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What is software security about?

• Try to think of some typical activities and operations…
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What is software security? - II

• Many things, but one of the most important is detecting bad stuff 
:-)
• Or more precisely, distinguishing bad stuff from good stuff
• “Stuff”: users, processes, files, network flows, network packets, DNS 

domains, URLs, machines, etc.
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Classification in software security

• Much work in software security literature is really work on 
classification
• Typical problem: you are given a set O of objects, s.t. O = OM ∪ 

OB, where OM represents the subset of malicious objects and OB 
that of benign objects
• You must define a classification algorithm (aka detection 

algorithm, or detector):
a : O → {B, M} that maps each element in O to one of two classes: 
malicious (M) and benign (B)
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Classification in software security - II

• To be precise, oftentimes we need to distinguish between benign 
and multiple malicious classes:
O → {B, M1, M2, …, Mn}
• E.g. multiple network attacks, different malware families

• However, from the point of view of detection, the high-order goal 
is to be able to identify malicious objects, whatever their type is
• For the purpose of keeping the discussion simple, for the rest of 

this lecture we are going to assume only one malicious object 
class
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”Benign” vs “Malicious”

• There are many ways to provide a definition of what constitutes a 
malicious object (more on this later in the lecture)
• Typically, a model is constructed representing either the 

characteristics of benign or malicious objects
• In the first case, everything which is not benign is implicitly malicious; in 

the second case, everything which is not malicious is implicitly benign
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“Benign” vs “Malicious” - II

• Can you think of some examples of specific techniques used to 
define the two object classes?
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“Benign” vs “Malicious” - III

• Generally speaking, the nature of an object can be defined by 
specifying:
• Some specific intrinsic properties of the objects (e.g. hash of a file)
• Some statistical properties of the object (e.g., average flow duration 

when the network is not under attack)

8



Why do we care about this?

• Oftentimes, detection problems in security are treated as 
standard classification problems without much consideration or 
awareness of the underlying assumptions
• This creates various problems, because security is a fairly 

peculiar domain:
• Attacker may be able to control the sample “appearance”
• Classes are not balanced
• …
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Focus & structure of today’s discussion

• We are going to review one of the issues arising when using 
classification algorithms without understanding the application 
domain: the base-rate fallacy
• Coming up next:
• How is classifier effectiveness measured?
• A brief review of Bayesian probability
• “The Base-rate Fallacy and its Implications for the Difficulty of Intrusion 

Detection”
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Workflow for detection

Sample (e.g., 
flow)

Classifier Label

Was the 
sample 
labeled 

as 
malicious

?

No 👍

Yes

Send alarm to the 
IT security team
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Workflow for detection - II

• Typically, a detector only generates output when malicious 
objects are identified
• Benign objects are silently ignored and allowed

• Throughout this lecture, I’ll refer to the act of labeling an object as 
malicious as generating an alarm
• In many cases, alarms are post-processed (e.g. to merge 

together similar messages)
• For simplicity, in this lecture we are going to assume 1 intrusion == 1 

alarm
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Measures of classifier effectiveness

• A good classifier should:
• Rarely fail to generate an alert in the presence of a malicious object (high 

detection rate)
• Rarely generate an alert in the presence of a benign object (low false 

alarm rate)

• In many cases, the two properties are correlated: a classifier 
which is sensitive enough to produce a high detection rate also 
tends to produce a high false alarm rate
• However, our discussion today is valid even if we ignore this 

observation
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Measures of classifier effectiveness

• Consider a set of samples O = OM ∪ OB and a 
classifier O → {B, M}
• Given a sample o, there are two possible errors:
• o ∈ OM and o → B (false negative)
• o ∈ OB and o → M (false positive)

• Given a labeled set of samples O, we define:
• TP = #true positives
• FP = #false positives
• TN = #true negatives
• FN = #false negatives

What are 
those?

What do I get if I 
sum all of 
them?
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Basic measures

• With P = #positives in dataset and N = #negatives in dataset:
• True positive rate: TPR = TP/P (#correctly identified positives 

over overall #positives)
• True negative rate: TNR = TN/N (#correctly identified negatives 

over overall #negatives)
• False positive rate: FPR = FP/N
• False negative rate: FNR = FN/P
• Basic properties: TPR + FNR = TNR + FPR = 1
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Accuracy

• A = (TP + TN)/(TP+TN+FP+FN)
• Aka “fraction correct”: fraction of the population which is 

classified correctly
• One of the most common measures of the ”quality” of a classifier
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A reflection on accuracy

• The definition of accuracy hides information
• Aggregates results concerning true negatives and true positives, which 

makes it impossible to tell them apart.

• E.g., if |OB| >> |OM|, a classifier that marks everything as “benign” 
has high accuracy
• Typically, when reporting performance results for a classifier it is 

best to accompany accuracy with other metrics (such as F1 
score)
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Precision & Recall

• Precision: P = TP / (TP + FP)
• Which fraction of the elements 

marked as “malicious” is 
actually malicious?

• Recall: R= TP / (TP + FN)
• Which fraction of the elements 

that are actually malicious is 
marked as “malicious”?

https://en.wikipedia.org/wiki/Precision_and_rec
all
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F1 score

• F1 = 2(P·R/P+R)
• Harmonic mean of precision and recall
• Attempt to give a single scalar measure of classifier quality which 

is more informative than accuracy
• Example:
• 1000 objects, 900 benign & 100 malicious
• Classifier has 900 TN, 0 FP, 99 FN and 1 TP
• Classifier accuracy: 900 + 1 / 1000 = ~90%
• Precision = TP / (TP+FP) = 1 / 1 = 1
• Recall = TP /(TP+FN) = 1/100 = 0.01
• Classifier F1 score = 2((1 · 0.01)/(1+0.01)) ~= 0.02
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Sensitivity & Specificity

• Sensitivity: Se= TP / (TP + FN)
• Same as recall: fraction of 

malicious objects that is detected

• Specificity: Sp = TN / (TN + FP)
• Fraction of benign objects that are 

identified as benign

• Sensitivity & Specificity are 
common in the medical field, but 
rarely used in cybersecurity

https://en.wikipedia.org/wiki/Sensitivity_and_specificit
y
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A brief review of conditional probability

• What does “conditional probability” mean?
• Consider two events A and B
• P(A) is the probability of event A occurring
• P(A|B) is the probability of event A occurring, if it known that B has 

occurred (aka conditional probability of A given B)
• Note that if A and B are independent, then

P(A|B) = P(A)
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Conditional probability definition

• 𝑃 𝐴 𝐵 = !(#∩%)
!(%)

  and 𝑃 𝐵 𝐴 = !(%∩#)
!(#)

• By definition of joint probability, 𝑃 𝐴 ∩ 𝐵 = 𝑃 𝐵 ∩ 𝐴

→ 𝑃 𝐴 𝐵 𝑃 𝐵 = 𝑃 𝐵 𝐴 𝑃 𝐴

→ 𝑃 𝐴 𝐵 = ! # !(%|#)
!(%)
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Bayes’ theorem

• 𝑷 𝑨 𝑩 = 𝑷 𝑨 𝑷(𝑩|𝑨)
𝑷(𝑩)

• At this point, it is useful to remember that

𝑃 𝐵 = 	(
'()

*
𝑃 𝐴' 𝑃(𝐵|𝐴')

• Which allows us to reformulate the theorem as

𝑃 𝐴|𝐵 =
𝑃 𝐴 𝑃(𝐵|𝐴)

∑'()* 𝑃 𝐴' 𝑃(𝐵|𝐴')
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Bayes theorem’s - II

• Why does the paper go to the trouble of deriving this formulation 
of the theorem?

𝑃 𝐴|𝐵 =
𝑃 𝐴 𝑃(𝐵|𝐴)

∑,-./ 𝑃 𝐴, 𝑃(𝐵|𝐴,)

• Because it allows us to easily calculate posterior probabilities 
from the characteristics of a detector!
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Posterior probabilities

• It is typically easy to know the likelihood of a particular detector 
outcome (positive or negative) given the label of an object 
(malicious or benign)
• What is of interest here however (at least in the scope of the 

paper) are posterior probabilities, e.g.:
• What is the probability of an object being malicious given that it was 

labeled so?

• Bayes’ formulation given in the previous slide allows us to do so
• Let’s come back to this later…
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Rates vs Probabilities

• Typically, a detection algorithm is evaluated on a test dataset
• The results (e.g., true positive rate, false positive rate) are 

interpreted as a probabilistic model of classifier behavior on 
unseen samples
• E.g.:
• TPR = 90% ⟷ P(Alarm|Intrusion) = 0.9
• FPR = 1% ⟷ P(Alarm|¬Intrusion) = 0.01

(Disclaimer: I am going to use rates and probabilities interchangeably, 
but be fully aware that this is mathematically untoward w/o a 
philosophical discussion of the frequentist interpretation of probability)
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• (From http://news.bbc.co.uk/2/hi/uk_news/magazine/8153539.stm)
• Imagine you have invented a scanner to detect terrorists at airports:

• The scanner has an accuracy of 90%
• For simplicity, let’s assume this means:

P(Terrorist|Alarm) = P(¬Terrorist|¬Alarm) = 0.9

Now, a thought experiment…

Positive (bad!)

Negative 
(good!)
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A thought experiment - 2

• You are demonstrating your invention at an event in the house of 
parliament, in which 3000 people take part.
• Suddenly, you receive reliable information that a terrorist is 

attending the event:
• A perfect opportunity to test your machine!

• Security seals all the exit and asks everyone to go through the 
scanner…
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A thought experiment - 3

• Suddenly, as a man goes through the scanner, the scanner goes 
off! Police stops him at gunpoint.
• Q: What are the chances this man is a terrorist?
• (a) 90%
• (b) 10%
• (c) 0.3%

• A: (c) 0.3%
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A thought experiment - 4

• What the experiment is really asking is: what is the posterior probability that 
a person is a terrorist, given knowledge that they were labeled as such?
• We can calculate it… we have the technology!
• Let’s call T the event “subject is a terrorist” and A the event “detector raises 

an alarm”

𝑃 𝑇 𝐴 =
𝑃 𝐴 𝑇 𝑃(𝑇)

𝑃 𝐴 𝑇 𝑃 𝑇 + 𝑃(𝐴|¬𝑇)𝑃(¬𝑇)
=

=
0.9 / ( 01 3000)

0.9 / 01 3000 + 0.1 / ( 02999
3000)

= 0.003
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Why is this experiment relevant?

• It forces us to reflect on the problems we face when attempting to 
detect rare events…
• And most attacks in computer security are rare events!
• (Note: ”rare” refers to the ratio of attack events to benign events)
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Abstract
Many different requirements can be placed on intrusion detection systems. One such im-

portant requirement is that it be effective i.e. that it should detect a substantial percentage of
intrusions into the supervised system, while still keeping the false alarm rate at an acceptable
level.
This paper aims to demonstrate that, for a reasonable set of assumptions, contrary to what

has previously been thought, the false alarm rate is the limiting factor for the performance of
the intrusion detection system. This is due to the base-rate fallacy phenomenon, that in order
to achieve substantial values of the Bayesian detection rate, P Intrusion Alarm , we have to
achieve—a perhaps unattainably low—false alarm rate, on the order of , or
per “event.”

1 Introduction
Many requirements can be placed on an intrusion detection system (IDS for short) such as ef-
fectiveness, efficiency, ease of use, security, interoperability, transparency etc., etc. Although much
research has gone into the field in the past ten years, the theoretical limits of many of these pa-
rameters have not been studied to any significant degree. The aim of this paper is to provide a
discourse on one serious problemwith regard to one of these parameters; effectiveness, especially
how the base-rate fallacy affects the operational effectiveness of any intrusion detection system.

2 Problems in Intrusion Detection
The field of automated computer security intrusion detection—intrusion detection for short—is
currently some nineteen years old. The seminal paper that is most often mentioned is James P.
Anderson’s technical report [And80], where he states in reference to one class of intruders, the
masquerader, that:

Masquerade is interesting in that it is by definition extra use of the system by the
unauthorised user. As such it should be possible to detect instances of such use by
analysis of audit trail records to determine:
a. Use outside of normal time

This work was funded by The Swedish National Board for Industrial and Technical Development (NUTEK) under
project P10435.

1
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About the paper

• When this paper was published, the field of network intrusion 
detection was already ~10-year old
• However, as a largely applied line of research, there was a lack of 

meta-analysis on the underlying assumptions and limits of 
detection techniques
• This paper introduces a conversation about the limits of intrusion 

detection in the academic discourse
• The issues brought up by this paper are not easily solved (and in 

some cases, probably not solvable at all!)

33



Concepts from the paper

• Example scenario: small computer network
• Intrusion detection is performed by analyzing logs of networks and host 

events
• 1,000,000 log events/day; but each intrusion requires analysis of 10 

events – so there are 100,000 objects to be analyzed per day
• 2 intrusion attempts per day
• 1 SSO (site security officer; network administrator)
• Reasonable assumptions!
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Concepts from the paper - 2

• Events of interest:
• A: the intrusion detection system raises an alarm
• I: an actual intrusion attempt occurs

• Given probabilities of interest:
• P(A|I): probability of alarm given an intrusion

(true positive rate)
• P(A|¬I): probability of alarm given no intrusion

(false positive rate)
• P(¬A|I): probability of no alarm given an intrusion

(false negative rate)
• P(¬A|¬I): probability of no alarm given no intrusion

(true negative rate)
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Concepts from the paper - 3

• Given these probabilities, we are interested in computing various 
posterior probabilities using Bayes’ theorem:
• Bayesian detection rate: P(I|A): the probability that an alarm 

really indicates an intrusion
• P(¬I|¬A): the probability that absence of alarm indicates that no 

intrusion is occurring
• A good design should attempt to maximize both probabilities
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Concepts from the paper - 4

• Let’s compute the Bayesian detection rate for the example 
scenario (2 intrusions per day, 100,000 entries generated per day):

𝑃 𝐼 𝐴 =
𝑃 𝐼 𝑃(𝐴|𝐼)

𝑃 𝐼 𝑃 𝐴 𝐼 + 𝑃 ¬𝐼 𝑃(𝐴|¬𝐼)
=

=
2 . 1001𝑃(𝐴|𝐼)

2 . 1001𝑃 𝐴 𝐼 + 0.99998 . 𝑃(𝐴|¬𝐼)
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The BRF in a nutshell!

𝑃 𝐼 𝐴 =
𝑃 𝐼 𝑃(𝐴|𝐼)

𝑃 𝐼 𝑃 𝐴 𝐼 + 𝑃 ¬𝐼 𝑃(𝐴|¬𝐼) =

=
2 + 10!"𝑃(𝐴|𝐼)

2 + 10!"𝑃 𝐴 𝐼 + 0.99998 + 𝑃(𝐴|¬𝐼)

Even if P(A|I) is orders of magnitude larger 
than P(A|¬I), this term still dominates the 
denominator and causes P(I|A) ⟶ 0 (why?)
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Some concrete results
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Figure 1: Plot of

scenario, our Bayesian detection rate is down to, around 2%,6 by which time no-one will bother
to care when the alarm goes off.
Substituting (6) and (9) in equation (8):

(11)

A quick glance at the resulting equation (11) raises no cause for concern. The large
factor (0.99998) will completely dominate the equation, giving it values near 1.0 for the values
of we are talking about here, regardless of the value of .
This is the base-rate fallacy in reverse, if you will, since we have already demonstrated that

the problem is that we will set off the alarm too many times in response to non-intrusions,
combined with the fact that we don’t have many intrusions to begin with. Truly a problem of
finding a needle in a haystack.
The author does not see how the situation behind the base-rate fallacy problem would

change for the better in the years to come. On the contrary, as computers get faster, they will
produce more audit data, while it is doubtful that intrusive activity will increase at the same
rate.7

6Another way of calculating that than from equation (10) is of course by realising that 100 false alarms and only a
maximum of two possible valid alarms gives: .

7In fact, it would have to increase at a substantially higher rate for it to have any effect on the previous calculations,
and were it ever to reach level enough to have such an effect—say 30% or more—the installation would no doubt have
a serious problem on its hands, to say the least. . .

6

Let’s assume 
that our 
detector has 
100% TP rate…

1 false alarm per 
day

100 false alarms per day (more 
realistic; still manageable)

Bayesian 
detection 
rate: 20%
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Some concrete results - II

• Is a Bayesian detection rate of 20% good or bad?
• Remember, the Bayesian detection rate represents the probability of an 

alarm representing an actual intrusion

• If a security officer dealing with 100 alarms per day were to 
investigate every alarm, she would need to review an alarm every 
5 minutes
• Would you do it, knowing that most of them are false alarms?
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Some concrete results - III
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scenario, our Bayesian detection rate is down to, around 2%,6 by which time no-one will bother
to care when the alarm goes off.
Substituting (6) and (9) in equation (8):

(11)

A quick glance at the resulting equation (11) raises no cause for concern. The large
factor (0.99998) will completely dominate the equation, giving it values near 1.0 for the values
of we are talking about here, regardless of the value of .
This is the base-rate fallacy in reverse, if you will, since we have already demonstrated that

the problem is that we will set off the alarm too many times in response to non-intrusions,
combined with the fact that we don’t have many intrusions to begin with. Truly a problem of
finding a needle in a haystack.
The author does not see how the situation behind the base-rate fallacy problem would

change for the better in the years to come. On the contrary, as computers get faster, they will
produce more audit data, while it is doubtful that intrusive activity will increase at the same
rate.7

6Another way of calculating that than from equation (10) is of course by realising that 100 false alarms and only a
maximum of two possible valid alarms gives: .

7In fact, it would have to increase at a substantially higher rate for it to have any effect on the previous calculations,
and were it ever to reach level enough to have such an effect—say 30% or more—the installation would no doubt have
a serious problem on its hands, to say the least. . .

6

What if P(A|I) is, 
realistically, < 
1.0?

The situation 
gets even 
worse! (why?)
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What are the implications?

• Why is it called “base-rate fallacy”?
• In considering an instrument to detect something harmful, we 

naturally focus on the ability of the instrument to alert us when 
something harmful is indeed present
• However, we fail to consider that in most scenarios harmful 

situations occur rarely
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What are the implications? - II

• “Base-rate fallacy” represents a failure to consider the rate at 
which the (harmful) situation of interest occurs
• Since most of the time the instrument is analyzing something not 

harmful, the probability of false alarm becomes very important
• Unless the probability of false alarm can be kept extremely low, 

the instrument is, for all purposes, useless
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The BRF and intrusion detection

• ”Network intrusion detection” refers to the task of detecting 
attempts to gain unauthorized access to a computer network
• Two main approaches:
• Detect flows/processes/users/… whose characteristics differ from what is 

normally observed in the system (anomaly-based intrusion detection)
• Detect flows/processes/users/… whose characteristics match an 

explicitly-specified attack signature or directly violates a policy 
(specification- or policy-based i.d.)

• The BRF applies to both!
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The BRF and intrusion detection - II

• Where do false positives come from?
• Anomaly-based intrusion detection?
• Regardless of the specific parameters being modeled, it is difficult to 

come up with statistical parameters that can reliably ignore benign 
actions and always identify intrusion situations (networks are complex, 
unpredictable objects)

• Specification-/Policy-based intrusion detection?
• Attack signatures may lack specificity and match benign entities (e.g. a 

regular expression which captures attack packets but also some benign 
packets); policies may fail to represent how the network is actually used
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The BRF and intrusion detection - III

• The base-rate fallacy does not provide guidance on how to 
design intrusion detection systems
• It merely points out a pitfall for nearly every possible intrusion 

detection system
• Ignoring it most likely leads to an unusable system!
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Evaluating trade-offs: ROC curves

• Designing a detector entails a trade-off 
between the false positive rate P(A|¬I) and 
the true positive rate P(A|I)
• Typically, tuning a detector to achieve a 

higher true positive rate also causes it to 
exhibit a higher false positive rate
• In other words, making a detector more 

sensitive to attacks also makes it more 
prone to consider benign situations as 
attacks
• A ROC curve allows to evaluate this trade-off
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ROC curve: example

Perfect 
classifier

No better than 
tossing a 
(biased) coin

The area under 
the ROC curve 
(AUC) is 
oftentimes 
used as 
measure of the 
quality of a 
classifier

5 Impact on the Different Types of Intrusion Detection Sys-
tems

As stated in the introduction, approaches to intrusion detection can be divided into two major
groups, policy based, and anomaly based. The previous section developed requirements regard-
ing false alarm rates, and detection rates to place on intrusion detection systems in order to make
them useful in the stated scenario.
It could be argued that the above reasoning applies mainly to policy based intrusion detec-

tion. In some cases Anomaly based detection tries not to detection intrusions per se, but rather
to differentiate between two different subjects, flagging anomalous behaviour, in the hope that
it would be indicative of e.g. a stolen user identity. However, we think the previous scenario
is useful as a description of a wide range of more “immediate,” often network based, attacks,
where we will not have had the opportunity to observe the intruder for an extended period of
time “prior” to the attack.
In order to pass sound judgment on the effectiveness of an anomaly based intrusion detec-

tion system, we also have to have a very well founded hypotheses about what constitutes “nor-
mal” behaviour for the observed system. We know of only one attempt at such an evaluation in
conjunction with the presentation of an anomaly based intrusion detection method: [LB98].
There are general results in detection and estimation theory that state that the detection and

false alarm rate are linked [VT68]. Obviously, if the detection rate is 1 i.e. saying that all events
are intrusions, we will have a false alarm rate of 1 as well, and conversely the same can be said
for the case where the rates are 0.8 Intuitively, we see that by classifying more and more events
as intrusive—in effect relaxing our requirements on what constitutes an intrusion—we will in-
crease our detection rate, but also, misclassify more of the benign activity, and hence increase our
false alarm rate. Unfortunately, to apply these results to the current situation we need to have a
firm grasp—in the form of a statistical model—of, what constitutes “normal” or “background”
traffic.
Plotting the detection rate as a function of the false alarm rate we end up with what is called

a ROC—Receiver Operating Characteristic—curve. (For a general introduction to ROC curves,
detection and estimation theory, see [VT68]). We
have already stated that the points and

are members of the ROC curve for any
intrusion detector. Furthermore between these
points the curve is convex, were it concave, we
would be better off to reverse our decision, and it
cannot contain any dips—that would in effect in-
dicate a faulty, non-optimal detector, since a ran-
domised test would then be better. See figure 2
for the ROC curve of our previous example.
We see that our ROC curve has a very sharp rise
from since we quickly will have to reach
acceptable detection rate values while still
keeping the false alarm rate at bay. It is doubtful
if even policy detection, the type of detection of-
ten thought to be the most resilient to false alarms
can reach as low values as i.e.
while still keeping the detection rate as high as
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Figure 2: Plot of as a function of
0.5–0.7 or above.
To reach such levels it is imperative that the designer of intrusion detection systems do not

introduce some policy element that has even a remote chance of triggering in the face of benign
activity—perhaps not even known at the time of making the policy—lest the system will fall
prey to too low a Bayesian detection rate. Note that this also includes changes over time, that a

8If you call everything with a large red nose a clown, you’ll spot all the clowns, but also Santa’s reindeer, Rudolph,
and vice versa.

7
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Dealing with the base-rate fallacy

• Each of you should think of two ways to reduce the impact of the 
base-rate fallacy
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Dealing with the base-rate fallacy

• Designing classifiers with high AUC helps, but to a point
• Possible approaches:
• Consider multiple independent intrusion signals
• Merge similar alerts
• Formulate a notion of classifier confidence and deal with clear-cut 

attacks automatically (only have human expert review ambiguous cases)
• Assume intrusion will happen and have safeguards in place
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In conclusion…

• The base-rate fallacy clarifies that false positives are arguably a 
more sever problem than false negatives for intrusion detection
• Design of algorithms for identifying intrusion attempts and 

malicious objects must take the problem into account
• Several palliatives, but no full solution
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