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Today’s lecture is about KASLR

• But what is it?
• First, let’s refresh our knowledge of what ASLR is in the first place

• Observation: most memory exploits work by causing execution 
to jump into a memory region which contains useful code
• Typically libc or the executable itself
• Jumping elsewhere risks ending up into unmapped or non-X memory



What does ASLR do?

• The previous observation suggests an insight:
• If we map relevant memory regions at random offsets…
• …then exploit writers won’t be able to jump at the correct location

• ASLR randomizes the location of relevant memory regions
• Typically stack, heap, text, libraries

• Attacker must get creative to guess the right location before an 
exploit can be carried



ASLR - example
With ASLR

Without ASLR



What is KASLR?

• Similar idea, but randomize the OS Kernel memory region
• Why do we need to worry about this?
• The kernel cannot be exploited, right? RIGHT?

• …turns out, memory exploits are possible in kernel space too!



How do kernel exploits work?

• They can work in many different ways, but…
• …typically the idea is some vulnerable kernel function is 

identified, that receives data from userspace
• By passing malformed data, it is possible to accomplish:
• Stack overflows
• Heap overflows
• Arbitrary memory writes

• These attacks can in turn be used for example to raise privileges



How does ASLR look when applied to kernel?

• Kernel memory cannot be as easily randomized as a user 
programs
• Hardware specifications ”block” certain addresses that cannot thus be 

moved easily

• ”Randomized” ends up being milder than in the userspace case
• In practice, the base address of the kernel is randomized, but 

the rest stays constant



How does it look in the case of MacOSX? 
(from today’s paper)
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Figure 6: Measurement for two kernel addresses on the M1
CPU.

The threshold used in Step 4 varies depending on the TLB levels.
In the attack, the threshold can be determined through multiple
tests.

Evaluation. To validate its e!ectiveness, we performed an experi-
ment for our attack primitive with two kernel addresses: 𝐿1, which
is physically backed (i.e., a valid address), and 𝐿2, which is not (i.e.,
an invalid address). Figure 6 (a) and (b) show the probing cycles
measured for these addresses on the L1 and L2 dTLB on the M1
CPU, respectively. For a valid address 𝐿1, denoted ‘valid kern
addr’ in the "gure, it shows high probing cycles as the address
has evicted one of our elements primed at Step2, resulting in high
latency in probing at Step4. On the other hand, it has low probing
cycles for the invalid address 𝐿2, denoted ‘invalid kern addr’,
as its translation has not been cached on the TLB. We obtained the
same experimental results for all the devices listed in Table 1.

We also observe from the result that probing cycles for 𝐿1 and 𝐿2
are more distinguishable on L2 dTLB than L1 dTLB. We attribute
this to the di!erent inherent properties of these TLBs. For L1 dTLB,
its small size leads to frequent evictions, resulting in a high chance
of false positives. In addition, the di!erence in L1 dTLB probing
cycles based on address validity is less than that of L2 dTLB, which
could lead to high error rates in TLB probing due to noise. Indeed,
our tests have shown that attacks monitored at the L1 dTLB level
signi"cantly drop in accuracy compared to those conducted at the
L2 dTLB level. In conclusion, we decide to use the L2 dTLB in our
attack primitive to achieve better accuracy in SysBumps attack
introduced in Section 4.
Identifying exploitable system calls.We manually investigate
to identify vulnerable system calls that can be exploited as our at-
tack primitives. The ‘syscall.master’ "le in the XNU source code [6]
enumerates all 565 system calls available for the macOS. We look
for system calls that take pointer-type arguments, excluding those

related to inter-process communication (IPC) and process manage-
ment, as they may have unexpected side e!ects. This leaves 80
system calls.

To verify the exploitability of the remaining 80 system calls, we
performed experiments with our attack primitive using these sys-
tem calls. We succeeded in the attack with 25 out of them, such as
chdir() and fgetxaddr(), all of which are listed in Appendix A.
These vulnerable system calls typically take pointer-type argu-
ments. For instance, chdir() takes a path to the speci"ed directory,
which is of type const char*. fgetxaddr() takes an attribute
value of type user_addr_t, which is also one of pointer types.

To examine the underlying root cause, we analyze the XNU
source code of the vulnerable system calls. Through the analysis,
we discover that copyinstr() or copyin() functions are internally
invoked within all these system calls. Both functions aim to copy
data from userspace to kernel space. We also "nd out Spectre-
type gadgets inside both copyinstr() and copyin(), as shown in
Figure 4.

4 Breaking KASLR on macOS for Apple silicon
In this section, we "rst examine the implementation details of
KASLR in macOS for Apple Silicon. Next, we analyze the kernel
memory layout of the macOS using the attack primitive that we
build in Section 3. Finally, based on these analyses, we implement
SysBumps, our KASLR breaking attack targeting macOS for Apple
silicon.

4.1 KASLR entropy analysis
TheKASLR breaking attack requires an understanding of the KASLR
implementation including the range of kernel base addresses and its
alignment size. Since details of the underlying implementation in
macOS have not been disclosed, we attempt to uncover it through
both static code analysis and empirical analysis on the XNU kernel.
Static code analysis. First, we analyze the source code of the XNU
in an attempt to identify the KASLR implementation. From the
source code [4], we "nd that the kernel base address is determined
as follows.

𝑀𝑁𝑂𝑃𝑁𝑄_𝑅𝑆𝑇𝑁 = 0xfffffe0007004000 + slide. (1)

The kernel base address is actually dependent on the slide, which
is an o!set randomly generated at boot time. However, we have
not been able to "nd the implementation of slide generation in
the source code, suggesting that it is outside the kernel and that a
bootloader is in charge of slide generation.
Empirical analysis. As the actual implementation of the random
generation of slide is not made public, we decide to perform an
empirical analysis on its distribution. Speci"cally, we try to "gure
out the actual range of slide by measuring the allocated kernel
base addresses, from which the value of slide is determined by
Eq.1. To do this, we implemented another kext module that records
the current kernel base address at boot time. In the experiment,
we collected 50,000 di!erent kernel base addresses for each device
listed in Table 1.

Figure 7 shows the distribution of these collected kernel base
addresses, and Table 4 presents the measurement results in detail.
The result shows that all tested devices have the same maximum

Base address of 
kernel

Constant offset Randomized value

• Overall offset aligned to 16KB (system page size)
• Highest and lowest base address determined through repeated measures
• Example(M2 Max processor):

0xFFFFFE002F000000 – 0xFFFFFE000F1C4000 = 0x1FE3C000 = 535019520
535019520 / 16384 = 32655 ≈ 215 → 15 bits of randomness



In a nutshell…

• Defeating KASLR entails determining the kernel base address
• If that address is discovered, KASLR is “broken”
• If I have a kernel-level exploit that requires knowledge of the kernel 

memory location, I can now carry it 
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Abstract
Apple silicon is the proprietary ARM-based processor that powers
the mainstream of Apple devices. The move to this proprietary
architecture presents unique challenges in addressing security is-
sues, requiring huge research e!orts into the security of Apple
silicon-based systems. In this paper, we study the security of KASLR,
the randomization-based kernel hardening technique, on the state-
of-the-art macOS system equipped with Apple silicon processors.
Because KASLR has been subject to many microarchitectural side-
channel attacks, the latest operating systems, including macOS,
use kernel isolation, which separates the kernel page table from
the userspace table. Kernel isolation in macOS provides a barrier
to KASLR break attacks. To overcome this, we exploit speculative
execution in system calls. By using Spectre-type gadgets in sys-
tem calls, an unprivileged attacker can cause translations of the
attacker’s chosen kernel addresses, causing the TLB to change ac-
cording to the validity of the address. This allows the construction
of an attack primitive that breaks KASLR bypassing kernel isolation.
Since the TLB is used as a side-channel source, we reverse-engineer
the hidden internals of the TLB on various M-series processors
using a hardware performance monitoring unit. Based on our at-
tack primitive, we implement SysBumps, the "rst KASLR break
attack on macOS for Apple silicon. Throughout evaluation, we
show that SysBumps can e!ectively break KASLR across di!erent
M-series processors and macOS versions. We also discuss possible
mitigations against the proposed attack.
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1 Introduction
Apple recently began a transition from Intel-based processors to
Apple silicon, its custom-designed, proprietary ARM-based pro-
cessors for its products. While the move to this ARM-based ar-
chitecture increases the performance and e#ciency, the inherent
nature of the proprietary processor creates challenges in addressing
security issues within the products. However, despite its impor-
tance, there are only a few studies on the security of Apple silicon
products [32, 49, 61] compared to studies on other commodity pro-
cessors [23, 25, 31, 34, 40], requiring huge research e!orts into the
security of Apple silicon-based systems.

In line with this, this paper studies the security of the KASLR1
implementation on the latest Apple silicon-based macOS system.
KASLR is a primary kernel hardening technique tomitigatememory
corruption vulnerabilities in the kernel by randomizing the layout of
the kernel address space [52]. Since its introduction, KASLR imple-
mentations have been subject to microarchitectural side-channel at-
tacks [2, 10, 11, 23, 28, 35, 39, 40, 42, 63]. That is, using side-channel
techniques on caching hardware such as TLB2, unprivileged attack-
ers can construct a distinguishing oracle D(𝐿) that tells whether
a given target kernel address 𝐿 is valid (i.e., physically mapped to
memory) or not. By using the oracle, the attacker "nds the "rst
valid kernel address, which determines the kernel base, and thus
breaks KASLR.

To mitigate such side-channel attacks against KASLR, the latest
operating systems use a kernel isolation mechanism inside the
kernel [21, 22, 48]. The kernel isolation separates the kernel page
table from the userspace page table. This isolation ensures that
the kernel’s portions of the address space are completely hidden
from user-mode processes, thus thwarting any attempts to access
or derive information about the kernel space. The macOS also
implements the kernel isolation, denoted double map, thus provides
a barrier to the previous attacks.

In this paper, we introduce SysBumps, the "rst KASLR break at-
tack on the macOS for Apple silicon with the state-of-the-art kernel
isolation technique enabled. The main idea to overcome the kernel
isolation barrier is to exploit speculative execution in system calls,

1Kernel Address Space Layout Randomization
2Translation Lookaside Bu!er
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Workplan for this paper

1. Find a way to cause kernel 
to access memory address

2. Measure which addresses 
are valid

3. Find location of kernel in 
memory



Why do we care about TLB?

• We need to find a way to determine whether any address within 
the kernel address space is valid (mapped) or not
• Impossible to do this directly from user space
• User space applications cannot access kernel memory!

• Must use an indirect approach



The way in

• Certain system calls receive pointers as parameters
• General idea: pass memory addresses to those calls and 

determine if they are valid or not by looking at how the kernel 
behaves
• Problems:

1. The kernel won’t even try to access those addresses, as it will 
immediately realize they are invalid

2. Even if the kernel does try to access those addresses, how do I observe 
its behavior?

3. Finally, even if I can observe kernel behavior, how do I use this to break 
ASLR?
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Figure 4: Code snippet that validates user input address.
1 int copyinstr(const user_addr_t user_addr, char *kernel_addr, vm_size_t nbytes, vm_size_t *lencopied)
2 {
3 int result;
4 ...
5 result = copy_validate(user_addr, (uintptr_t)kernel_addr, nbytes, COPYIO_IN);
6 if (__improbable(result)) {
7 // When user_addr is invalid
8 return result;
9 }
10
11 // When user_addr is valid
12 user_access_enable();
13 result = _bcopyinstr((const char *)user_addr, kernel_addr, nbytes, &bytes_copied);
14 user_access_disable();
15 ...
16 }

validation check on user_addr (at line 5 in Figure 4) to see if the ad-
dress falls within the user’s address space. The conditional branch
in line 6 determines subsequent control !ows based on the results
of the bounds check. If the user_addr is valid, it is passed to the
_bcopyinstr() function (line 13), which copies the data stored in
user_addr to the kernel memory space (kernel_addr). Otherwise,
the function returns immediately (line 8).

We "nd a Spectre-type gadget inside the copyinstr() function
around the conditional branch in line 6. With the gadget, we cre-
ate a speculative execution on the system call to make a transient
memory access to a target kernel address. Speci"cally, through
the deliberate mistraining of the branch predictor, we can trigger
transient execution of the memory access, regardless of the vali-
dation result. Although this execution will be subsequently rolled
back, it leaves a trace in the TLB if the target address is valid (i.e.,
mapped to physical memory). Consequently, these traces allow us
to determine whether a target kernel address is valid or not.

Validation of Spectre-type gadgets. To validate that transient
access to kernel addresses really does occur in the Spectre-type
gadgets in Figure 4, we perform an additional experiment. To do
this, we modi"ed the macOS kernel binary to insert certain bar-
rier instructions DSB and ISB for ARM64 before the conditional
branch (between lines 5 and 6 in Figure 4). The barrier instructions
prohibit any speculative execution in the conditional branch. We
then compare the experimental result of our attack primitive on
the unmodi"ed macOS, which is detailed in the next section, with
the result on the patched macOS. From the comparison, we see no
timing di#erence on the patched macOS, while we see a timing
di#erence (Figure 6) on the unmodi"ed version, indicating that
transient memory access occurs in the conditional branch.

3.3 Attack primitive
Based on the observation of speculative execution in system calls,
we can build an attack primitive that allows us to know whether
a given target kernel address 𝐿 is valid or not. This attack primi-
tive uses the prime+probe technique on the TLB. To implement
the prime+probe attack, we leverage the knowledge gained from
reverse-engineering the TLB described in Section 3.1. Speci"cally,
we construct an eviction set that targets the L1 or L2 dTLB as it is
shared between user and kernel space, allowing us to evict kernel

Figure 5: Pseudocode of attack primitive.
1 /*-----------------------------------------------------------
2 char * kernel_addr : a target kernel address (𝐿)
3 int sys_num : a system call number
4 -----------------------------------------------------------*/
5 int validity_test (char * kernel_addr, int sys_num){
6 // Step1. training with an arbitrary userspace address
7 syscall(sys_num, user_addr);
8 syscall(sys_num, user_addr);
9
10 // Step2. priming the TLB with an eviction set
11 prime();
12
13 // Step3. invoking a system call with 𝐿
14 syscall(sys_num, kernel_addr);
15
16 // Step4. probing the TLB state
17 if( probe(kernel_addr) < THRESHOLD )
18 return false; // 𝐿 is an invalid address.
19 else
20 return true; // 𝐿 is a valid address.
21 }

addresses using the eviction set of user addresses. Figure 5 shows
a code snippet for our attack primitive. It consists of four steps
described below.
Step1 (Training) Invoke system calls with an argument of a valid

user address (lines 7-8), to mistrain the conditional branch
within the system call. For Apple silicon processors, two
invocations of system calls are enough to train the branch
predictor.

Step2 (Prime) Fill the dTLB set corresponding to 𝐿 with the eviction
set (line 11).

Step3 (Access) Invoke the system call again, but with an argument
of 𝐿 (line 14). This will lead to a misprediction in the internal
conditional branch, subsequently resulting in a transient
execution that performs memory access to 𝐿 . The execution
may a#ect the dTLB depending on the target address; the
dTLB will load a translation of 𝐿 if it is valid, otherwise, not.

Step4 (Probe) Probe the eviction set and measure its latency (line
17). The measured latency re!ects the state of the dTLB; A
cycle higher than the predetermined threshold indicates that
𝐿 is physically backed up (i.e., a valid address), while a cycle
lower than the threshold indicates that 𝐿 is not.

70

Problem 1: get kernel  to access invalid 
addresses
• MacOS system calls are hardened against incorrect input

Passing an arbitrary 
kernel address in place 
of user_addr will cause 
this check to fail!



Solution 1: take advantage of speculative 
execution
• Modern CPUs are very efficient
• To save time, they will run branch prediction and speculatively 

execute instructions on the most likely side of the branch
• If it turns out the prediction is incorrect, the effect of those 

instructions will be rolled back
• …or, will it?



A speedy intro to the TLB

• With virtual memory, each time a memory access is performed, 
the virtual address must be translated to a physical address
• Approach: Cache recent translations in the translation look-

aside buffer (TLB) to avoid costly accesses to the page table.



The issue with caching

• Turns out, certain changes to the content of the TLB, caused by 
mispredicted instructions, will persist even when the instruction is 
rolled back
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Figure 4: Code snippet that validates user input address.
1 int copyinstr(const user_addr_t user_addr, char *kernel_addr, vm_size_t nbytes, vm_size_t *lencopied)
2 {
3 int result;
4 ...
5 result = copy_validate(user_addr, (uintptr_t)kernel_addr, nbytes, COPYIO_IN);
6 if (__improbable(result)) {
7 // When user_addr is invalid
8 return result;
9 }
10
11 // When user_addr is valid
12 user_access_enable();
13 result = _bcopyinstr((const char *)user_addr, kernel_addr, nbytes, &bytes_copied);
14 user_access_disable();
15 ...
16 }

validation check on user_addr (at line 5 in Figure 4) to see if the ad-
dress falls within the user’s address space. The conditional branch
in line 6 determines subsequent control !ows based on the results
of the bounds check. If the user_addr is valid, it is passed to the
_bcopyinstr() function (line 13), which copies the data stored in
user_addr to the kernel memory space (kernel_addr). Otherwise,
the function returns immediately (line 8).

We "nd a Spectre-type gadget inside the copyinstr() function
around the conditional branch in line 6. With the gadget, we cre-
ate a speculative execution on the system call to make a transient
memory access to a target kernel address. Speci"cally, through
the deliberate mistraining of the branch predictor, we can trigger
transient execution of the memory access, regardless of the vali-
dation result. Although this execution will be subsequently rolled
back, it leaves a trace in the TLB if the target address is valid (i.e.,
mapped to physical memory). Consequently, these traces allow us
to determine whether a target kernel address is valid or not.

Validation of Spectre-type gadgets. To validate that transient
access to kernel addresses really does occur in the Spectre-type
gadgets in Figure 4, we perform an additional experiment. To do
this, we modi"ed the macOS kernel binary to insert certain bar-
rier instructions DSB and ISB for ARM64 before the conditional
branch (between lines 5 and 6 in Figure 4). The barrier instructions
prohibit any speculative execution in the conditional branch. We
then compare the experimental result of our attack primitive on
the unmodi"ed macOS, which is detailed in the next section, with
the result on the patched macOS. From the comparison, we see no
timing di#erence on the patched macOS, while we see a timing
di#erence (Figure 6) on the unmodi"ed version, indicating that
transient memory access occurs in the conditional branch.

3.3 Attack primitive
Based on the observation of speculative execution in system calls,
we can build an attack primitive that allows us to know whether
a given target kernel address 𝐿 is valid or not. This attack primi-
tive uses the prime+probe technique on the TLB. To implement
the prime+probe attack, we leverage the knowledge gained from
reverse-engineering the TLB described in Section 3.1. Speci"cally,
we construct an eviction set that targets the L1 or L2 dTLB as it is
shared between user and kernel space, allowing us to evict kernel

Figure 5: Pseudocode of attack primitive.
1 /*-----------------------------------------------------------
2 char * kernel_addr : a target kernel address (𝐿)
3 int sys_num : a system call number
4 -----------------------------------------------------------*/
5 int validity_test (char * kernel_addr, int sys_num){
6 // Step1. training with an arbitrary userspace address
7 syscall(sys_num, user_addr);
8 syscall(sys_num, user_addr);
9
10 // Step2. priming the TLB with an eviction set
11 prime();
12
13 // Step3. invoking a system call with 𝐿
14 syscall(sys_num, kernel_addr);
15
16 // Step4. probing the TLB state
17 if( probe(kernel_addr) < THRESHOLD )
18 return false; // 𝐿 is an invalid address.
19 else
20 return true; // 𝐿 is a valid address.
21 }

addresses using the eviction set of user addresses. Figure 5 shows
a code snippet for our attack primitive. It consists of four steps
described below.
Step1 (Training) Invoke system calls with an argument of a valid

user address (lines 7-8), to mistrain the conditional branch
within the system call. For Apple silicon processors, two
invocations of system calls are enough to train the branch
predictor.

Step2 (Prime) Fill the dTLB set corresponding to 𝐿 with the eviction
set (line 11).

Step3 (Access) Invoke the system call again, but with an argument
of 𝐿 (line 14). This will lead to a misprediction in the internal
conditional branch, subsequently resulting in a transient
execution that performs memory access to 𝐿 . The execution
may a#ect the dTLB depending on the target address; the
dTLB will load a translation of 𝐿 if it is valid, otherwise, not.

Step4 (Probe) Probe the eviction set and measure its latency (line
17). The measured latency re!ects the state of the dTLB; A
cycle higher than the predetermined threshold indicates that
𝐿 is physically backed up (i.e., a valid address), while a cycle
lower than the threshold indicates that 𝐿 is not.
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If the branch predictor 
thinks this if () is going to 
evaluate to FALSE…

It will speculatively execute a bunch 
of stuff from here, including 
attempting to translate the user-
provided address



Problem 2: observing kernel behavior

• Now we have a way to cause the kernel to access (however 
briefly) a kernel address
• If the provided address is valid, its translation will be cached in 

the TLB
• If it is not valid, the translation will fail and the TLB will remain as 

it is
• But how do we know which event has happened?



TLB

More on the TLB
• General idea: performance measurements to know when caching 

has occurred
• But… must know how the TLB is organized!

L1 instruction TLB

L2 instruction TLB

L1 data TLB

L2 data TLB

Page table

Address to be translated



Reverse-engineering the TLB

• It gets complicated!
• Must determine:
• Whether data and instructions are cached separately
• How many level of caching there are
• Cache parameters: mapping, associativity

• The short of it:
• Craft a pattern of memory accesses to fill a certain number of 

elements in the TLB
• Perform more accesses
• Observe whether any of the previously cached translation was evicted

• Do this with many different patterns and you can estimate the 
TLB structure



We reverse-engineered the TLB, now what?

• Now we can cause the kernel to speculatively access/try to 
cache an arbitrary address, and check whether it was cached

1. Train branch prediction to expect the “if” condition to be false (so it will 
speculatively attempt to access address of interest)

2. Fill data TLB with translations which compete with the address of 
interest (i.e., they are allocated to the same TLB entry)

3. Feed the address of interest to the kernel
4. Check whether the translations have been evicted or not (i.e., 

measure latency of memory access which needs that translation):
1. If latency is high -> address is valid (entry was evicted)
2. If latency is low -> address is invalid (entry was not evicted)



Does it work? Yes!

• From the paper:
CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA Hyerean Jang, Taehun Kim, & Youngjoo Shin

Figure 6: Measurement for two kernel addresses on the M1
CPU.

The threshold used in Step 4 varies depending on the TLB levels.
In the attack, the threshold can be determined through multiple
tests.

Evaluation. To validate its e!ectiveness, we performed an experi-
ment for our attack primitive with two kernel addresses: 𝐿1, which
is physically backed (i.e., a valid address), and 𝐿2, which is not (i.e.,
an invalid address). Figure 6 (a) and (b) show the probing cycles
measured for these addresses on the L1 and L2 dTLB on the M1
CPU, respectively. For a valid address 𝐿1, denoted ‘valid kern
addr’ in the "gure, it shows high probing cycles as the address
has evicted one of our elements primed at Step2, resulting in high
latency in probing at Step4. On the other hand, it has low probing
cycles for the invalid address 𝐿2, denoted ‘invalid kern addr’,
as its translation has not been cached on the TLB. We obtained the
same experimental results for all the devices listed in Table 1.

We also observe from the result that probing cycles for 𝐿1 and 𝐿2
are more distinguishable on L2 dTLB than L1 dTLB. We attribute
this to the di!erent inherent properties of these TLBs. For L1 dTLB,
its small size leads to frequent evictions, resulting in a high chance
of false positives. In addition, the di!erence in L1 dTLB probing
cycles based on address validity is less than that of L2 dTLB, which
could lead to high error rates in TLB probing due to noise. Indeed,
our tests have shown that attacks monitored at the L1 dTLB level
signi"cantly drop in accuracy compared to those conducted at the
L2 dTLB level. In conclusion, we decide to use the L2 dTLB in our
attack primitive to achieve better accuracy in SysBumps attack
introduced in Section 4.
Identifying exploitable system calls.We manually investigate
to identify vulnerable system calls that can be exploited as our at-
tack primitives. The ‘syscall.master’ "le in the XNU source code [6]
enumerates all 565 system calls available for the macOS. We look
for system calls that take pointer-type arguments, excluding those

related to inter-process communication (IPC) and process manage-
ment, as they may have unexpected side e!ects. This leaves 80
system calls.

To verify the exploitability of the remaining 80 system calls, we
performed experiments with our attack primitive using these sys-
tem calls. We succeeded in the attack with 25 out of them, such as
chdir() and fgetxaddr(), all of which are listed in Appendix A.
These vulnerable system calls typically take pointer-type argu-
ments. For instance, chdir() takes a path to the speci"ed directory,
which is of type const char*. fgetxaddr() takes an attribute
value of type user_addr_t, which is also one of pointer types.

To examine the underlying root cause, we analyze the XNU
source code of the vulnerable system calls. Through the analysis,
we discover that copyinstr() or copyin() functions are internally
invoked within all these system calls. Both functions aim to copy
data from userspace to kernel space. We also "nd out Spectre-
type gadgets inside both copyinstr() and copyin(), as shown in
Figure 4.

4 Breaking KASLR on macOS for Apple silicon
In this section, we "rst examine the implementation details of
KASLR in macOS for Apple Silicon. Next, we analyze the kernel
memory layout of the macOS using the attack primitive that we
build in Section 3. Finally, based on these analyses, we implement
SysBumps, our KASLR breaking attack targeting macOS for Apple
silicon.

4.1 KASLR entropy analysis
TheKASLR breaking attack requires an understanding of the KASLR
implementation including the range of kernel base addresses and its
alignment size. Since details of the underlying implementation in
macOS have not been disclosed, we attempt to uncover it through
both static code analysis and empirical analysis on the XNU kernel.
Static code analysis. First, we analyze the source code of the XNU
in an attempt to identify the KASLR implementation. From the
source code [4], we "nd that the kernel base address is determined
as follows.

𝑀𝑁𝑂𝑃𝑁𝑄_𝑅𝑆𝑇𝑁 = 0xfffffe0007004000 + slide. (1)

The kernel base address is actually dependent on the slide, which
is an o!set randomly generated at boot time. However, we have
not been able to "nd the implementation of slide generation in
the source code, suggesting that it is outside the kernel and that a
bootloader is in charge of slide generation.
Empirical analysis. As the actual implementation of the random
generation of slide is not made public, we decide to perform an
empirical analysis on its distribution. Speci"cally, we try to "gure
out the actual range of slide by measuring the allocated kernel
base addresses, from which the value of slide is determined by
Eq.1. To do this, we implemented another kext module that records
the current kernel base address at boot time. In the experiment,
we collected 50,000 di!erent kernel base addresses for each device
listed in Table 1.

Figure 7 shows the distribution of these collected kernel base
addresses, and Table 4 presents the measurement results in detail.
The result shows that all tested devices have the same maximum
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Problem 3: how do I use this to break ASLR?

• In general, addresses where the kernel binary is stored will be 
valid…
• … and addresses with no kernel will be invalid
• Basically, I need to find either where the kernel begins, or ends
• I can do so by probing lots of addresses, and figuring out either 

the lowest or the highest valid address



Sample measurement result
SysBumps: Exploiting Speculative Execution in System Calls for Breaking KASLR in macOS for Apple Silicon CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA

Figure 7: Distribution of kernel base addressesmeasured over
50,000 reboots.

Table 4: Measurements for kernel base range.

CPU Min Max GCD #Slots (bits)
M1 0x!!fe000f3f4000 0x!!fe002f000000 0x4000 32,515 (14.98)
M1 Pro 0x!!fe000f0f4000 0x!!fe002f000000 0x4000 32,707 (14.99)
M2 0x!!fe000f0e0000 0x!!fe002f000000 0x4000 32,712 (14.99)
M2 Pro 0x!!fe000f1bc000 0x!!fe002f000000 0x4000 32,657 (14.99)
M2 Max 0x!!fe000f1c4000 0x!!fe002f000000 0x4000 32,655 (14.99)

kernel base address, while they have di!erent minimum addresses.
We also observe from the result that the greatest common divisor
(GCD) of these collected kernel base addresses is 16 KiB, aligning
with the system’s page size. It is important to note that the GCD
of kernel addresses is a multiple of the alignment size, and these
alignment sizes are typically set as a multiple of the page size for
system performance reasons. Consequently, based on these "ndings,
we can infer that the alignment size for kernel base addresses is
indeed set to 16 KiB.

From our experimental observations, we determine that the ac-
tual range of kernel base addresses is at least 32,515 (= 214.98)
possible slots (i.e., the allocated unit of kernel base address), expos-
ing approximately 15 bits of entropy to attackers.

4.2 Kernel layout analysis
To gain an insight into the construction of the SysBumps attack, we
analyze howmuch information about the kernel memory layout can
be obtained by our attack primitive. Speci"cally, we run the attack
primitive for the full set of possible kernel slots and measure the
latency (i.e., the probing cycle). All themeasurements are performed
on the same KASLR instance of a device equipped with an M1 CPU.

Figure 8 shows the measured latency for kernel slots (shown
below in the "gure) as well as the actual kernel memory layout
(shown above), both of which are aligned with the slot numbers. In
the "gure, some regions exhibited persistently high probing cycles
(e.g., the region of slot numbers between 16,384 and 17,918), indicat-
ing that they have valid kernel address spaces. On the other hand,
certain regions have both high and low cycles for two consecutive
slots (e.g., the region between 14,000 and 16,383), implying that they
are invalid address spaces. We attribute the observation of high
cycles in the invalid address region to noise generated by our at-
tack primitive, since it involves multiple executions of system calls.

DATA
Seg.

Aux
KC

Kernel
base

End of
DATA Seg.

Kernel region

!""#$%! &'($!

Threshold

Figure 8: Probing with the attack primitive over the kernel
base range.

Despite a certain amount of noise, we observe that high latency
slots occur continuously in the valid address regions, allowing a
clear distinction between valid and invalid areas.

As shown in Figure 8, there is a slight discrepancy between the
actual kernel base, indicated by a red line in the "gure, and the
start slot measured as valid, indicated by a red dashed line. Further
analysis reveals that the region in front of the kernel base, shown
as a shaded area in red in the "gure, is occupied by Auxiliary kernel
collection (AuxKC). The AuxKC is a preserved space allocated for
third-party kernel extensions (kext) [3]. The size of the AuxKC
varies depending on the kext modules installed on the macOS,
which is unknown to unprivileged users. The presence of such
regions poses a signi"cant challenge to "nding the exact location of
the kernel base, as it requires the ability to determine the size of the
AuxKC region in unprivileged mode, which is quite challenging.

On the other hand, we observe that there are a number of slots
that are measured as valid at the end of the kernel region (e.g., slots
21,148 - 21,233 in Figure 8). Through further analysis, we con"rm
that the valid slots are consistently aligned with the end of the
kernel’s DATA segment, as indicated by the blue line in the "gure.
The size of the DATA segment and its o!set are always consistent
throughout the main kernel image, and any unprivileged user can
obtain this information by examining the load commands of a kernel
cache "le, which is a pre-linked executable that contains the kernel
and essential drivers4.
Attack strategy. Based on our analysis, we establish a strategy for
our SysBumps attack that instead of the kernel base address, we
choose to "nd out the end address of the DATA segment. Once the
location of the DATA segment has been identi"ed, we are able to
determine the kernel base address with the information about the
size and o!set of the segment.
Further observation.We discover that there are certain regions
(e.g., slots 17,919 - 18,303 in Figure 8) showing low cycles in the
4The kernel cache "le is typically located at /private/var/db/KernelExtensionManag-
ement/KernelCollections/BootKernelCollection.kc.
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Valid but unreliable

Valid and reliable



In summary…

• This attack cannot reliably determine the lowest kernel address
• The kernel begins with an allocation for third-party extensions, which are 

machine- and configuration-dependent
• Thus, there is a variable valid “gap” before the actual kernel memory

• However, the attack can reliably determine where the kernel ends
• It is also possible to determine how big the kernel is by analyzing 

the kernel binary (it is just a file)
• Find the end of the kernel memory region, subtract the size of the 

kernel image, find the base address
• GAME OVER!



There is a lot of complexity we have not 
discussed
• Measurements are difficult and noisy!
• Reverse-engineering TLB structure is non-trivial and a 

remarkable achievement in itself
• Figuring out whether the data TLB is shared between kernel and 

user space was also necessary



Possible mitigations

• Reorder instructions to prevent speculative execution from 
accessing attacker-controlled access
• Cause TLB to allocate entries even if address is invalid
• Use fence instructions to prevent speculative execution around 

memory addresses
• Use separate TLB entries for kernel and user space



That’s all for today!
See you in the next lecture


