0

location of stack: Ox7fffffffe224

location of printf: Ox7ffff7c600f0

location of malloc: Ox7ffff7cad640

What is KASLR?

* Similar idea, but randomize the OS Kernel memory region
* Why do we need to worry about this?

* The kernel cannot be exploited, right? RIGHT?

 ...turns out, memory exploits are possible in kernel space too!

How do kernel exploits work?

* They can work in many different ways, but...

e ...typically the idea is some vulnerable kernel function is
identified, that receives data from userspace

* By passing malformed data, it is possible to accomplish:
» Stack overflows
* Heap overflows
* Arbitrary memory writes

* These attacks can in turn be used for example to raise privileges

How does ASLR look when applied to kernel?

* Kernel memory cannot be as easily randomized as a user
programs
 Hardware specifications "block” certain addresses that cannot thus be
moved easily
* "Randomized” ends up being milder than in the userspace case

* |n practice, the base address of the kernel is randomized, but
the rest stays constant

How does it look in the case of MacOSX?
(from today’s paper)

Kernel base = Oxfffffed007004000 + slide.

|

Base address of Constant offset Randomized value
kernel

* Overall offset alighed to 16KB (system page size)
* Highest and lowest base address determined through repeated measures
 Example(M2 Max processor):
OxFFFFFEQ002F000000 — OxFFFFFEOOOF1C4000 = OxI1FE3C000 = 535019520
535019520/ 16384 = 32655 = 215 — 15 bits of randomness

In a nutshell...

* Defeating KASLR entails determining the kernel base address
e [f that address is discovered, KASLR is “broken”

* If | have a kernel-level exploit that requires knowledge of the kernel
memory location, | can now carry it

Let’s talk about the paper

SysBumps: Exploiting Speculative Execution in System Calls for
Breaking KASLR in macOS for Apple Silicon

Hyerean Jang
Korea University
Seoul, Republic of Korea
hr_jang@korea.ac.kr

Abstract

Apple silicon is the proprietary ARM-based processor that powers
the mainstream of Apple devices. The move to this proprietary
architecture presents unique challenges in addressing security is-
sues, requiring huge research efforts into the security of Apple
silicon-based systems. In this paper, we study the security of KASLR,
the randomization-based kernel hardening technique, on the state-
of-the-art macOS system equipped with Apple silicon processors.
Because KASLR has been subject to many microarchitectural side-
channel attacks, the latest operating systems, including macOS,
use kernel isolation, which separates the kernel page table from
the userspace table. Kernel isolation in macOS provides a barrier
to KASLR break attacks. To overcome this, we exploit speculative
execution in system calls. By using Spectre-type gadgets in sys-
tem calls, an unprivileged attacker can cause translations of the
attacker’s chosen kernel addresses, causing the TLB to change ac-
cording to the validity of the address. This allows the construction
of an attack primitive that breaks KASLR bypassing kernel isolation.
Since the TLB is used as a side-channel source, we reverse-engineer
the hidden internals of the TLB on various M-series processors
using a hardware performance monitoring unit. Based on our at-
tack primitive, we implement SysBumps, the first KASLR break
attack on macOS for Apple silicon. Throughout evaluation, we
show that SysBumps can effectively break KASLR across different
M-series processors and macOS versions. We also discuss possible
mitigations against the proposed attack.

Taehun Kim
Korea University
Seoul, Republic of Korea
tachunk@korea.ac.kr

Youngjoo Shin
Korea University
Seoul, Republic of Korea
syoungjoo@korea.ac.kr

ACM Reference Format:

Hyerean Jang, Taehun Kim, and Youngjoo Shin. 2024. SysBumps: Exploit-
ing Speculative Execution in System Calls for Breaking KASLR in ma-
cOS for Apple Silicon. In Proceedings of the 2024 ACM SIGSAC Confer-
ence on Computer and Communications Security (CCS 24), October 14—
18, 2024, Salt Lake City, UT, USA. ACM, New York, NY, USA, 15 pages.
https://doi.org/10.1145/3658644.3690189

1 Introduction

Apple recently began a transition from Intel-based processors to
Apple silicon, its custom-designed, proprietary ARM-based pro-
cessors for its products. While the move to this ARM-based ar-
chitecture increases the performance and efficiency, the inherent
nature of the proprietary processor creates challenges in addressing
security issues within the products. However, despite its impor-
tance, there are only a few studies on the security of Apple silicon
products [32, 49, 61] compared to studies on other commodity pro-
cessors [23, 25, 31, 34, 40], requiring huge research efforts into the
security of Apple silicon-based systems.

In line with this, this paper studies the security of the KASLR!
implementation on the latest Apple silicon-based macOS system.
KASLR is a primary kernel hardening technique to mitigate memory
corruption vulnerabilities in the kernel by randomizing the layout of
the kernel address space [52]. Since its introduction, KASLR imple-
mentations have been subject to microarchitectural side-channel at-
tacks [2, 10, 11, 23, 28, 35, 39, 40, 42, 63]. That is, using side-channel
techniques on caching hardware such as TLB?, unprivileged attack-

Workplan for this paper

1. Find a way to cause kernel 2. Measure which addresses 3. Find location of kernel in

to access memory address are valid memory

Why do we care about TLB?

* We need to find a way to determine whether any address within
the kernel address space is valid (mapped) or not

* Impossible to do this directly from user space
* User space applications cannot access kernel memory!

* Must use an indirect approach

The way in

* Certain system calls receive pointers as parameters

* General idea: pass memory addresses to those calls and

determine if they are valid or not by looking at how the kernel
behaves

* Problems:

1. The kernel won’t even try to access those addresses, as it will
immediately realize they are invalid

2. Evenifthe kernel does try to access those addresses, how do | observe
its behavior?

3. Finally, even if | can observe kernel behavior, how do | use this to break
ASLR?

Problem 1: get kernel to access invalid
addresses

* MacQOS system calls are hardened against incorrect input

int copyinstr(const user_addr_t user_addr, char *kernel_addr, vm_size_t nbytes, vm_size_t *lencopied)

{

int result;

result = copy_validate(user_addr, (uintptr_t)kernel_addr, nbytes, COPYIO_IN);
if (__improbable(result)) {
// When user_addr is invalid

return result; . Passing an arbitrary

3 kernel address in place
of user_addr will cause
// When user_addr is valid this check to fail!
user_access_enable();
result = _bcopyinstr((const char *)user_addr, kernel_addr, nbytes, &bytes_copied);

user_access_disable();

Solution 1: take advantage of speculative
execution

* Modern CPUs are very efficient

* To save time, they will run branch prediction and speculatively
execute instructions on the most likely side of the branch

 |If it turns out the prediction is incorrect, the effect of those
Instructions will be rolled back

* ...on,willit?

A speedy intro to the TLB

* With virtual memory, each time a memory access is performed,
the virtual address must be translated to a physical address

 Approach: Cache recent translations in the translation look-
aside buffer (TLB) to avoid costly accesses to the page table.

VPN offset
Virtual
Address 0 1 0 1 0 1
Addres_s
Translation
l l 1 Y J 4
Physical
Address1 1 {10 1]0] 1

PPI:N offlset

The issue with caching

* Turns out, certain changes to the content of the TLB, caused by
mispredicted instructions, will persist even when the instruction is
rolled back

If the branch predictor

if (__improbable(result)) { < thinks this if () is going to

// When user_addr is invalid evaluate to FALSE...
return result;

3

// When user_addr is valid
user_access_enable();
result = _bcopyinstr((const char *)user_addr, kernel_addr, nbytes, &bytes_copied);

user_access_disable();
) ce It will speculatively execute a bunch
of stuff from here, including

attempting to translate the user-
provided address

Problem 2: observing kernel behavior

* Now we have a way to cause the kernel to access (however
briefly) a kernel address

* |If the provided address is valid, its translation will be cached in
the TLB

 [fitis not valid, the translation will fail and the TLB will remain as
Itis
 But how do we know which event has happened?

More onthe TLB

* General idea: performance measurements to know when caching
has occurred

* But... must know how the TLB is organized!

Address to be translated
L1 data TLB

L2 data TLB

L1 instruction TLB

L2 instruction TLB

TLB

-

Page table

Reverse-engineering the TLB

* It gets complicated!

* Must determine:
* Whether data and instructions are cached separately
* How many level of caching there are
« Cache parameters: mapping, associativity

* The short of it:
* Craft a pattern of memory accesses to fill a certain number of
elements in the TLB

* Perform more accesses
* Observe whether any of the previously cached translation was evicted

* Do this with many different patterns and you can estimate the
TLB structure

We reverse-engineered the TLB, now what?

* Now we can cause the kernel to speculatively access/try to
cache an arbitrary address, and check whether it was cached
1. Train branch prediction to expect the “if” condition to be false (so it will
speculatively attempt to access address of interest)

2. Fill data TLB with translations which compete with the address of
interest (i.e., they are allocated to the same TLB entry)

Feed the address of interest to the kernel

4. Check whether the translations have been evicted or not (i.e.,
measure latency of memory access which needs that translation):
1. If latency is high -> address is valid (entry was evicted)

2. |Iflatencyis low -> address is invalid (entry was not evicted)

o

Does it work? Yes!

* From the paper:

valid kern addr invalid kern addr

100% 1

Frequency

50% -

0%

100% -

Frequency

0%

50% 1

460 480 500 520 540
Probing cycle
(a) L1 dTLB
1200 1400 1600 1800 2000
Probing cycle
(b) L2 dTLB

Figure 6: Measurement for two kernel addresses on the M1

CPU.

Problem 3: how do | use this to break ASLR?

* In general, addresses where the kernel binary is stored will be
valid...

e ... and addresses with no kernel will be invalid
* Basically, | need to find either where the kernel begins, or ends

* | can do so by probing lots of addresses, and figuring out either
the lowest or the highest valid address

Sample measurement result

Kernel K | reqi End of
base ern;tglon DATA Seg.
Aux DATA . .
KC Seg. Valid but unreliable
) Y
Offset, Size,
2200
1800 Valid and reliable
> NEENEEENE
(@)}
< Threshold
@]
a 1400
1000
14000 16000 18000 20000 22000

Slots

Figure 8: Probing with the attack primitive over the kernel
base range.

In summary...

* This attack cannot reliably determine the lowest kernel address

* The kernel begins with an allocation for third-party extensions, which are
machine- and configuration-dependent

* Thus, there is a variable valid “gap” before the actual kernel memory

* However, the attack can reliably determine where the kernel ends

* |ltis also possible to determine how big the kernel is by analyzing
the kernel binary (it is just a file)

* Find the end of the kernel memory region, subtract the size of the
kernel image, find the base address

* GAME OVER!

There is a lot of complexity we have not
discussed

* Measurements are difficult and noisy!

* Reverse-engineering TLB structure is non-trivial and a
remarkable achievement in itself

* Figuring out whether the data TLB is shared between kernel and
user space was also necessary

Possible mitigations

* Reorder instructions to prevent speculative execution from
accessing attacker-controlled access

e Cause TLB to allocate entries even if address is invalid

* Use fence instructions to prevent speculative execution around
memory addresses

 Use separate TLB entries for kernel and user space

That’s all for today!

See you in the next lecture

