Lecture #10: Dynamic
Analysis for Security

UCalgary ENSF619

Elements of Software Security

Instructor: Lorenzo De Carli (lorenzo.decarli@ucalgary.ca)

Partly based on slides by Drew Davidson, University of Kansas, and

"FuzzGen: Automatic Fuzzer Generation”, Ispoglou et al., USENIX Sec. 2020

mailto:lorenzo.decarli@ucalgary.ca

Today’s lecture is about dynamic analysis

* Well, in part, because today’s paper proposes dynamic analysis
Informed by static analysis

* |t’d be too easy otherwise

* Contrarily to static analysis, dynamic analysis monitors a
program while it is running to perform measurements or infer
facts

Forms of dynamic analysis

* Profiling/measurement
* Typically instrument a program to generate telemetry
* Example: measuring code coverage, tracing system calls

* Bug detection
* Observe program functioning to detect bugs
* Oftentimes performed together with instrumentation
* Example: fuzzing

Advantages of dynamic analysis

* Measures a real-world execution of a program

* Itis hard to argue with its results, as it is based on events (program
traces) that actually happened

* Contrast with static analysis, which can be imprecise in the
presence of certain constructs

* [tis typically easier to deploy than static analysis as there is
plenty of tooling for instrumentation/controlled execution

* Performance is less of a concern (executing the program VS
analyzing a complex model of the program)

Disadvantages of static analysis

* Impossible to generalize

* The fact that, for example, a bug was not observed in one
execution does not mean that the program is bug-free

* A dynamic analysis algorithm is typically:
 Sound (if it detects a problem, there is a problem)
* But not complete (if it does not detect a problem, a problem may still
exist)
* For example, the fact that a fuzzer does not trigger any bug does
not mean that a program is bug-free

Review of a few basic concepts

Code coverage analysis

* When running tests against a program, a reasonable question is:
how much of the code is executed by those tests?

* Why is this an important question?

Toy code coverage example

def divide(a, b, is_int=True): .
if is_int: * How many llngs are
if b == 0: exercised by this test?
return None
elgg?”” a// b * |s this a good test suite?

return a / b ¢ ..why?

def test _divide():
assert divide(4, @) == None

Let’s see a demo

passed
enst619@enst619: $ pytest ——cov=mydivide

test session starts ==
platform linux —— Python 3.12.3, pytest-7.4.4, pluggy-1.4.0
rootdir: /home/ensf619/class/ensf619w25/lecturel®
plugins: cov-4.1.0
collected 1 item

test_divide.py

coverage: platform linux, python 3.12.3-final-0
Stmts Miss Cover

Tests only gives information about the
portion of the code that was covered

Fuzzing

* Fuzzing is a form of dynamic analysis dedicated to finding bugs
(and oftentimes vulnerabilities)

* Ildea: run a program with randomized inputs, until it crashes or a
maximum time limit is exceeded

* On the face of it, it sounds like a silly idea, but it can be made very
useful

* Fuzzing is independent from code coverage, although oftentimes
relieson it

Fuzzing guided by code coverage

* Most (reasonably written) programs will perform sanity checks on
inputs

* Submitting a large number of random inputs will most likely
cause the program to reject all of them, thus causing very

limited code coverage

* Thus, fuzzing by blindly submitting random inputs is not very
helpful

* Code coverage can provide guidance to optimize fuzzing efforts

Fuzzing + code coverage /2

* The idea is to progressively refine (narrow down) the space of
possible inputs, by focusing on inputs that cause code coverage
toincrease / new code paths to be explored

* For example, if a certain value for an input parameter causes the
execution to terminate early, there is no point in fuzzing w/ that
parameter set to that value

* ...even if there are other parameters that can be varied

* Consider the previous example: if is_int = True, any of the infinite possible
combinations of values for a, b will not uncover the bug!

Example — AFL++

* Older but popular fuzzer

* Fuzzing approach:

* Record inputs that resulted in exploring unique and/or previously
unexplored code paths

* Prioritize picking those input those fuzzing cycle

* Apply various mutations to selected inputs (bit flips, byte substitutions,
etc.)

* Use genetic algorithms to discover more/better test cases

Let’s talk about the paper

FuzzGen: Automatic Fuzzer Generation

Daniel Austin
Google Inc.

Kyriakos K. Ispoglou
Google Inc.

Abstract

Fuzzing is a testing technique to discover unknown vul-
nerabilities in software. When applying fuzzing to libraries,
the core idea of supplying random input remains unchanged,
yet it is non-trivial to achieve good code coverage. Libraries
cannot run as standalone programs, but instead are invoked
through another application. Triggering code deep in a library
remains challenging as specific sequences of API calls are
required to build up the necessary state. Libraries are diverse
and have unique interfaces that require unique fuzzers, so far
written by a human analyst.

To address this issue, we present FuzzGen, a tool for auto-
matically synthesizing fuzzers for complex libraries in a given
environment. FuzzGen leverages a whole system analysis to
infer the library’s interface and synthesizes fuzzers specifi-
cally for that library. FuzzGen requires no human interaction
and can be applied to a wide range of libraries. Furthermore,
the generated fuzzers leverage LibFuzzer to achieve better
code coverage and expose bugs that reside deep in the library.

FuzzGen was evaluated on Debian and the Android Open
Source Project (AOSP) selecting 7 libraries to generate
fuzzers. So far, we have found 17 previously unpatched vul-
nerabilities with 6 assigned CVEs. The generated fuzzers
achieve an average of 54.94% code coverage; an improve-
ment of 6.94% when compared to manually written fuzzers,
demonstrating the effectiveness and generality of FuzzGen.

Vishwath Mohan
Google Inc.

Mathias Payer
EPFL

to fuzz test this code, e.g., OSS-Fuzz [35,36], code in these
repositories does not always go through a rigorous code re-
view process. All these components in AOSP may contain
vulnerabilities and could jeopardize the security of Android
systems. Given the vast amount of code and its high com-
plexity, fuzzing is a simple yet effective way of uncovering
unknown vulnerabilities [20, 27]. Discovering and fixing new
vulnerabilities is a crucial factor in improving the overall
security and reliability of Android.

Automated generational grey-box fuzzing, e.g., based on
AFL [44] or any of the more recent advances over AFL
such as AFLfast [6], AFLGo [5], collAFL [19], Driller [37],
VUzzer [31], T-Fuzz [28], QSYM [42], or Angora [8] are
highly effective at finding bugs in programs by mutating in-
puts based on execution feedback and new code coverage [24].
Programs implicitly generate legal complex program state as
fuzzed input covers different program paths. Illegal paths
quickly result in an error state that is either gracefully handled
by the program or results in a true crash. Code coverage is
therefore an efficient indication of fuzzed program state.

While such greybox-fuzzing techniques achieve great re-
sults regarding code coverage and number of discovered
crashes in programs, their effectiveness does not transfer to
fuzzing libraries. Libraries expose an API without depen-
dency information between individual functions. Functions
must be called in the right sequence with the right arguments
to build complex state that is shared between calls. These im-

Paper goals/methodology

* Enable fuzzing of libraries (not just executables)
* Important but overlooked target!

* Methodology: use static analysis to extract information about
the libraries, use this information to build fuzzing harness for
library

Why focus on libraries

* Traditional fuzzers are fairly limited in scope

* Fuzzing is achieved by repeatedly executing a program while
varying either:
* Standard input (input stream to the program)
* Inputfiles

* Clearly does not work with libraries!

The problem with libraries

/* 1. Obtain available number of memory records x/
iv_num_mem_rec_ip_t num mr_ip = { ... };
. . . iv_num_mem_rec_op_t num_mr_op = { }i
() LI b ra rl eS d Iffe r fro m exec uta b leS ! impeg2d_api_function (NULL, &num_mr_ip, énum_mr_op) ;

/* 2. Allocate memory & fill memory records #*/
nmemrecs num_mr_op.ud4_num_mem_rec;

memrec malloc (nmemrecs * sizeof (iv_mem_rec_t));

O 00 N N AW =

* Most importantly:
10 for (i=0; i<nmemrecs; ++1)

* Alibrary does not have a single entry . renrec(i).ui_size = sizeof (iv_nem_rec_t);
point (unllke “main” or Slmlla r) 13 impeg2d_fill_mem rec_ip_t fill mr_ip = } {,

14 impeg2d_fill mem rec_op_t fill_mr_op Y
15 impeg2d_api_function (NULL, &fill mr_ip, &fill_mr_op);

* Alibrary typically includes multiple 1

17 nmemrecs = fill mr_op.s_ivd_fill mem rec_op_t

functions that must be called in a 1 -ud_num_men_rec_filled;

o geo 20 for (i=0; i<nmemrecs; ++1i)
SpeCIfIC order 21 memrec[i].pv_base = memalign (memrec[i].u4_mem_alignment,

22 memrec[i].ud_mem_size);

u /+ 3. Initalize decoder object =/
25 iv_obj_t *iv_obj memrec[0] .pv_base;
26 1v_obj->pv_fxns impeg2d_api_function;
27 iv_obj->u4d_size sizeof (iv_obj_t);

29 impeg2d_init_ip_t init_ip { ...}
30 impeg2d_init_op_t init_op { ...}
31 impeg2d_api_function(iv_obj, &init_ip, &init_op);

33 /4 4. Decoder 1is ready to decode headers/frames #*/

General technical approach

Extract
information about Build a model of of
how the library is typical use (order

Generate a fuzzing
harness to fuzz
the library

used by other of library
libraries/ calls/parameters)
programs

according to
inferred
specifications

Analysis of uses

* General idea: scan a system (e.g. a

opus_packet_get_bandwidth

_inux installation) for programs & ¥
ibraries using the target library °p“3—"“ket—gjt—”b—°“a””e's
* For each library user, use static opus_decoder_create
analysis to build a graph depicting pdd‘ﬁ
how the library is used 74
opus_decode
* Graph captures temporal :
relationships (interpreted as \pid »

control dependencies) between
calls, parameters values etc.

opus_decoder_destroy

(b)

From graphs to models

* Rather than use extracted graphs as models for fuzzing, the
approach attempt to merge multiple graphs into one to build
more general models of graph usage

* General idea: find identical nodes in different graphs, copy all
subtrees rooted in such nodes from one graph into the other

* When possible, merge identical nodes

xample (from paper

opus_packet_get_bandwidth

v

opus_packet_get_nb_channels

v

opus_decoder_create

e

opus_decoder_ctl

opus_decode

opus_decode D

opus_decoder_destroy

(b)

opus_get_version_string ‘

o S

opus_decoder_create

opus_decoder_destroy ‘

v

opus_get_version_string ‘

opus_get_version_string ‘

()

opus_packet_get_bandwidth

v
opus_packet_get_nb_channels opus_get_version_string
i v

opus_decoder_create

opus_get_version_string

/

opus_decoder_ctl

2.

opus_decode

S

opus_decode

opus_decode D

A

opus_decoder_destroy

v

opus_get_version_string

(d)

#1: opus_packet_get_bandwidth, opus_get_version_string
#2: opus_packet_get_nb_channels, opus_get_version_string
#3: opus_decoder_create
#4: opus_decoder_ctl, opus_decoder_decode
#5: opus_decoder_decode
#6: opus_decoder_decode
#7: opus_decoder_destory
#8: opus_get_version_string

What happens next?

* The graph is encoded in a fuzzing stub

* The fuzzing stub is a program which incorporates the graph-
based model built previously

* Different inputs will result in different paths through the graph

being traversed (and thus, hopefully, different modes of use for the
library)

* The fuzzer does not know anything about all of this, but can

observed that manipulating the input causes different execution
paths through the library to be explored

Results — Code Coverage

(a) libheve (b) libave (c) ibmpeg2

L1

————

—

-—l S e
A

Edge Coverage %)
-
-4
[}
o Coverage ')

~
-
c4

o] : 3 : |
o LU I &y S 12 J6y 2O Qe it et 8 L L6 JOrwe 24y Oy Inr v v Al 8w 10w L6 0w Qawm
v 1 s Tiree #0 hoursd Tiese O Sewrs!
{d) libopus (e) ibgsm (£) libvpx
50
3 @
S - —
- 40] rr— - T S| pm—— - —
s i —— 7 == e 4
e = - — < a0 < { _,Jf
84 Bas |
20 3 -
- < -
[@ A0 . e ——
J 20 | o v J
: 1 g Ba |
- - 20 -
it o, l
19 '
—
o } ot A — i
Ohe I 3tw Jbr 4wy Bar 12%r 10k 200 24Nr Oty Lhr 3wy 35r 4y O 129r L0hr 20N 24N Otr Iar I S 4 Oy 120w L8k 200w 240¢
Tire |0 hoursy Tiree in hours Time On Scurs)
— Manual Fuzzer Average w Manual Fuzzer Best Single Run - FuzzGen Fuzzer Average — FurGen Fuzzer Best Single Run

Figure 5: Code coverage (%) over time for each library. Blue line shows the average edge coverage over time for manual fuzzers
and orange line shows the edge coverage for the best single run (among the 5) for manual fuzzers. Similarly, the green line shows
the average edge coverage for FuzzGen fuzzers, and the red line the edge coverage from best single run for FuzzGen fuzzers.

Why is code coverage a good metric to evaluate a fuzzer?

More on fuzzing

* Fuzzing remains a fairly active area of research

* While fuzzing it isn’t a magic solution to hidden
vulnerabilities/bugs, it is better than nothing and it is:

 Simple to implement
 Simple torun (e.g. in CI/CD pipelines)

* Other areas of research:
 Coming up with better fuzzing strategies (is code coverage the best
metric?)
* Fuzzing programs which receive more complex inputs (e.g., server
applications receiving input over the network)

See you next time!

