Lecture #9: Static Analysis
for Security

UCalgary ENSF619

Elements of Software Security

Instructor: Lorenzo De Carli (lorenzo.decarli@ucalgary.ca)

Partly based on slides by Drew Davidson, University of Kansas

mailto:lorenzo.decarli@ucalgary.ca

What'’s the topic of today’s lecture?

* Attack surface reduction in JavaScript programs, but more
broadly...

e Static analysis!
* ... but what is static analysis? And what does “static” mean?

Analysis in Contrast

Static analysis — analysis that is done without running the program

Dynamic analysis — analysis that is done with running the program
Simplest example - testing

Static analysis for security

* Static analysis refers to a variety of techniques for analyzing
software artifacts, for various purposes
* Optimization (e.g., in compilers)
* Detecting software bugs
* Detecting vulnerabilities
* Performing software measurements

* Improving security properties <
* Common characteristics: program is analyzed without executing it

“Trivial” Syntax Analysis

Some troubling behavior of a program may
be discoverable via simply observing
syntactic structure

int main(int argc, const char * argv([]) {
const char * password = argv|[l];
if (password == “supersecret”) {
authenticate () ;

}

Static analysis to detect bad practices

Software engineering “code smells” / stats

Use of the forbidden / arcane constructs (e.g., “eval” in JavaScript)

Cyclomatic complexity

Long functions

STATIC Analysis — More Op

Provide assurances about what a

portunities

program will NEVER or ALWAYS do

 Static analysis might report EVERY program that

(possibly) has a null-pointer dereference

“Hey! Those are the

. S— i
Static analysis might certify EVERY program that same thmg!”

(definitely) is null-pointer deference free

Program verifier (detect “good” programs)

Complete (no FNs) — all good programs
are reported

Sound (no FPs) —all bad programs are
unreported

—

Bug finder (detect “bad” programs)

Complete (no FNs) — all bad programs
are reported

Sound (no FPs) —all good programs are
unreported

STATIC Analysis — More Opportunities

(=}
VG
e For security analysis, we want to lock out “bad” programs

$ Total $ (even at the cost of locking out some “good” programs)
Protection

HOME SECURITY
SPECIALIST

888-618-4546
856-981-6449

Program verifier (detect “good” programs) Bug finder (detect “bad” programs)
Complete (no FNs) — all good programs are { Complete (no FNs) — all bad programs are }
reported reported

Sound (no FPs) — all bad programs are Sound (no FPs) —all good programs are
unreported unreported

The Good, The Bad and The Analysis

The good news about static analysis:
You can see beyond the instructions that
are executed in an individual trace

The bad news about static analysis: R

You need to construct the You exist in the context of all in which
conditions/circumstances/context in you live and what came before you
which those instructions are executed

Static analysis — program representations

* Many (although not all) static analysis analysis are really graph
algorithms - i.e., they operate on graphs!

* But... programs are not graphs?

* General idea: convert source code (or binary) to graph
representation, run the analysis on graph

Graph representation 1 - CFG

* Control-flow graph

* Directly represents the
execution flow of the
program —nodes are
Instructions (or basic
blocks), edges represent
the order in which
Instructions are
executed

a = 5*x
b = 6*y
C = a+b

a = 5%*%x if (a < b)

print (”0K”)
* return
b = 6*y
c = a+b
if (a

< b) :
\\\\\\\‘

prlnt(“OK”)]

/

[

return

a 5*Xx

Graph representation 2 - PDG o - o'y
if (a < b)

print(”0K>)
° Program return
dependency

— LGk

graph a = 5*x Q ’
 Rather than order A

of execution, -

represent data [5 a;b/

and control |

dependencies { if (a < b) |

between Data dependency P -)

Instructions [print(“OK”) J ‘

Ctrldependency “\,
[return]

Graph (tree) representation 3 - AST

e Abstract

syntax tree
* Represent

source (or

binary) code
more or less
directly in tree

form

function]

a = 5*x

b = 6*y

C = a+b

if (a < b)
print (”0K”)

return

[Peturn]

print(“OK”)]

)

Uses?

* CFG: many compiler optimizations/analyses
* PDG: some analyses/optimization, parallelization

* AST: lots of uses! Code normalization, simple static analysis,
executing interpreted code

One more thing: call-graph analysis

def funl(a):
return a*2

* Call-graph analysis is an analysis def fun2(p):
of which function calls which it p > 6:
. . return fun2(p-1)*p
* I[tsresultis a graph, with nodes return 1
being functions, and edges being
caller-callee relationships dei miizgﬁ
un
* Can be generated via static or fun2(5)
dynamic analysis
e Call-graph construction via [main]
static analysis can be
complicated if language allows to / \.

pass functions as parameters a1 | [fun2 e

Uses?

* ldentifying unused functions
* Tracking data/control flow across function calls

Why are we talking about this?

* The paper presents a simple application of static analysis
techniques to the security of JavaScript programs

* A gentle introduction to applying static analysis to security!

Let’s talk about the paper

Mininode: Reducing the Attack Surface of Node.js Applications

Igibek Koishybayev
North Carolina State University
ikoishy@ncsu.edu

Abstract

JavaScript has gained traction as a programming language
that qualifies for both the client-side and the server-side logic
of applications. A new ecosystem of server-side code written
in JavaScript has been enabled by Node.js, the use of the V8
JavaScript engine and a collection of modules that provide
various core functionality. Node.js comes with its package
manager, called NPV, to handle the dependencies of modern
applications, which allow developers to build Node.js appli-
cations with hundreds of dependencies on other modules.

In this paper, we present Mininode, a static analysis tool for
Node.js applications that measures and removes unused code
and dependencies. Our tool can be integrated into the build-
ing pipeline of Node.js applications to produce applications
with significantly reduced attack surface. We analyzed 672k
Node.js applications and reported the current state of code
bloating in the server-side JavaScript ecosystem. We leverage
a vulnerability database to identify 1,660 vulnerable packages
that are loaded from 119,433 applications as dependencies.
Mininode is capable of removing 2,861 of these vulnerable
dependencies. The complex expressiveness and the dynamic
nature of the JavaScript language does not always allow us
to statically resolve the dependencies and usage of modules.
To evaluate the correctness of our reduction, we run Minin-
ode against 37k Node.js applications that have unit tests and
reduce correctly 95.4% of packages. Mininode was able to
restrict access to the built-in fs and net modules in 79.4%
and 96.2% of the reduced applications respectively.

Alexandros Kapravelos
North Carolina State University
akaprav@ncsu.edu

products. One of the reasons for its popularity is in Node.js
architecture choice. Node.js uses a non-blocking event-based
architecture which gives an ability to developers to scale up
Node.js applications easily. Nowadays Node.js is used to
develop critical systems [49] that require security attention.

Node.js developers distribute community-developed li-
braries using an in-house built package manager system called
NPM. NPM is considered to be the largest package manager by
the number of packages [12] it hosts (over million) and growth
rate of almost 800 pkg/day [9]. Since 2014, the NPM registry
traffic has grown 23,500%, which shows its increasing pop-
ularity among developers [47]. This staggering amount of
packages hosted in NPM gives developers the power to build
apps very quickly by using already implemented functionality
by others. In this paper, we argue that overusing third-party
libraries comes with its own security risks.

The drawbacks of extensive dependence on third-party
packages are: (1) developers need to trust others on the se-
curity and maintenance of the libraries; (2) the popularity of
NPM makes it lucrative for adversarial users to distribute mali-
cious libraries using attacks such as typosquatting [20,43,44],
ownership takedown and introducing a backdoor [45,52]; (3)
upgrade or removal of the package from NPM may break the
build pipeline of an application [46].

Our study of 1,055,131 packages shows that on average
only 6.8% of the code in the application is original code
according to source logical lines of code (LLOC) or putting
in different words 93.2% of the code in Node.js application is
developed by third-parties. One of the reasons why developers

Reasons for discussing this paper

 ...0k, itis technically not malware detection!

* Butitis a greatintroduction to lightweight static analysis for
security

* Meta-goal: reflect on how static analysis can assist in improving
the security of software artifact

Goal/approach of this paper

* Goal: reduce attack surface of Node.js applications

* Approach: lightweight static analysis to identify which
components (e.g. which functions), among those present in
dependencies of a package, are actually used...

* ...then, remove/prevent access to unused components

Why do this?

* Suppose someone manages to compromise a running Node.js
application...

* ...then, they’ll probably attempt to build an exploit

* Need capabilities (e.g., read/write files, send network requests) to do
anything useful

* Normally, attacker can just use existing Node.s functionality, or import
extra modules if needed

* With this approach, anything which is not required by the original
(unexploited) code is not available to the attacker

Attack surface

* By attack surface of a system we intend all the components of
such system that an attacker can access in an attempt to exploit
the system

* “Reducing the attack surface” means minimizing the
componhnents that the attack can reach

* This is an example of application of the Principle of Least
Privilege
* Have you ever heard of it?

Results — package dataset + functionality

removal

Job statuses and reasons Packages
Succeeded packages 672,242
Failed packages 382,889
Package does not have main entry point 188,630
Non-resolvable dynamic import detected 128,533
Failed to install 26,875
Package’s main entry point is not CommonJS 20,977
Others 5,013
TOTAL 1,055,131

Table 3: NPM measurement experiment overall status

Number
Removed fs built-in module 549,254
Removed net built-in module 623,646
Removed http built-in module 606,981
Removed https built-in module 614,030
Percentage of removed JavaScript files 79.1%
Percentage of removed LLOC 90.5%
Percentage of removed exports 90.4%
TOTAL 672,242

Table 4: NPM measurement experiment results

Results — vulnerability removal

Category names Vulnerable packages | Partially removed %0 Fully removed Yo

Prototype Pollution 91,184 5,333 | 5.85% 3,633 | 3.98%
Regex Denial of Service 42,163 3,930 9.32% 1,228 2.91%
Denial of Service 21,312 403 1.89% 370 1.74%
Uninitialized Memory Exposure 6,433 690 | 10.73% 592 | 9.20%
Arbitrary Code Execution 5,324 413 7.76% 396 7.44%
Cross-Site Scripting 5,142 665 | 12.93% 590 | 11.47%
Arbitrary Code Injection 3,451 1,715 | 49.70% 1649 | 47.78%
Remote Memory Exposure 3,323 16 | 0.48% 15| 0.45%
Arbitrary File Overwrite 3,240 383 | 11.82% 381 | 11.76%
Information Exposure 3,088 47 1.52% 47 1.52%

Table 5: Common vulnerability categories and their reduction results. Some vulnerabilities might not be exploitable since their
code is not directly reachable and it might not be possible to chain the vulnerabilities due to additional constrains.

Wrapping up

* Today’s paper uses lightweight static analysis to improve the
security of Node.js application

* |dea: reduce the attack surface of said applications by removing
unnecessary components in dependencies

* Results suggest significant reduction in exploitable vulnerabilities
In a representative samples of applications

See you next time!

