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Today’s lecture is about dynamic analysis

• Well, in part, because today’s paper proposes dynamic analysis 
informed by static analysis
• It’d be too easy otherwise

• Contrarily to static analysis, dynamic analysis monitors a 
program while it is running to perform measurements or infer 
facts



Forms of dynamic analysis

• Profiling/measurement
• Typically instrument a program to generate telemetry
• Example: measuring code coverage, tracing system calls

• Bug detection
• Observe program functioning to detect bugs
• Oftentimes performed together with instrumentation
• Example: fuzzing



Advantages of dynamic analysis

• Measures a real-world execution of a program
• It is hard to argue with its results, as it is based on events (program 

traces) that actually happened
• Contrast with static analysis, which can be imprecise in the 

presence of certain constructs
• It is typically easier to deploy than static analysis as there is 

plenty of tooling for instrumentation/controlled execution
• Performance is less of a concern (executing the program VS 

analyzing a complex model of the program)



Disadvantages of static analysis

• Impossible to generalize
• The fact that, for example, a bug was not observed in one 

execution does not mean that the program is bug-free
• A dynamic analysis algorithm is typically:
• Sound (if it detects a problem, there is a problem)
• But not complete (if it does not detect a problem, a problem may still 

exist)

• For example, the fact that a fuzzer does not trigger any bug does 
not mean that a program is bug-free



Review of a few basic concepts



Code coverage analysis

• When running tests against a program, a reasonable question is: 
how much of the code is executed by those tests?
• Why is this an important question?



Toy code coverage example

• How many lines are 
exercised by this test?
• Is this a good test suite?
• …why?

def divide(a, b, is_int=True):
  if is_int:
    if b == 0:  
      return None
    return a // b
  else:
    return a / b

def test_divide():
  assert divide(4, 0) == None



Let’s see a demo

Tests only gives information about the 
portion of the code that was covered



Fuzzing

• Fuzzing is a form of dynamic analysis dedicated to finding bugs 
(and oftentimes vulnerabilities)
• Idea: run a program with randomized inputs, until it crashes or a 

maximum time limit is exceeded
• On the face of it, it sounds like a silly idea, but it can be made very 

useful
• Fuzzing is independent from code coverage, although oftentimes 

relies on it



Fuzzing guided by code coverage

• Most (reasonably written) programs will perform sanity checks on 
inputs
• Submitting a large number of random inputs will most likely 

cause the program to reject all of them, thus causing very 
limited code coverage
• Thus, fuzzing by blindly submitting random inputs is not very 

helpful
• Code coverage can provide guidance to optimize fuzzing efforts



Fuzzing + code coverage /2

• The idea is to progressively refine (narrow down) the space of 
possible inputs, by focusing on inputs that cause code coverage 
to increase / new code paths to be explored
• For example, if a certain value for an input parameter causes the 

execution to terminate early, there is no point in fuzzing w/ that 
parameter set to that value
• … even if there are other parameters that can be varied
• Consider the previous example: if is_int = True, any of the infinite possible 

combinations of values for a, b will not uncover the bug!



Example – AFL++

• Older but popular fuzzer
• Fuzzing approach:
• Record inputs that resulted in exploring unique and/or previously 

unexplored code paths
• Prioritize picking those input those fuzzing cycle
• Apply various mutations to selected inputs (bit flips, byte substitutions, 

etc.)
• Use genetic algorithms to discover more/better test cases



Let’s talk about the paper
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Abstract
Fuzzing is a testing technique to discover unknown vul-

nerabilities in software. When applying fuzzing to libraries,
the core idea of supplying random input remains unchanged,
yet it is non-trivial to achieve good code coverage. Libraries
cannot run as standalone programs, but instead are invoked
through another application. Triggering code deep in a library
remains challenging as specific sequences of API calls are
required to build up the necessary state. Libraries are diverse
and have unique interfaces that require unique fuzzers, so far
written by a human analyst.

To address this issue, we present FuzzGen, a tool for auto-
matically synthesizing fuzzers for complex libraries in a given
environment. FuzzGen leverages a whole system analysis to
infer the library’s interface and synthesizes fuzzers specifi-
cally for that library. FuzzGen requires no human interaction
and can be applied to a wide range of libraries. Furthermore,
the generated fuzzers leverage LibFuzzer to achieve better
code coverage and expose bugs that reside deep in the library.

FuzzGen was evaluated on Debian and the Android Open
Source Project (AOSP) selecting 7 libraries to generate
fuzzers. So far, we have found 17 previously unpatched vul-
nerabilities with 6 assigned CVEs. The generated fuzzers
achieve an average of 54.94% code coverage; an improve-
ment of 6.94% when compared to manually written fuzzers,
demonstrating the effectiveness and generality of FuzzGen.

1 Introduction

Modern software distributions like Debian, Ubuntu, and the
Android Open Source Project (AOSP) are large and com-
plex ecosystems with many different software components.
Debian consists of a base system with hundreds of libraries,
system services and their configurations, and a customized
Linux kernel. Similarly, AOSP consists of the ART virtual
machine, Google’s support libraries, and several hundred third
party components including open source libraries and ven-
dor specific code. While Google has been increasing efforts

to fuzz test this code, e.g., OSS-Fuzz [35, 36], code in these
repositories does not always go through a rigorous code re-
view process. All these components in AOSP may contain
vulnerabilities and could jeopardize the security of Android
systems. Given the vast amount of code and its high com-
plexity, fuzzing is a simple yet effective way of uncovering
unknown vulnerabilities [20, 27]. Discovering and fixing new
vulnerabilities is a crucial factor in improving the overall
security and reliability of Android.

Automated generational grey-box fuzzing, e.g., based on
AFL [44] or any of the more recent advances over AFL
such as AFLfast [6], AFLGo [5], collAFL [19], Driller [37],
VUzzer [31], T-Fuzz [28], QSYM [42], or Angora [8] are
highly effective at finding bugs in programs by mutating in-
puts based on execution feedback and new code coverage [24].
Programs implicitly generate legal complex program state as
fuzzed input covers different program paths. Illegal paths
quickly result in an error state that is either gracefully handled
by the program or results in a true crash. Code coverage is
therefore an efficient indication of fuzzed program state.

While such greybox-fuzzing techniques achieve great re-
sults regarding code coverage and number of discovered
crashes in programs, their effectiveness does not transfer to
fuzzing libraries. Libraries expose an API without depen-
dency information between individual functions. Functions
must be called in the right sequence with the right arguments
to build complex state that is shared between calls. These im-
plicit dependencies between library calls are often mentioned
in documentation but are generally not formally specified.
Calling random exported functions with random arguments is
unlikely to result in an efficient fuzzing campaign. For exam-
ple, libmpeg2 requires an allocated context that contains the
current encoder/decoder configuration and buffer information.
This context is passed to each subsequent library function.
Random fuzzing input is unlikely to create this context and
correctly pass it to later functions. Quite the contrary, it will
generate a large number of false positive crashes when library
dependencies are not enforced, e.g., the configuration func-
tion may set the length of the allocated decode buffer in the

USENIX Association 29th USENIX Security Symposium    2271



Paper goals/methodology

• Enable fuzzing of libraries (not just executables)
• Important but overlooked target!

• Methodology: use static analysis to extract information about 
the libraries, use this information to build fuzzing harness for 
library



Why focus on libraries

• Traditional fuzzers are fairly limited in scope
• Fuzzing is achieved by repeatedly executing a program while 

varying either:
• Standard input (input stream to the program)
• Input files

• Clearly does not work with libraries!



The problem with libraries

• Libraries differ from executables!
• Most importantly:
• A library does not have a single entry 

point (unlike “main” or similar)
• A library typically includes multiple 

functions that must be called in a 
specific order

• Design of a whole system analysis that infers valid
API interactions for a given library based on exist-
ing programs and libraries that use the target library—
abstracting the information into an Abstract API Depen-
dence Graph (A2DG);

• Based on the A2DG, FuzzGen creates libFuzzer stubs
that construct complex program state to expose vulnera-
bilities in deep library functions was developed—fuzzers
are generated without human interaction;

• Evaluation of the prototype on AOSP and Debian demon-
strates the effectiveness and the generality of the Fuz-
zGen technique. Generating fuzzers for 7 libraries,
FuzzGen discovered 17 bugs. The generated fuzzers
achieve 54.94% code coverage on average, compared to
48.00% that fuzzer stubs—written manually by experts—
achieve.

A note on disclosure: All bugs have been responsibly
disclosed, and fixes have been pushed to the correspond-
ing projects. The source code of our prototype is avail-
able at https://github.com/HexHive/FuzzGen, allowing
other researchers to reproduce our results and to extend our
automatic fuzzer generation technique.

2 The case for API-aware fuzzer construction

Writing an effective API-aware fuzzer requires an in-depth
understanding of the target library and pinpointing the inter-
esting components for fuzzing. Consider the libmpeg2 library,
which provides encoding and decoding functions for MPEG2
video streams. The library contains several functions to build
up a per-stream context that other functions take as a param-
eter. This approach of encapsulating state is common in li-
braries. Figure 2 shows a code snippet for properly initializing
an MPEG2 decoding object. A fully initialized decoder object
is required to decode a video frame. Without this decoder
object, frames cannot be decoded.

While a target-agnostic fuzzer (invoking all functions with
random arguments in a random order) may find simple issues,
deep bugs will likely be missed due to their dependence on
complex state. Naive fuzzers are also prone to false positives
due to lack of API awareness. Consider a fuzzer that targets
frame decoding. If the context does not contain a valid length
with a pointer to an allocated decode buffer then the fuzzer
will trigger a false positive crash when the decoded frame is
written to unallocated memory. However, this is not a bug in
the decode function. It is simply improper initialization. Or-
thogonally, by supplying random values to certain arguments,
such as function pointers or sizes, a fuzzer may trigger mem-
ory errors. These crashes do not correspond to actual bugs or
vulnerabilities as such an illegal context cannot be generated
through any possible execution of a benign use of the library.
Inferring API dependencies, such as generating a common

1 /* 1. Obtain available number of memory records */
2 iv_num_mem_rec_ip_t num_mr_ip = { ... };
3 iv_num_mem_rec_op_t num_mr_op = { ... };
4 impeg2d_api_function(NULL, &num_mr_ip, &num_mr_op);
5
6 /* 2. Allocate memory & fill memory records */
7 nmemrecs = num_mr_op.u4_num_mem_rec;
8 memrec = malloc(nmemrecs * sizeof(iv_mem_rec_t));
9

10 for (i=0; i<nmemrecs; ++i)
11 memrec[i].u4_size = sizeof(iv_mem_rec_t);
12
13 impeg2d_fill_mem_rec_ip_t fill_mr_ip = { ... };
14 impeg2d_fill_mem_rec_op_t fill_mr_op = { ... };
15 impeg2d_api_function(NULL, &fill_mr_ip, &fill_mr_op);
16
17 nmemrecs = fill_mr_op.s_ivd_fill_mem_rec_op_t
18 .u4_num_mem_rec_filled;
19
20 for (i=0; i<nmemrecs; ++i)
21 memrec[i].pv_base = memalign(memrec[i].u4_mem_alignment,
22 memrec[i].u4_mem_size);
23
24 /* 3. Initalize decoder object */
25 iv_obj_t *iv_obj = memrec[0].pv_base;
26 iv_obj->pv_fxns = impeg2d_api_function;
27 iv_obj->u4_size = sizeof(iv_obj_t);
28
29 impeg2d_init_ip_t init_ip = { ... };
30 impeg2d_init_op_t init_op = { ... };
31 impeg2d_api_function(iv_obj, &init_ip, &init_op);
32
33 /* 4. Decoder is ready to decode headers/frames */

Figure 2: Source code that initializes an MPEG2 decoder
object. Low level details such as struct field initializations,
variable declarations, or casts are omitted for brevity.

context, initializing the necessary buffers, and preparing it for
usage, is challenging because dependencies are not encoded
as part of the library specification.

However, by observing a module that utilizes libmpeg2
(i.e., a library consumer), we could observe the dependencies
between the API calls and infer the correct order of context
initialization calls. Such dependencies come in the form of
(a) control flow dependencies and (b) shared arguments (vari-
ables that are passed as arguments in more than one API call).
Furthermore, arguments that hold the state of the library (e.g.,
the context), should not be fuzzed, but instead they should
be passed, without intermediate modification, from one call
to the next. Note that this type of information is usually not
formally specified. The libmpeg2 library exposes a single
API call, impeg2d_api_function, that dispatches to a large
set of internal API functions. Yet, this state machine of API
dependencies is not made explicit in the code.

3 Background and Related Work

Early fuzzers focused on generating random parameters to
test resilience of code against illegal inputs. Different forms
of fuzzers exist depending on how they generate input, handle
crashes, or process information. Generational fuzzers, e.g.,
PROTOS [32], SPIKE [1], or PEACH [18], generate inputs
based on a format specification, while mutational fuzzers,
e.g., AFL [44], honggfuzz [39], or zzuf [22], synthesize inputs
through random mutations on existing inputs, according to
some criterion (e.g., code coverage). Typically, increasing
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General technical approach

Extract 
information about 
how the library is 

used by other 
libraries/ 
programs

Build a model of of 
typical use (order 

of library 
calls/parameters)

Generate a fuzzing 
harness to fuzz 

the library 
according to 

inferred 
specifications



Analysis of uses

• General idea: scan a system (e.g. a 
Linux installation) for programs & 
libraries using the target library
• For each library user, use static 

analysis to build a graph depicting 
how the library is used
• Graph captures temporal 

relationships (interpreted as 
control dependencies) between 
calls, parameters values etc.
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Figure 3: The FuzzGen workflow. FuzzGen starts with a CFG (a) and extracts the corresponding A2DG (b) (see (c) for the graph
of another module). The two A2DG graphs are then merged (d). The merged A2DG is then used to create fuzzers based on
function orders (e). These graphs are autogenerated by FuzzGen.

into the caller’s A2DG. The pass integrates the calls into the
root function. If the same non-API function is invoked mul-
tiple times, it is marked as a repeating function in the graph,
avoiding an explosion of the graph’s complexity. The algo-
rithm to create the A2DG is shown in Algorithm 1. A call
stack (CS) prevents unbounded loops when analyzing recur-
sive functions. Two maps (Mentry and Mexit ) link basic blocks
to individual nodes in the A2DG, allowing the algorithm to
locate the A2DG node a basic block corresponds to. Note that
the only case where Mentry and Mexit are different is when a
basic block contains more that one call to an API function.

After A2DG construction, each node represents a single
API call. The A2DG allows FuzzGen to isolate the flows
between API calls and expose their control dependencies.
Basic A2DG construction is a static analysis which results in
some over-approximation during CFG construction due to
indirect function calls. FuzzGen uses an LLVM Link Time
Optimization (LTO) analysis pass to extract this information.

Coalescing A2DG graphs. After generating A2DGs for
each consumer, FuzzGen merges them into a single A2DG:

Select any two A2DG graphs and try to coalesce them
together. Repeat this process until there are no two A2DG
that can be coalesced together.

To coalesce two A2DGs they must have at least one node
in common. Two nodes are considered “common” if they
invoke the same API call with the same arguments of the
same type. FuzzGen starts from the root and selects the first

common node. FuzzGen then removes the node from one
graph and migrates all children, along with their sub trees,
to the other A2DG, continuously merging common nodes. A
common node is a requirement, as placing the nodes from the
second A2DG at random positions will likely result in illegal
target states. If there are no common nodes, FuzzGen keeps
the A2DGs separate, synthesizing two different fuzzers.

Figure 3 (d) shows an example of the A2DG produced after
coalescing the two A2DGs in Figure 3 (b) and (c). The nodes
with function opus_decoder_destroy are coalesced (as the
argument is a handle, which has the same type), but other
nodes like opus_decoder_ctl are not coalesced as the argu-
ments are different. It is possible for the coalesced A2DG to
result in an inconsistent state, which results in an API misuse.
That is, the coalesced A2DG may contain a path (i.e., a subset
of API calls) that violates API usage and therefore causes
problems to execution state of the library. In Appendix A, we
explain this problem in detail.

Our experiments showed that it may be feasible to coalesce
two A2DGs without common nodes by backward-slicing and
locating function usages that invoke the API call. We leave
this along with other heuristics to coalesce A2DGs into a
single one, for future work.

Precision of A2DG construction. The current FuzzGen
A2DG construction has two sources of imprecision: static
analysis and merging. First, the static analysis results in an
over-approximation of paths. This may result in false posi-
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From graphs to models

• Rather than use extracted graphs as models for fuzzing, the 
approach attempt to merge multiple graphs into one to build 
more general models of graph usage
• General idea: find identical nodes in different graphs, copy all 

subtrees rooted in such nodes from one graph into the other
• When possible, merge identical nodes



Example (from paper)
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After A2DG construction, each node represents a single
API call. The A2DG allows FuzzGen to isolate the flows
between API calls and expose their control dependencies.
Basic A2DG construction is a static analysis which results in
some over-approximation during CFG construction due to
indirect function calls. FuzzGen uses an LLVM Link Time
Optimization (LTO) analysis pass to extract this information.

Coalescing A2DG graphs. After generating A2DGs for
each consumer, FuzzGen merges them into a single A2DG:

Select any two A2DG graphs and try to coalesce them
together. Repeat this process until there are no two A2DG
that can be coalesced together.

To coalesce two A2DGs they must have at least one node
in common. Two nodes are considered “common” if they
invoke the same API call with the same arguments of the
same type. FuzzGen starts from the root and selects the first

common node. FuzzGen then removes the node from one
graph and migrates all children, along with their sub trees,
to the other A2DG, continuously merging common nodes. A
common node is a requirement, as placing the nodes from the
second A2DG at random positions will likely result in illegal
target states. If there are no common nodes, FuzzGen keeps
the A2DGs separate, synthesizing two different fuzzers.

Figure 3 (d) shows an example of the A2DG produced after
coalescing the two A2DGs in Figure 3 (b) and (c). The nodes
with function opus_decoder_destroy are coalesced (as the
argument is a handle, which has the same type), but other
nodes like opus_decoder_ctl are not coalesced as the argu-
ments are different. It is possible for the coalesced A2DG to
result in an inconsistent state, which results in an API misuse.
That is, the coalesced A2DG may contain a path (i.e., a subset
of API calls) that violates API usage and therefore causes
problems to execution state of the library. In Appendix A, we
explain this problem in detail.

Our experiments showed that it may be feasible to coalesce
two A2DGs without common nodes by backward-slicing and
locating function usages that invoke the API call. We leave
this along with other heuristics to coalesce A2DGs into a
single one, for future work.

Precision of A2DG construction. The current FuzzGen
A2DG construction has two sources of imprecision: static
analysis and merging. First, the static analysis results in an
over-approximation of paths. This may result in false posi-
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What happens next?

• The graph is encoded in a fuzzing stub
• The fuzzing stub is a program which incorporates the graph-

based model built previously
• Different inputs will result in different paths through the graph 

being traversed (and thus, hopefully, different modes of use for the 
library)
• The fuzzer does not know anything about all of this, but can 

observed that manipulating the input causes different execution 
paths through the library to be explored



Results – Code Coverage

Why is code coverage a good metric to evaluate a fuzzer?



More on fuzzing

• Fuzzing remains a fairly active area of research
• While fuzzing it isn’t a magic solution to hidden 

vulnerabilities/bugs, it is better than nothing and it is:
• Simple to implement
• Simple to run (e.g. in CI/CD pipelines)

• Other areas of research:
• Coming up with better fuzzing strategies (is code coverage the best 

metric?)
• Fuzzing programs which receive more complex inputs (e.g., server 

applications receiving input over the network)



See you next time!


