Lecture #11: Adversarial
Attacks #1

UCalgary ENSF619

Elements of Software Security

Instructor: Lorenzo De Carli (lorenzo.decarli@ucalgary.ca)

mailto:lorenzo.decarli@ucalgary.ca

Scenario of interest

Server-side script
filtering: a gateway is ‘
placed between a Benign script

JavaScript source and Webcaroms / -
the user. The gateway ebserver (2) User browser (3)

identifies malicious \ v
scripts that are not part o ‘
of the application and Malicious script X

sanitizes the pages by Gateway (1)
removing them/

Server-side script filtering

* Various approaches (I’'ll talk about two), but generally works by:
1. Learning a model of how benign scripts served from a web application

should look like

2. Analyzing each script served to the client before it is transmitted - if
the classifier decides the script is malicious, it blocks the transmission

* Script model: based on syntactic features of the code extracted
from its abstract syntax tree

Abstract Syntax Tree (AST)

int max (int x, int y) { Source code
int max;

if (x > y) {

max = Xy
} else {
max = y;

}

e Computers can’t execute raw sovaen o
source code C

e Source code must be translated to ;
= | =]

Lx JLy | [max J[x] [meax J[y |

Machine code
0000000000400487 <max>:

400487: 55 push %rbp

e Fulltranslation processis called

%rsp,%rbp

some form of machine code

e ASTs are an intermediate C

representation during translation

40048b: 89 7d ec mov %edi,-

. . 0x14(%rbp)
compilation

0x18(%rbp)

400491: 8b45ec mov -
0x14(%rbp),%eax

400494: 3b45e8 cmp -
0x18(%rbp),%eax

400497: 7e 08 jle 4004a1

<max+0x1a>

Abstract Syntax Tree (AST) - |l

o ASTs “fingerprint” the program at a desirable granularity:
o Provides high-level program behavior encoding
o Abstracts away unnecessary details (e.g., comments,
formatting)
e Similar code lead to similar ASTs

General defense workflow

Example
s of

maliciou
S scripts

Set of Model Model

scripts generatio used to
served to n filter

clients procedure scripts

Input: URL Website
of target web scraping
application procedure

Typically impossible to
get an exhaustive set of
script—goalis to geta
representative one

Example

1: CSPAutoGen

CSPAutoGen: Black-box Enforcement of Content Security
Policy upon Real-world Websites

Xiang Pan' Yinzhi Cao* Shuangping Liu!

Yu Zhou' Yan Chen* Tingzhe Zhou?

"Northwestern University, lllinois, USA
2L ehigh University, Pennsylvania, USA
3Zhejiang University, Zhejiang, China
{xiangpan2011, shuangping-liu, yuzhou2016}@u.northwestern.edu
{yinzhi.cao, tiz214}@lehigh.edu ychen@northwestern.edu

ABSTRACT

Content security policy (CSP)—which has been standardized by
‘W3C and adopted by all major commercial browsers—is one of the
most promising approaches for defending against cross-site script-
ing (XSS) attacks. Although client-side adoption of CSP is suc-
cessful, server-side adoption is far behind the client side: according
to a large-scale survey, less than 0.002% of Alexa Top 1M websites
enabled CSP.

To facilitate the adoption of CSP, we propose CSPAutoGen to
enable CSP in real-time, without server modifications, and being
compatible with real-world websites. Specifically, CSPAutoGen
trains so-called templates for each domain, generates CSPs based
on the templates, rewrites incoming webpages on the fly to apply
those generated CSPs, and then serves those rewritten webpages
to client browsers. CSPAutoGen is designed to automatically en-
force the most secure and strict version of CSP without enabling
“unsafe-inline” and “unsafe-eval”, i.e., CSPAutoGen can handle all
the inline and dynamic scripts.

We have implemented a prototype of CSPAutoGen, and our eval-
uation shows that CSPAutoGen can correctly render all the Alexa
Top 50 websites. Moreover, we conduct extensive case studies on
five popular websites, indicating that CSPAutoGen can preserve the
behind-the-login functionalities, such as sending emails and post-
ing comments. Our security analysis shows that CSPAutoGen is
able to defend against all the tested real-world XSS attacks.

1. INTRODUCTION

Cross-site scripting (XSS) vulnerabilities—though being there
for more than ten years—are still one of the most commonly found
web application vulnerabilities in the wild. Towards this end, re-
searchers have proposed numerous defense mechanisms [12,14,17,
21,30, 32,40, 41] targeting various categories of XSS vulnerabili-
ties. Among these defenses, one widely-adopted approach is called
Content Security Policy (CSP) [41], which has been standardized
by W3C [1] and adopted by all major commercial browsers, such
as Google Chrome, Internet Explorer, Safari, and Firefox.

Though client-side adoption has been successful, server-side adop-
tion of CSP proves more worrisome: according to an Internet-scale
survey [45] of 1M websites, at the time of the study, only 2% of top
100 Alexa websites enabled CSP, and 0.00086% of 900,000 least
popular sites did so. Such low adoption rate of CSP in modern web-
sites is because CSP! requires server modifications. That is, all the
inline JavaScript and eval statements need to be removed from a
website without breaking its intended functionality, which brings
extensive overhead for website developers or administrators.

To facilitate server deployment, in related work, deDacota [12]
and AutoCSP [14] analyze server-side code using program analy-
sis, infer CSPs, and modify those code to enable the inferred CSPs.
Another related work, autoCSP> [17], infers CSPs based on vio-
lation reports and enforces the inferred CSPs later on. However,
deDacota and AutoCSP—due to their white-box property—require
server modification. Additionally, both approaches are specific to
websites written in certain web languages. Another approach, au-
toCSP, does not support inline scripts with runtime information and
dynamic scripts, and thus websites with those scripts cannot work
properly. According to our manual analysis, 88% of Alexa Top 50
websites contain such script usages.

In this paper, we propose CSPAutoGen, a real-time, black-box
enforcement of CSP without any server modifications and being
compatible with real-world websites. The key insight is that al-
though web scripts may appear in different formats or change in
runtime, they are generated from uniform templates. Therefore,
CSPAutoGen can infer the templates behind web scripts and de-
couple web contents in a script from the script’s inherent structure.

Specifically, CSPAutoGen first groups scripts in webpages un-
der a domain, and infers script templates, defined as training phase.
Next, in the so-called rewriting phase, CSPAutoGen generates CSPs
based on the webpage and templates, and then modifies webpages
on the fly—which could be at a server gateway, an enterprise gate-
way or a client browser—to insert the generated CSPs and apply
them at client browsers. Lastly, a client-side library added in the
rewriting phase will detect additional scripts generated at client side
during runtime and execute these scripts that match the templates.
Below we discuss two important mechanisms used in CSPAutoGen:

CSPAutoGen — Overview

* Goal: prevent unknown/malicious code to be served by a given
web application

* Approach:
1. Intercept web pages before they reach the client; match JavaScripts
against templates

2. Copy all matching JavaScripts to a trusted domain and rewrite HTML
page to include them

3. Add a CSP to the page only allowing to run JavaScripts from trusted
domains

CSPAutoGen - Templates

* Before deployment, CSPAutoGen undergoes a training phase
* Website to protect is scraped to determine all benign snippets of
JavaScript code

* The output of the training phase is a set of templates describing
all possible forms that legitimate JavaScript may take

10

CSPAutoGen - Templates/2

* Template generation procedure:
1. Extract a large number of JavaScript programs from web application
2. Generate ASTs for each program

3. Generalize each AST variable replacing it with its type

1. Userule-based type-inference algorithm (nodes w/ only one value are labeled
CONST; nodes with a restricted set of values are labeled ENUM; etc.)

* Generalized ASTs (gASTs) are used as templates and matched w/
gASTs of served scripts

11

CSPAutoGen - observation

* Uses domain specific 100
learning algorithm
(template learning) as
opposed to a generic one

* Motivated by keeping
false positives low

* However, it generates
false negatives?

* Use entire (generalized)
AST as the single feature ——

° RGQUirQS exact matching Figure 3: Template Matching Rate
(no notion of distance (Medium Rate 99.2%).

threshold)

O Ne}
D oo
T T

Matching Rate (%)
e}
=

N=2E 4
[N}

©
(=)
o

Example

2:JaST

JAST: Fully Syntactic Detection
of Malicious (Obfuscated) JavaScript

Aurore Fass'®) Robert P. Krawczyk?, Michael Backes?, and Ben Stock?

q

Check for
updates

L CISPA, Saarland University, Saarland Informatics Campus, Saarbriicken, Germany

1

aurore.fass@Qcispa.saarland
2 German Federal Office for Information Security (BSI), Bonn, Germany
robert.krawczyk@bsi.bund.de
3 CISPA Helmholtz Center i.G., Saarland Informatics Campus,
Saarbriicken, Germany
{backes,stock}@cispa.saarland

Abstract. JavaScript is a browser scripting language initially created
to enhance the interactivity of web sites and to improve their user-
friendliness. However, as it offloads the work to the user’s browser, it
can be used to engage in malicious activities such as Crypto Mining,
Drive-by Download attacks, or redirections to web sites hosting mali-
cious software. Given the prevalence of such nefarious scripts, the anti-
virus industry has increased the focus on their detection. The attackers,
in turn, make increasing use of obfuscation techniques, so as to hinder
analysis and the creation of corresponding signatures. Yet these malicious
samples share syntactic similarities at an abstract level, which enables
to bypass obfuscation and detect even unknown malware variants.

In this paper, we present JAST, a low-overhead solution that com-
bines the extraction of features from the abstract syntax tree with a
random forest classifier to detect malicious JavaScript instances. It is
based on a frequency analysis of specific patterns, which are either pre-
dictive of benign or of malicious samples. Even though the analysis is
entirely static, it yields a high detection accuracy of almost 99.5% and
has a low false-negative rate of 0.54%.

Introduction

Information Technology is constantly under threat with the amount of newly
found malware increasing permanently: over 250,000 new malicious programs are
registered every day [11]. Moreover, our Internet-driven world enables malware
to rapidlv infect victims evervwhere. anvtime (e.o.. Mirai [26] NotPetva [271).

13

JaST overview

* Goal: programmatically learn to distinguish between malicious
and benign JavaScript programs

* Not just for web JS! (in fact, paper mostly looks at emails, applications,
etc.)
* Approach:

1. Extract n-gram-based AST features for a corpus of training samples
(both malicious & benign)

2. Train arandom forest classifier to distinguish between the two classes
3. Apply the classifier to unseen samples

14

JaST feature generation

e ASTs need to be summarized as feature vectors to be fed into a
learning algorithm

* Features should be computable efficiently but still encode
relevant aspects of the AST

* JaST uses n-gram frequencies

15

N-gram Extraction 719

X y max X | max
X X X
6 7 5]

Given a set of possible AST node labels, S ={s,, ..., S\}

For a particular AST, traverse (preorder here) and record the labels
encountered, call this list X
o The set of unique labelsin Xis a subset of S

Example: the set of bigrams (2-grams), B, over the list X is:
o B={(x;Xuq) | for 0 <i<|X]}
o BisasubsetofS?

In our example (shown on top right):

o S = {‘expr’, ‘func’, ‘var’, ‘block’, ‘“if’, ‘>',
W<,

o X = [‘if', ‘>', ‘var’, ‘var’, ‘=', .., ‘var’]

o B = {‘(1f,>)'", ‘(>,var)’, ‘(var,var)’,

‘(var,=)", ‘(=,var)’}
Next - use S, X, and B to construct the feature vector.

16

N-gram Extraction

If only using bigrams then feature vector V has d = |S|?
components

o Forgeneric n-grams, d = |S|"
The value of the i*" component of V is the number of times the it"
n-gram appeared in the AST
Feature vectors based on n-grams are typically sparse (i.e. many
components are 0) since many n-grams are not encountered

while traversing the AST
V represents our AST as a point in d-dimensional feature
space
Feature reduction
o Not all features are actually needed to attain a sufficient
model
o Information-gain filtering keeps only features with the most
“discerning power?” (i.e. splits the data most effectively)

17

JaST - observations

* Generally, very high TPR/TNR

Table 3. Detection accuracy of JAST

JS type #Misclassified #Correctly classified Detection accuracy

Emails 443 81,116 99.46%

Microsoft 71 14,097 99.50% TPR:
Games 10 1,997 99.52% 99.46%
Web frameworks 4 430 99.03%

Atom 1 136 98.98%

Average benign 86 16,660 99.48%

Other approaches and applications

« /OZZLE (Curtsinger et al., USENIX Security 2011) uses a
generalization of n-grams (string in AST node+context where the
string appears) and a naive Bayes classifier to distinguish benign
& malicious javascripts

* Revolver (Kapravelos et al., USENIX Security 2013) uses AST
similarities between scripts to identify source-code-level
obfuscation

19

Other approaches and applications/2

* Code Stylometry (Caliskan-Islam et al., USENIX Security 2015)

uses AST-based features and random forest to identify
programmers from source code

* Node depths, unigram and bigram frequencies

* Uses information gain to reduce the set of features
* Pretty effective!

-

Accuracy I

-

- —
NumBer of programimerns

Figure 3: Large Scale De-anonymization

20

The problem with AST-based features

* The structure of the AST of a program is obviously correlated with
its functionality and goals

* But only loosely correlated!

* Many of the techniques outlined above rely on the fact that
malicious JavaScript code “tend to look different”, at the AST level,
from benign JavaScript code

* However, given a particular computation that an attacker wishes
to perform, there are in general multiple ASTs describing that
computation

21

Enter... adversarial machine learning

* Large (and active) area of research, includes many different
problems

* The general research question:
* given a classifier trained to identify different object classes...

* |tis possible to cause the classifier to mislabel certain samples (i.e.,
classify them as belonging to the wrong class)?

* Particularly relevant case: given a classifier trained to identify
malicious JS, it is possible to modify malicious code so that it is

considered benign?
* (AKA adversarial sample generation)

22

The paper

Assessing Adaptive Attacks Against Trained
JavaScript Classifiers

Niels Hansen!, Lorenzo De Carli?, and Drew Davidson'

! University of Kansas
2 Worcester Polytechnic Institute

Abstract. In this work, we evaluate the security of heuristic- and ma-
chine learning-based classifiers for the detection of malicious JavaScript
code. Due to the prevalence of web attacks directed though JavaScript
injected into webpages, such defense mechanisms serve as a last-line of
defense by classifying individual scripts as either benign or malicious.
State-of-the-art classifiers work well at distinguishing currently-known
malicious scripts from existing legitimate functionality, often by employ-
ing training sets of known benign or malicious samples. However, we
observe that real-world attackers can be adaptive, and tailor their at-
tacks to the benign content of the page and the defense mechanisms
being used to defend the page.

In this work, we consider a variety of techniques that an adaptive adver-
sary may use to overcome JavaScript classifiers. We introduce a variety
of new threat models that consider various types of adaptive adversaries,
with varying knowledge of the classifier and dataset being used to detect
malicious scripts. We show that while no heuristic defense mechanism
is a silver bullet against an adaptive adversary, some techniques are far
more effective than others. Thus, our work points to which techniques
should be considered best practices in classifying malicious content, and
a call to arms for more advanced classification.

Our research goal

Label:

maliciou
AST of malicious , =
program Arbltrgry
classifie
r

AST of mali¢ious
program

Transformation (AST changes; exploit remains the
same)

24

Why work on this?

* Understanding limitations of proposed defenses can lead to
better defenses

* Other classifier-based approaches to identify malicious software
have been broken:

 PDF files (Xu et al., NDSS 2016; Srndic et al., S&P 2014)

* Android malware (Yang et al., ACSAC 2017; Demontis et al., IEEE TDSC,
2018)

* Flash malware (Demontis et al., 2017, on arXiv)

* This suggest that programmatically generate adversarial JS
programs may be feasible

25

Some more context

e There are really two forms of adversarial samples: those
which exploit learning vulnerability, and those which
exploit feature vulnerability

Learning mimicry evasion Feature
vulnerability: the (feature vulnerability) vulnerability: the
boundaries around ° choice of feature
practical benign . | does not represent
samples in feature meaningful aspects
space are not tight e o - of the problem that
(i.e., there exist ample allow to distinguish
portions of feature 0 o between classes. Itis
space that are = possible to devise
mapped to the _ _ malicious samples
“benign” class and (leb;'r:?r;;p\z'ﬁ‘e'f:'b?ﬁty) that look exactly like
can be used for benign ones feature-
adversarial samples) Erom Maijorca etal., arXiv.1710.10225 [cs]. 201 wise

26

https://arxiv.org/pdf/1710.10225.pdf

Some more context/2

mimicry evasion
(feature vulnerability)

* We hypothesize that AST-
based detectors are :
susceptible to feature .
vulnerability, AKA mimicry
attacks

* |n other words, it is possible to transform a
JavaScript program implementing an exploit so
that it generates the same features as a
benign JavaScript program (while retaining
function)

27

https://arxiv.org/pdf/1710.10225.pdf

Attack assumption & threat model

* The attacker’s goal is to get a specific malicious program P, (i.e.,
JavaScript exploit) misclassified as benign by a target
classification function f

* The attacker has no access to fand its training set 7, but can take
a reasonable guess at a surrogate training set 7" and train a
surrogate classifier f” (graybox attack)

28

Attacking the model: formalization

e Attack formalization:

O

Consider the surrogate classifier f°: P — {B, M}! mapping a JS
program P to one of two classes B, M

Goal: given a malicious program P,,s.t. f'(P,,) = M, find another
program P,,*s.t. f'(P,,*) = B

Typically a constraint on the distance in feature-space d(P,,,
P,* <d,, is added to ensure P,,/* retain its “maliciousness”
However, for our problem we replace distance constraint with a
functional equivalence constraint

We say P,,, P,,/* are functionally equivalent if they both
successfully accomplish the same exploit when run under the
same conditions

29

Attack #1: subtree iIsomorphism

* General idea: search for a benign sample with an
AST subtree which is isomorphic to the AST of P

Training set T’

() o o)
AST | (S () 0'. C.‘
of = Q O o0 @) o0

Py () () o2 © o o o o
- W @ () e ®le Ty ®
(benign (malicious

o ° \ samples) samples)j
Embed P, in the : Q Q

benign sample

30

Subtree isomorphism/2

* Issue: finding a subtree that is isomorphic to P;, may be difficult
and likely unnecessary

* |[tis generally enough to find subtree that is similar to P
* Would also like to allow the similarity threshold to be configurable

* Solution: instead of finding a subtree § which is isomorphic to P,

find Ss.t. TED(P,, S) < o, where TED is the tree edit distance
between P and S and o is an arbitrary threshold

* (Note that | am abusing the notation and use P to also denote the
AST of P)

31

Subtree isomorphism/3

* For efficiency, when searching for a candidate subtree $ we bound
S| <M (with M close to |P|)

* TED has time complexity O(M?>)

* If L is the size of the largest AST in T3, then the comparison must
be operated at most O(L*M?) per each program in T’

[*)[5)
* Take-away: best if limited to small exploit programs

)

* Overall complexity: O(|T

32

Attack #2: gadget injection

* Less powerful than subtree isomorphism, but easier to carry

* Idea: given a malicious program P,,, synthesize another program
P,.,and injectitinto P,

* P, is designed to alter feature values of P;,so that it is classified
as benign by a target classifier

33

Gadget injection/2

Program P,,

Q ‘ 1. Compute feature vector V' used by classifier
f}
(Note:f’(l/) :M) Vi |Vy | ... | VN

O \

2. Compute modified V’s.t. f'(V’) =

Q B)))
vV Vo VN

4.Inject P,;in Py,

3. Compute gadget P,,; with feature vector Y-

vi|lva .o lwl|l+|yily2|-mlyw|=1|Vvi|V2]|. |VN

V Y Vv’

34

Gadget injection/3

* Problem #1: computing Yand J”’

* Can use statistical analysis of benign VS malicious feature vectors, or
classifier-specific attacks (e.g., MILP formulation for random forest,
gradient descent for DNN, etc.)

* Problem #2: given Y, generate P,,,

 Mine dataset 7" for gadgets (subprograms) that generate the desired
feature values

35

Results

* Benign script dataset: obtained from scraping Alexa top websites
in Spring 2017; include 39091 scripts from 306 popular domains

* Malicious script dataset: online publicly-available JS exploit
repositories from geeksonsecurity.com; include 1357 scripts

performing various attack-related operations (collected in January
2017)

36

A JaST classifier trained on the
youtube/ malicious corpus

Re S U ltS/2 (accuracy: 96.7%) detects none of

these!
* Subtree isomorphism attack vs JaST /
1.0+

0.8 google.com81
Q
E
- 0.61 2
.2 S
‘g 2 youtube.com67
Sl S
~ 04 T

0.21

youtube.com65

0.0, 50 100 0 20 40 60 80
Domains # attack scripts per host
Performance of JaST trained on our Number of generated attack scripts
dataset (w/o adversarial samples) for three benign host scripts

37

See you next time!

