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What’s the topic of today’s lecture?

• Attack surface reduction in JavaScript programs, but more 
broadly…
• Static analysis!
• … but what is static analysis? And what does “static” mean?
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Analysis in Contrast

Static analysis – analysis that is done without running the program

Dynamic analysis – analysis that is done with running the program
Simplest example - testing



Static analysis for security

• Static analysis refers to a variety of techniques  for analyzing 
software artifacts, for various purposes
• Optimization (e.g., in compilers)
• Detecting software bugs
• Detecting vulnerabilities
• Performing software measurements
• Improving security properties

• Common characteristics: program is analyzed without executing it



“Trivial” Syntax Analysis
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Some troubling behavior of a program may 
be discoverable via simply observing 
syntactic structure

int main(int argc, const char * argv[]){
  const char * password = argv[1];
  if (password == “supersecret”){
     authenticate();
  }
}



Static analysis to detect bad practices
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Software engineering “code smells” / stats

Cyclomatic complexity
Long functions

Use of the forbidden / arcane constructs (e.g., “eval” in JavaScript)



7

STATIC Analysis – More Opportunities

Program verifier (detect “good” programs) Bug finder (detect “bad” programs)

Complete (no FNs) – all good programs 
are reported
Sound (no FPs) – all bad programs are 
unreported

Complete (no FNs) – all bad programs 
are reported
Sound (no FPs) – all good programs are 
unreported

Provide assurances about what a 
program will NEVER or ALWAYS do
• Static analysis might report EVERY program that 

(possibly) has a null-pointer dereference
• Static analysis might certify EVERY program that 

(definitely) is null-pointer deference free

“Hey! Those are the 
same thing!”
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STATIC Analysis – More Opportunities

Program verifier (detect “good” programs) Bug finder (detect “bad” programs)

Complete (no FNs) – all good programs are 
reported
Sound (no FPs) – all bad programs are 
unreported

Complete (no FNs) – all bad programs are 
reported
Sound (no FPs) – all good programs are 
unreported

For security analysis, we want to lock out “bad” programs
(even at the cost of locking out some “good” programs)
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The Good, The Bad and The Analysis

The good news about static analysis:
You can see beyond the instructions that 
are executed in an individual trace

The bad news about static analysis:
You need to construct the 
conditions/circumstances/context in 
which those instructions are executed

*p = 2

You exist in the context of all in which 
you live and what came before you



Static analysis – program representations

• Many (although not all) static analysis analysis are really graph 
algorithms – i.e., they operate on graphs!
• But… programs are not graphs?
• General idea: convert source code (or binary) to graph 

representation, run the analysis on graph



Graph representation 1 - CFG

• Control-flow graph
• Directly represents the 

execution flow of the 
program – nodes are 
instructions (or basic 
blocks), edges represent 
the order in which 
instructions are 
executed

a = 5*x
b = 6*y
c = a+b
if (a < b)
  print(”OK”)
return

a = 5*x

b = 6*y

c = a+b

if (a < b)

print(“OK”)

return



Graph representation 2 - PDG

• Program 
dependency 
graph
• Rather than order 

of execution, 
represent data 
and control 
dependencies 
between 
instructions

a = 5*x
b = 6*y
c = a+b
if (a < b)
  print(”OK”)
return

a = 5*x

5 x

b = 6*y

6 y

c = a+b

if (a < b)

print(“OK”)

return

Data dependency

Ctrl dependency



Graph (tree) representation 3 - AST

• Abstract 
syntax tree
• Represent 

source (or 
binary) code 
more or less 
directly in tree 
form

a = 5*x
b = 6*y
c = a+b
if (a < b)
  print(”OK”)
return

=

function

a *

5 x

=

b *

6 y

=

c +

a b

if

<

a b

print(“OK”)

return



Uses?

• CFG: many compiler optimizations/analyses
• PDG: some analyses/optimization, parallelization
• AST: lots of uses! Code normalization, simple static analysis, 

executing interpreted code



One more thing: call-graph analysis

• Call-graph analysis is an analysis 
of which function calls which
• Its result is a graph, with nodes 

being functions, and edges being 
caller-callee relationships
• Can be generated via static or 

dynamic analysis
• Call-graph construction via 

static analysis can be 
complicated if language allows to 
pass functions as parameters

def fun1(a):
  return a*2

def fun2(p):
  if p > 0:
    return fun2(p-1)*p
  return 1

def main():
  fun1(4)
  fun2(5)

main

fun1 fun2



Uses?

• Identifying unused functions
• Tracking data/control flow across function calls
• …



Why are we talking about this?

• The paper presents a simple application of static analysis 
techniques to the security of JavaScript programs
• A gentle introduction to applying static analysis to security!
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Abstract

JavaScript has gained traction as a programming language
that qualifies for both the client-side and the server-side logic
of applications. A new ecosystem of server-side code written
in JavaScript has been enabled by Node.js, the use of the V8
JavaScript engine and a collection of modules that provide
various core functionality. Node.js comes with its package
manager, called NPM, to handle the dependencies of modern
applications, which allow developers to build Node.js appli-
cations with hundreds of dependencies on other modules.

In this paper, we present Mininode, a static analysis tool for
Node.js applications that measures and removes unused code
and dependencies. Our tool can be integrated into the build-
ing pipeline of Node.js applications to produce applications
with significantly reduced attack surface. We analyzed 672k
Node.js applications and reported the current state of code
bloating in the server-side JavaScript ecosystem. We leverage
a vulnerability database to identify 1,660 vulnerable packages
that are loaded from 119,433 applications as dependencies.
Mininode is capable of removing 2,861 of these vulnerable
dependencies. The complex expressiveness and the dynamic
nature of the JavaScript language does not always allow us
to statically resolve the dependencies and usage of modules.
To evaluate the correctness of our reduction, we run Minin-
ode against 37k Node.js applications that have unit tests and
reduce correctly 95.4% of packages. Mininode was able to
restrict access to the built-in fs and net modules in 79.4%
and 96.2% of the reduced applications respectively.

1 Introduction

Node.js [10] is an open-source JavaScript runtime engine
typically used to build scalable network applications. The
JavaScript runtime that powers Node.js is based on Chrome’s
V8 engine. Despite Node.js’ young age, it has become
very popular among the open-source community and enter-
prises. Moreover, big companies such as Microsoft, IBM,
PayPal [22, 27, 39] are among others who use Node.js in their

products. One of the reasons for its popularity is in Node.js
architecture choice. Node.js uses a non-blocking event-based
architecture which gives an ability to developers to scale up
Node.js applications easily. Nowadays Node.js is used to
develop critical systems [49] that require security attention.

Node.js developers distribute community-developed li-
braries using an in-house built package manager system called
NPM. NPM is considered to be the largest package manager by
the number of packages [12] it hosts (over million) and growth
rate of almost 800 pkg/day [9]. Since 2014, the NPM registry
traffic has grown 23,500%, which shows its increasing pop-
ularity among developers [47]. This staggering amount of
packages hosted in NPM gives developers the power to build
apps very quickly by using already implemented functionality
by others. In this paper, we argue that overusing third-party
libraries comes with its own security risks.

The drawbacks of extensive dependence on third-party
packages are: (1) developers need to trust others on the se-
curity and maintenance of the libraries; (2) the popularity of
NPM makes it lucrative for adversarial users to distribute mali-
cious libraries using attacks such as typosquatting [20,43,44],
ownership takedown and introducing a backdoor [45, 52]; (3)
upgrade or removal of the package from NPM may break the
build pipeline of an application [46].

Our study of 1,055,131 packages shows that on average
only 6.8% of the code in the application is original code
according to source logical lines of code (LLOC) or putting
in different words 93.2% of the code in Node.js application is
developed by third-parties. One of the reasons why developers
tend to use "trivial" third-party packages, is the belief that
they are well managed and tested. Despite the belief, the
study shows that only 45.2% of "trivial" packages have tests
implemented [19].

Previous works on Node.js security mostly concentrate on
architecture choice of Node.js and, therefore, on attacks that
target the main thread of Node.js applications [23–25, 38, 42].
Others have conducted research on the reasons why develop-
ers use "trivial" dependencies [19] and security implications
of depending on NPM packages [52]; however, no research
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Reasons for discussing this paper

• …ok, it is technically not malware detection!
• But it is a great introduction to lightweight static analysis for 

security
• Meta-goal: reflect on how static analysis can assist in improving 

the security of software artifact



Goal/approach of this paper

• Goal: reduce attack surface of Node.js applications
• Approach: lightweight static analysis to identify which 

components (e.g. which functions), among those present in 
dependencies of a package, are actually used…
• … then, remove/prevent access to unused components



Why do this?

• Suppose someone manages to compromise a running Node.js 
application…
• … then, they’ll probably attempt to build an exploit
• Need capabilities (e.g., read/write files, send network requests) to do 

anything useful
• Normally, attacker can just use existing Node.js functionality, or import 

extra modules if needed

• With this approach, anything which is not required by the original 
(unexploited) code is not available to the attacker



Attack surface

• By attack surface of a system we intend all the components of 
such system that an attacker can access in an attempt to exploit 
the system
• “Reducing the attack surface” means minimizing the 

components that the attack can reach
• This is an example of application of the Principle of Least 

Privilege
• Have you ever heard of it?



Results – package dataset + functionality 
removal

Figure 3: NPM measurement experiment setup

Job statuses and reasons Packages

Succeeded packages 672,242
Failed packages 382,889
Package does not have main entry point 188,630
Non-resolvable dynamic import detected 128,533
Failed to install 26,875
Package’s main entry point is not CommonJS 20,977
Others 5,013
TOTAL 1,055,131

Table 3: NPM measurement experiment overall status

fully reduced packages for both reduction modes. From all
packages that successfully passed the validation test after
reduction, more than third has 100% test coverage and al-
most forth have coverage between 90-99.9% for both coarse
and fine-grain reductions, as shown in Table 2. This shows
that Mininode can successfully reduce the packages without
breaking the intentional behavior.

7.2 Attack Surface Reduction in NPM

Experiment Setup. The setup and stages of the measure-
ment experiment are shown in Figure 3. First, we collected
all package names from NPM. Second, we tried to install the
production version of all packages and to run reduction logic
on successfully installed ones. Finally, we analyzed the results
and measured the vulnerabilities and their reduction.

We gathered all package names from NPM using the open-
source package all-the-package-names [12] that contains the
list of all package names sorted by dependent count. The
list contained 1,055,131 package names from NPM as of 19th
September 2019.

After gathering all the package names, we tried to install
and reduce packages using the coarse-grain reduction method.
Table 3 shows that only 672,242 out of 1,055,131 were suc-
cessfully installed and reduced. Table 3 lists the most common
reasons why not all of the packages were analyzed. Top two
most common reasons are: (1) installed packages are not
Node.js application, which means they are not intended to
run on the server-side, e.g. theme’s CSS files; (2) packages
that can not be reduced with Mininode, due to non-resolvable
dynamic import. One interesting failed category is packages’
for which entry point is not CommonJS, e.g. ES6, or even not
JavaScript file, e.g. TypeScript, JSON and so on.

In the fourth step, as shown in Figure 3, we gathered a

Number

Removed fs built-in module 549,254
Removed net built-in module 623,646
Removed http built-in module 606,981
Removed https built-in module 614,030
Percentage of removed JavaScript files 79.1%
Percentage of removed LLOC 90.5%
Percentage of removed exports 90.4%
TOTAL 672,242

Table 4: NPM measurement experiment results

vulnerability database from snyk.io [16] and mapped vulnera-
bilities with packages by calculating if specific vulnerable de-
pendency is part of the dependency chain inside the package.
In addition to mapping vulnerability, we calculate if Minin-
ode removed the particular vulnerability during the reduction
process. We consider that a specific vulnerable dependency
is removed if Mininode removes all source files from it. Oth-
erwise, we say that the package still depends on vulnerable
dependency. Note that this is a conservative approach and
gives us a lower bound reduction number because certainly
Mininode may have removed a vulnerable file from vulnerable
dependency, and left only safe files.

Results. The NPM measurement experiment reduction re-
sults are shown in Table 3. As discussed earlier, only 672,242
out of 1,055,131 were successfully installed and reduced.
From all successfully installed and reduced packages, Minin-
ode restricted access to fs built-in module in 81.7% pack-
ages, and it also restricted access to network-related built-in
modules such as net, http, https in 92.8%, 90.3%, 91.3%
packages, respectively. We discussed how Mininode restricts
access to built-in modules in Section 6.1.

One question we tried to answer during the NPM measure-
ment experiment was how significant is the severity of bloated-
code in NPM packages. To answer this question, we calculated
the relationship between declared and installed dependencies
of the packages. On average, successfully analyzed packages
declared 1.9 dependencies but installed 27.3 dependencies,
which means NPM installed x14 times more dependencies than
declared. This behavior is the result of the transitive depen-
dency installation process discussed in Section 2.2. On NPM
public registry, the package’s detailed information shows the
number of declared, i.e. direct dependencies, but not the num-
ber of actually installed dependencies. As a consequence,
developers may choose packages with lower declared, but
higher installed dependencies instead of packages with higher
declared, but lower installed dependencies.

To give a more detailed insight of the bloatedness of NPM
packages, we calculated the ratio between third-party and
original code base’s logical lines of code. On average, from
all code-base, only 6.8% was original code, while 93.2% was
external code from third-party dependencies, and from all
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dependency. Note that this is a conservative approach and
gives us a lower bound reduction number because certainly
Mininode may have removed a vulnerable file from vulnerable
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Results. The NPM measurement experiment reduction re-
sults are shown in Table 3. As discussed earlier, only 672,242
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ode restricted access to fs built-in module in 81.7% pack-
ages, and it also restricted access to network-related built-in
modules such as net, http, https in 92.8%, 90.3%, 91.3%
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One question we tried to answer during the NPM measure-
ment experiment was how significant is the severity of bloated-
code in NPM packages. To answer this question, we calculated
the relationship between declared and installed dependencies
of the packages. On average, successfully analyzed packages
declared 1.9 dependencies but installed 27.3 dependencies,
which means NPM installed x14 times more dependencies than
declared. This behavior is the result of the transitive depen-
dency installation process discussed in Section 2.2. On NPM
public registry, the package’s detailed information shows the
number of declared, i.e. direct dependencies, but not the num-
ber of actually installed dependencies. As a consequence,
developers may choose packages with lower declared, but
higher installed dependencies instead of packages with higher
declared, but lower installed dependencies.

To give a more detailed insight of the bloatedness of NPM
packages, we calculated the ratio between third-party and
original code base’s logical lines of code. On average, from
all code-base, only 6.8% was original code, while 93.2% was
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Results – vulnerability removal

Category names Vulnerable packages Partially removed % Fully removed %

Prototype Pollution 91,184 5,333 5.85% 3,633 3.98%
Regex Denial of Service 42,163 3,930 9.32% 1,228 2.91%
Denial of Service 21,312 403 1.89% 370 1.74%
Uninitialized Memory Exposure 6,433 690 10.73% 592 9.20%
Arbitrary Code Execution 5,324 413 7.76% 396 7.44%
Cross-Site Scripting 5,142 665 12.93% 590 11.47%
Arbitrary Code Injection 3,451 1,715 49.70% 1649 47.78%
Remote Memory Exposure 3,323 16 0.48% 15 0.45%
Arbitrary File Overwrite 3,240 383 11.82% 381 11.76%
Information Exposure 3,088 47 1.52% 47 1.52%

Table 5: Common vulnerability categories and their reduction results. Some vulnerabilities might not be exploitable since their
code is not directly reachable and it might not be possible to chain the vulnerabilities due to additional constrains.

of the most popular bundlers is webpack [18], that supports
plugins and different file types, e.g. CSS, HTML. While the
latest version of webpack can perform dead-code elimina-
tion, which is eliminating declared but unused functions and
variables, Mininode removes exported functionalities that are
never used outside the module, in addition to dead-code elimi-
nation. Another popular bundler is rollup [15] which can also
remove unused exported functions from modules. However,
rollup works only for ES6 module system, while Mininode
was designed to work with CommonJS module system which
is the most widely used in NPM. There are open-source plugins
for both webpack and rollup tools that try to convert Com-
monJS module into ES6 module, but to our best of knowledge,
they do not try to resolve the dynamic challenges that Minin-
ode resolves (see §5 and §6). We envision that our work will
be integrated into existing JavaScript bundlers.

9 Limitations

In this section, we discuss some of our evaluation and imple-
mentation limitations. First, using a test coverage metric to
detect if Mininode breaks the original behavior can be mis-
leading. For example, in the case of dynamic code generation,
i.e. eval, test coverage may give 100% coverage even if it is
not covering all functions. However, we argue that test cov-
erage is the most appropriate mechanism that we can use to
automatically perform a large-scale evaluation.

Second, we employed the snyk.io database in our vulnera-
bility analysis measurement instead of the well-established
CVE-DB or NIST. Unfortunately, despite the high quality of
reports, both contain less number of reports related to third-
party Node.js package vulnerabilities [32].

Third, the dynamic nature of JavaScript is a well-known
challenge for static analysis. In this paper we tried to solve
some Node.js specific challenges, such as dynamic import,
and defining aliases, by using static analysis. However, there
are challenges that cannot be easily resolved with static analy-
sis. For example, one of those challenges is dynamic code gen-

eration using various JavaScript APIs, e.g. eval, Function,
setTimeOut. Another challenge is patching Node.js specific
APIs, e.g. require, as shown in Listing 8. In this case, Minin-
ode will not be able to resolve a module inside a different
folder, because it uses an unpatched version of require.

1 // patching the require
2 require = function(arg) {
3 return {mocked: true};
4 }

Listing 8: Example of patching the require()

A solution to this challenge can be to dynamically execute
the patched code in Mininode to resolve the dynamically
required module. Another approach is to forbid patching
of require function in Node.js application by creating a
constant global object require that can be accessed by all
modules. This way, the function wrapper (See Listing 1)
discussed in Section 2.1 does not need to pass require as an
argument.

10 Conclusion

In this paper, we presented a detailed evaluation of exces-
sive functionality in Node.js applications. We presented
a tool, called Mininode, that measures and effectively re-
moves unnecessary code and dependencies by statically an-
alyzing Node.js applications. We conducted an extensive
analysis of 672,242 packages listed in the NPM repository
and found 119,433 of them to have at least one vulnera-
ble module dependency. Our tool is capable of statically
removing all vulnerable dependencies from 2861, and re-
moving partially from 10,618 applications. In addition to
removing vulnerabilities, Mininode was able to restrict ac-
cess to the file system for 549,254 packages. We envi-
sion our tool to be integrated into the building process
of Node.js applications. Mininode is publicly available at
https://kapravelos.com/projects/mininode.
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Wrapping up

• Today’s paper uses lightweight static analysis to improve the 
security of Node.js application
• Idea: reduce the attack surface of said applications by removing 

unnecessary components in dependencies
• Results suggest significant reduction in exploitable vulnerabilities 

in a representative samples of applications



See you next time!


