
UCalgary ENSF619
Elements of Software Security

Instructor: Lorenzo De Carli (lorenzo.decarli@ucalgary.ca)

Lecture #11: Adversarial
Attacks #1

mailto:lorenzo.decarli@ucalgary.ca

Scenario of interest

Server-side script
filtering: a gateway is
placed between a
JavaScript source and
the user. The gateway
identifies malicious
scripts that are not part
of the application and
sanitizes the pages by
removing them/

2

Server-side script filtering

• Various approaches (I’ll talk about two), but generally works by:
1. Learning a model of how benign scripts served from a web application

should look like
2. Analyzing each script served to the client before it is transmitted – if

the classifier decides the script is malicious, it blocks the transmission

• Script model: based on syntactic features of the code extracted
from its abstract syntax tree

3

● Computers can’t execute raw
source code

● Source code must be translated to
some form of machine code

● ASTs are an intermediate
representation during translation

● Full translation process is called
compilation

Abstract Syntax Tree (AST)
int max(int x, int y) {
 int max;
 if (x > y) {
 max = x;
 } else {
 max = y;
 }
 return max;
}

if

> = =

x y max x max y

...
0000000000400487 <max>:
 400487: 55 push %rbp
 400488: 48 89 e5 mov
%rsp,%rbp
 40048b: 89 7d ec mov %edi,-
0x14(%rbp)
 40048e: 89 75 e8 mov %esi,-
0x18(%rbp)
 400491: 8b 45 ec mov -
0x14(%rbp),%eax
 400494: 3b 45 e8 cmp -
0x18(%rbp),%eax
 400497: 7e 08 jle 4004a1
<max+0x1a>
 ...

Source code

AST

Machine code

4

● ASTs “fingerprint” the program at a desirable granularity:
○ Provides high-level program behavior encoding
○ Abstracts away unnecessary details (e.g., comments,

formatting)
● Similar code lead to similar ASTs

Abstract Syntax Tree (AST) - II

5

General defense workflow

Set of
scripts

served to
clients

Website
scraping

procedure

Typically impossible to
get an exhaustive set of
script – goal is to get a

representative one

Input: URL
of target web
application

Model
generatio

n
procedure

Model
used to

filter
scripts

Example
s of

maliciou
s scripts

6

Example #1: CSPAutoGen

CSPAutoGen: Black-box Enforcement of Content Security
Policy upon Real-world Websites

Xiang Pan1 Yinzhi Cao2 Shuangping Liu1 Yu Zhou 1 Yan Chen3,1 Tingzhe Zhou2

1Northwestern University, Illinois, USA
2Lehigh University, Pennsylvania, USA
3Zhejiang University, Zhejiang, China

{xiangpan2011, shuangping-liu, yuzhou2016}@u.northwestern.edu
{yinzhi.cao, tiz214}@lehigh.edu ychen@northwestern.edu

ABSTRACT
Content security policy (CSP)—which has been standardized by
W3C and adopted by all major commercial browsers—is one of the
most promising approaches for defending against cross-site script-
ing (XSS) attacks. Although client-side adoption of CSP is suc-
cessful, server-side adoption is far behind the client side: according
to a large-scale survey, less than 0.002% of Alexa Top 1M websites
enabled CSP.

To facilitate the adoption of CSP, we propose CSPAutoGen to
enable CSP in real-time, without server modifications, and being
compatible with real-world websites. Specifically, CSPAutoGen
trains so-called templates for each domain, generates CSPs based
on the templates, rewrites incoming webpages on the fly to apply
those generated CSPs, and then serves those rewritten webpages
to client browsers. CSPAutoGen is designed to automatically en-
force the most secure and strict version of CSP without enabling
“unsafe-inline” and “unsafe-eval”, i.e., CSPAutoGen can handle all
the inline and dynamic scripts.

We have implemented a prototype of CSPAutoGen, and our eval-
uation shows that CSPAutoGen can correctly render all the Alexa
Top 50 websites. Moreover, we conduct extensive case studies on
five popular websites, indicating that CSPAutoGen can preserve the
behind-the-login functionalities, such as sending emails and post-
ing comments. Our security analysis shows that CSPAutoGen is
able to defend against all the tested real-world XSS attacks.

1. INTRODUCTION
Cross-site scripting (XSS) vulnerabilities—though being there

for more than ten years—are still one of the most commonly found
web application vulnerabilities in the wild. Towards this end, re-
searchers have proposed numerous defense mechanisms [12,14,17,
21, 30, 32, 40, 41] targeting various categories of XSS vulnerabili-
ties. Among these defenses, one widely-adopted approach is called
Content Security Policy (CSP) [41], which has been standardized
by W3C [1] and adopted by all major commercial browsers, such
as Google Chrome, Internet Explorer, Safari, and Firefox.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
CCS’16, October 24-28, 2016, Vienna, Austria
c� 2016 ACM. ISBN 978-1-4503-4139-4/16/10. . . $15.00

DOI: http://dx.doi.org/10.1145/2976749.2978384

Though client-side adoption has been successful, server-side adop-
tion of CSP proves more worrisome: according to an Internet-scale
survey [45] of 1M websites, at the time of the study, only 2% of top
100 Alexa websites enabled CSP, and 0.00086% of 900,000 least
popular sites did so. Such low adoption rate of CSP in modern web-
sites is because CSP1 requires server modifications. That is, all the
inline JavaScript and eval statements need to be removed from a
website without breaking its intended functionality, which brings
extensive overhead for website developers or administrators.

To facilitate server deployment, in related work, deDacota [12]
and AutoCSP [14] analyze server-side code using program analy-
sis, infer CSPs, and modify those code to enable the inferred CSPs.
Another related work, autoCSP2 [17], infers CSPs based on vio-
lation reports and enforces the inferred CSPs later on. However,
deDacota and AutoCSP—due to their white-box property—require
server modification. Additionally, both approaches are specific to
websites written in certain web languages. Another approach, au-
toCSP, does not support inline scripts with runtime information and
dynamic scripts, and thus websites with those scripts cannot work
properly. According to our manual analysis, 88% of Alexa Top 50
websites contain such script usages.

In this paper, we propose CSPAutoGen, a real-time, black-box
enforcement of CSP without any server modifications and being
compatible with real-world websites. The key insight is that al-
though web scripts may appear in different formats or change in
runtime, they are generated from uniform templates. Therefore,
CSPAutoGen can infer the templates behind web scripts and de-
couple web contents in a script from the script’s inherent structure.

Specifically, CSPAutoGen first groups scripts in webpages un-
der a domain, and infers script templates, defined as training phase.
Next, in the so-called rewriting phase, CSPAutoGen generates CSPs
based on the webpage and templates, and then modifies webpages
on the fly—which could be at a server gateway, an enterprise gate-
way or a client browser—to insert the generated CSPs and apply
them at client browsers. Lastly, a client-side library added in the
rewriting phase will detect additional scripts generated at client side
during runtime and execute these scripts that match the templates.
Below we discuss two important mechanisms used in CSPAutoGen:

1In this paper, unless specified, our definition of CSP refers to
the strictest CSP, i.e., the default one with no “unsafe-inline” and
“unsafe-eval” options enabled. Although CSP provides options like
“unsafe-inline” and “unsafe-eval” for compatibility, these options
are not safe and open doors for XSS attacks.
2Note that AutoCSP [14] and autoCSP [17] are two pieces of re-
lated work with the difference in their first letter capitalization.

7

CSPAutoGen – Overview

• Goal: prevent unknown/malicious code to be served by a given
web application
• Approach:

1. Intercept web pages before they reach the client; match JavaScripts
against templates

2. Copy all matching JavaScripts to a trusted domain and rewrite HTML
page to include them

3. Add a CSP to the page only allowing to run JavaScripts from trusted
domains

8

CSPAutoGen - Templates

• Before deployment, CSPAutoGen undergoes a training phase
• Website to protect is scraped to determine all benign snippets of

JavaScript code

• The output of the training phase is a set of templates describing
all possible forms that legitimate JavaScript may take

10

CSPAutoGen – Templates/2

• Template generation procedure:
1. Extract a large number of JavaScript programs from web application
2. Generate ASTs for each program
3. Generalize each AST variable replacing it with its type

1. Use rule-based type-inference algorithm (nodes w/ only one value are labeled
CONST; nodes with a restricted set of values are labeled ENUM; etc.)

• Generalized ASTs (gASTs) are used as templates and matched w/
gASTs of served scripts

11

CSPAutoGen - observation
• Uses domain specific

learning algorithm
(template learning) as
opposed to a generic one
• Motivated by keeping

false positives low
• However, it generates

false negatives!
• Use entire (generalized)

AST as the single feature
• Requires exact matching

(no notion of distance
threshold)

Table 3: Comparison of Types in WordPress 4.2.3 with
These Inferred by CSPAutoGen

Type # in Ground # in # of Correctly Accuracy
Truth Templates Inferred

CONST 95 97 95 97.9%
ENUM 9 3 3 100%
GAST 0 0 0 N/A
NUMBER 24 24 24 100%
REGEXP 10 14 10 71.4%
URL 9 9 9 100%
Total 147 147 141 95.9% 0 10 20 30 40 50

Websites
90

92

94

96

98

100

M
at

ch
in

g
R

at
e

(%
)

Figure 3: Template Matching Rate
(Medium Rate 99.2%).

Figure 4: The Loading Time of Alexa Top 50
Websites (Median Difference 9.1%).

Table 4: Real-world Applications with All Three Types of XSS Vulnerabili-
ties (Reflected, Stored and DOM-based)

Application Version Vulnerability Language LOC
Codiad 2.4.3 CVE-2014-9582 PHP 8,989
Ektron CMS 9.1.0 CVE-2015-4427 ASP.NET NA
FoeCMS 0.0.1 CVE-2014-4849 PHP 17,943
JForum 2.1.9 CVE-2012-5337 JAVA 61,247
LiteCart 1.1.2.1 CVE-2014-7183 PHP 29,175
OrchardCMS 1.9.0 CVE-2015-5520 ASP.NET 109,467

human works involved in the evaluation, we use WordPress 4.2.3
as an example for the evaluation.

Our methodology is as follows. For each inline script in the
WordPress source code, we find the corresponding template, and
manually compare each PHP part (i.e., runtime information) in the
inline script with each type in the template. For example, if the
type in the template is a URL, and the corresponding PHP variable
value of the inline script in the source code can only be URL, we
will consider the type in the template correctly inferred.

The evaluation results are shown in Table 3. The number of each
type in the WordPress source code, and the number of each type in-
ferred by CSPAutoGen in the templates are listed in the second and
third column respectively. We also list the number of correctly in-
ferred for each type and the corresponding accuracy. First, note that
the total numbers for all the types in both WordPress and templates
are exactly the same, indicating that CSPAutoGen correctly finds
all the possible locations. Second, the overall inference accuracy is
95.9%, a very high number. In some cases, the inferred types by
CSPAutoGen are looser or stricter than the one in WordPress. Par-
ticularly, two CONST types should be ENUM, and four REGEXP
types should be ENUM. The stricter inference (ENUM as CONST)
is because of missing values not captured in the training samples;
correspondingly, the looser inference (ENUM as REGEXP) is due
to the fact that the number of samples with those scripts is smaller
than our default threshold (i.e., 120). In this experiment, the de-
ployed WordPress contains only a few default pages, i.e., in real-
world websites, we expect the accuracy will be even higher, be-
cause the number of samples should reach the threshold, and the
number of training samples will be also larger.

6.4 Security
We evaluate the security of CSPAutoGen in three experiments.

First, we measure whether and how CSPAutoGen can successfully
protect real-world vulnerable applications against existing XSS at-
tacks. Second, as discussed in our type system, we manually re-
view the flexible types, i.e., REGEXP types with sensitive charac-
ters such as ‘%’, ‘.’ and ‘:’. Third, from Alexa Top 50 websites, we
find those with CSP deployed and compare their configured CSPs
with the CSPs generated by CSPAutoGen.
Real-world Applications. To evaluate the security of our system,
we apply CSPAutoGen on six real-world web applications (written

in ASP.NET, Java and PHP) with XSS vulnerabilities listed in Ta-
ble 4. Codiad is a lightweight and interactive web IDE; FoeCMS
is a content management application that is largely used in the
Spanish world; Litecart is a free development platform to build
e-commerce websites. These three applications are all written in
PHP. Orchard CMS and Ektron CMS are both content management
system written in ASP.NET. The former is open source, while the
latter is not. JForum is a lightweight discussion board system im-
plemented in Java. The involved vulnerabilities of these six appli-
cations cover all the three types of XSS, that is, reflected, stored
and DOM-based XSS attacks. In the table, we list the applications’
names, versions, vulnerabilities, languages and lines of codes.

We deploy the six applications and initiate XSS attacks against
them. The attacking payloads are created by XCampo [46], a popu-
lar XSS payload generator. We first verify that these exploits work
on the applications. Then we deploy CSPAutoGen at the entrance
of each application and initiate the same attacks again. The eval-
uation results indicate none of these attacks succeed, showing that
CSPAutoGen defeats against all the three types of XSS attacks.
Manual Reviewing Flexible Types. We count the number of gASTs,
nodes, atom data nodes, complex data nodes, types and flexible
types from the templates of Alexa Top 50 websites. The results are
shown in Table 5: flexible types only account for 1.4% of all the
types. Further analysis shows that on average, four gASTs have one
data node or field assigned with flexible type; the number of flexi-
ble type for each domain template ranges from 1 (e.g., ask.com) to
243 (i.e., amazon.com) with the median of 81 (i.e., baidu.com).

We then evaluate the workload of manual reviewing flexible types.
We randomly pick out five websites (aliexpress.com, reddit.com,
taobao.com, weibo.com and youtube.com). The numbers of their
flexible types are 121, 6, 59, 27 and 90 respectively. With the help
of visual template portal (Section 4.3), one student reviews and
modifies these flexible types in 2 days (16 hours). Our reviewing
shows that no flexible type in these templates needs to be changed
to more restrictive ones. Also, fully understanding those reviewed
scripts are not required because the visual template portal lists all
the training samples and highlights the corresponding values.
Comparison with existing websites’ CSPs. Among Alexa Top
50 websites, six websites (facebook.com, twitter.com, yandex.ru,
mail.ru, pinterest.com and alibaba.com) have configured CSPs. How-
ever, five out of the six set both keywords “unsafe-inline” and “unsafe-
eval” in their CSPs, and the remaining one (twitter.com) sets “unsafe-
eval”. “unsafe-inline” still allows an attacker to inject scripts via
both stored and reflected XSS, and “unsafe-eval” allows DOM-
based XSS attacks. As a comparison, the CSPs generated by CSPAu-
toGen set neither “unsafe-inline” nor “unsafe-eval”, being more se-
cure than CSPs used in any of the six websites. That is, CSPAuto-
Gen can even help existing websites that partially adopt CSP and
enhance their security.

12

Example #2: JaST
JaSt: Fully Syntactic Detection

of Malicious (Obfuscated) JavaScript

Aurore Fass1(B), Robert P. Krawczyk2, Michael Backes3, and Ben Stock3

1 CISPA, Saarland University, Saarland Informatics Campus, Saarbrücken, Germany
aurore.fass@cispa.saarland

2 German Federal Office for Information Security (BSI), Bonn, Germany
robert.krawczyk@bsi.bund.de

3 CISPA Helmholtz Center i.G., Saarland Informatics Campus,
Saarbrücken, Germany

{backes,stock}@cispa.saarland

Abstract. JavaScript is a browser scripting language initially created
to enhance the interactivity of web sites and to improve their user-
friendliness. However, as it offloads the work to the user’s browser, it
can be used to engage in malicious activities such as Crypto Mining,
Drive-by Download attacks, or redirections to web sites hosting mali-
cious software. Given the prevalence of such nefarious scripts, the anti-
virus industry has increased the focus on their detection. The attackers,
in turn, make increasing use of obfuscation techniques, so as to hinder
analysis and the creation of corresponding signatures. Yet these malicious
samples share syntactic similarities at an abstract level, which enables
to bypass obfuscation and detect even unknown malware variants.

In this paper, we present JaSt, a low-overhead solution that com-
bines the extraction of features from the abstract syntax tree with a
random forest classifier to detect malicious JavaScript instances. It is
based on a frequency analysis of specific patterns, which are either pre-
dictive of benign or of malicious samples. Even though the analysis is
entirely static, it yields a high detection accuracy of almost 99.5% and
has a low false-negative rate of 0.54%.

1 Introduction

Information Technology is constantly under threat with the amount of newly
found malware increasing permanently: over 250,000 new malicious programs are
registered every day [11]. Moreover, our Internet-driven world enables malware
to rapidly infect victims everywhere, anytime (e.g., Mirai [26], NotPetya [27]).
Currently, the most vicious attacks are the so-called crypto trojans (e.g., Wan-
naCry [28]), which often use JavaScript as a payload in the first stage of the
infection of the victim’s computer. This plethora of new attacks renders manual
analysis impractical: defenders remedy this situation by automating the analy-
sis of potentially malicious code. As a consequence, new alternatives based on
machine learning algorithms are being explored to obtain a better understanding
c⃝ Springer International Publishing AG, part of Springer Nature 2018
C. Giuffrida et al. (Eds.): DIMVA 2018, LNCS 10885, pp. 303–325, 2018.
https://doi.org/10.1007/978-3-319-93411-2_14

13

JaST overview

• Goal: programmatically learn to distinguish between malicious
and benign JavaScript programs
• Not just for web JS! (in fact, paper mostly looks at emails, applications,

etc.)

• Approach:
1. Extract n-gram-based AST features for a corpus of training samples

(both malicious & benign)
2. Train a random forest classifier to distinguish between the two classes
3. Apply the classifier to unseen samples

14

JaST feature generation

• ASTs need to be summarized as feature vectors to be fed into a
learning algorithm
• Features should be computable efficiently but still encode

relevant aspects of the AST
• JaST uses n-gram frequencies

15

● Given a set of possible AST node labels, S = {s1, … , sk}
● For a particular AST, traverse (preorder here) and record the labels

encountered, call this list X
○ The set of unique labels in X is a subset of S

● Example: the set of bigrams (2-grams), B, over the list X is:
○ B = { (xi, xi+1) | for 0 < i < |X| }
○ B is a subset of S2

● In our example (shown on top right):
○ S = {‘expr’, ‘func’, ‘var’, ‘block’, ‘if’, ‘>’,

‘<’,…}
○ X = [‘if’, ‘>’, ‘var’, ‘var’, ‘=’, …, ‘var’]
○ B = {‘(if,>)’, ‘(>,var)’, ‘(var,var)’,

‘(var,=)’, ‘(=,var)’}
● Next - use S, X, and B to construct the feature vector.

N-gram Extraction
if

> = =

x y max x max y

AST
x
1

x
2

x
3

x10

x
9

x
8

x
7

x
6

x
5

x
4

16

● If only using bigrams then feature vector V has d = |S|2
components
○ For generic n-grams, d = |S|n

● The value of the ith component of V is the number of times the ith
n-gram appeared in the AST

● Feature vectors based on n-grams are typically sparse (i.e. many
components are 0) since many n-grams are not encountered
while traversing the AST

● V represents our AST as a point in d-dimensional feature
space

● Feature reduction
○ Not all features are actually needed to attain a sufficient

model
○ Information-gain filtering keeps only features with the most

“discerning power” (i.e. splits the data most effectively)

N-gram Extraction

17

JaST - observations

• Generally, very high TPR/TNR

310 A. Fass et al.

Table 2. JavaScript dataset description

JS type Creation #JS Label Obfuscated

Emails 2017–2018 85,059 Malicious y

Microsoft 2015–2018 17,668 Benign y

Games N/A 2,007 Benign n

Web frameworks N/A 434 Benign N/A

Atom 2011–2018 137 Benign n

Table 3. Detection accuracy of JaSt

JS type #Misclassified #Correctly classified Detection accuracy

Emails 443 81,116 99.46%

Microsoft 71 14,097 99.50%

Games 10 1,997 99.52%

Web frameworks 4 430 99.03%

Atom 1 136 98.98%

Average benign 86 16,660 99.48%

confound unseen nor unusual syntactic structures with maliciousness. Reasons
for not including any web JavaScript extracted from HTML documents in this
dataset are discussed in Sect. 4.2.

3.2 Detection Performance

In our first experiment, we studied the detection performance of JaSt in terms
of true-positive and true-negative rates (correct classification of the samples,
either as benign or as malicious), false-positive and false-negative rates (misclas-
sification of the samples, malicious instead of benign, or the opposite), and over-
all detection accuracy. The experimental protocol is the following: 3,500 unique
JavaScript files were each time randomly extracted from the email dataset (mali-
cious) and Microsoft dataset (benign), and were used to build a balanced model.
The remaining samples were considered unknown and were used to measure the
detection performance. We repeated this procedure five times and the averaged
results are shown in Table 3. JaSt was able to correctly classify 99.48% of our
benign dataset, while still detecting 99.46% of the malicious email samples. As
both these benign and malicious files were, for the most part, obfuscated, this
demonstrates the resilience of our system to this specific form of evasion. More
importantly, it shows that JaSt does not confound obfuscation with malicious-
ness, and plain text with benign inputs, but could use differences between benign
and malicious obfuscation at a syntactic level to distinguish benign obfuscated
from malicious obfuscated files. Indeed, while the former is used to protect code
privacy and intellectual property, the latter aims at hiding its malicious purpose

TPR:
99.46%

18

Other approaches and applications

• ZOZZLE (Curtsinger et al., USENIX Security 2011) uses a
generalization of n-grams (string in AST node+context where the
string appears) and a naïve Bayes classifier to distinguish benign
& malicious javascripts
• Revolver (Kapravelos et al., USENIX Security 2013) uses AST

similarities between scripts to identify source-code-level
obfuscation

19

Other approaches and applications/2

• Code Stylometry (Caliskan-Islam et al., USENIX Security 2015)
uses AST-based features and random forest to identify
programmers from source code
• Node depths, unigram and bigram frequencies
• Uses information gain to reduce the set of features
• Pretty effective!

20

The problem with AST-based features

• The structure of the AST of a program is obviously correlated with
its functionality and goals
• But only loosely correlated!

• Many of the techniques outlined above rely on the fact that
malicious JavaScript code “tend to look different”, at the AST level,
from benign JavaScript code
• However, given a particular computation that an attacker wishes

to perform, there are in general multiple ASTs describing that
computation

21

Enter… adversarial machine learning

• Large (and active) area of research, includes many different
problems
• The general research question:
• given a classifier trained to identify different object classes…
• It is possible to cause the classifier to mislabel certain samples (i.e.,

classify them as belonging to the wrong class)?

• Particularly relevant case: given a classifier trained to identify
malicious JS, it is possible to modify malicious code so that it is
considered benign?
• (AKA adversarial sample generation)

22

The paper
Assessing Adaptive Attacks Against Trained

JavaScript Classifiers

Niels Hansen1, Lorenzo De Carli2, and Drew Davidson1

1 University of Kansas
2 Worcester Polytechnic Institute

Abstract. In this work, we evaluate the security of heuristic- and ma-
chine learning-based classifiers for the detection of malicious JavaScript
code. Due to the prevalence of web attacks directed though JavaScript
injected into webpages, such defense mechanisms serve as a last-line of
defense by classifying individual scripts as either benign or malicious.
State-of-the-art classifiers work well at distinguishing currently-known
malicious scripts from existing legitimate functionality, often by employ-
ing training sets of known benign or malicious samples. However, we
observe that real-world attackers can be adaptive, and tailor their at-
tacks to the benign content of the page and the defense mechanisms
being used to defend the page.
In this work, we consider a variety of techniques that an adaptive adver-
sary may use to overcome JavaScript classifiers. We introduce a variety
of new threat models that consider various types of adaptive adversaries,
with varying knowledge of the classifier and dataset being used to detect
malicious scripts. We show that while no heuristic defense mechanism
is a silver bullet against an adaptive adversary, some techniques are far
more e↵ective than others. Thus, our work points to which techniques
should be considered best practices in classifying malicious content, and
a call to arms for more advanced classification.

1 Introduction

Developments in adversarial machine learning are deeply a↵ecting the science
of computer security. In recent years, the research community has shown how
a variety of classification techniques are vulnerable to adversarial samples. An
adversarial sample is a malicious object—its type depending on the classification
task—which exhibits features causing a target classifier to misclassify it. Adver-
sarial samples apply naturally to a special form of classification in which there are
two categories: malicious and benign (we consider software defense frameworks
to be instances of classifiers in this regard, and we will use the term classifier to
refer to such systems throughout this work). By subverting the training sets of
security mechanisms to misclassify attacks as benign, adversarial samples have
been shown to be e↵ective against such classifiers in several contexts [2].

The potential impact of adversarial samples is significant in the domain of
website protection. In this context, the task is to analyze each individual script,

Our research goal

i
f

> = =

x y
m
a
x

x
m
a
x

y

AST
x
1

x
2

x
3

x
1
0

x
9

x
8

x
7

x
6

x
5

x
4

Arbitrary
classifie

r

AST of malicious
program

Label:
maliciou

s

i
f

> = =

x y
m
a
x

x
m
a
x

y

AST
x
1

x
2

x
3

x
1
0

x
9

x
8

x
7

x
6

x
5

x
4

AST of malicious
program

Transformation (AST changes; exploit remains the
same)

Label:
benign

24

Why work on this?

• Understanding limitations of proposed defenses can lead to
better defenses
• Other classifier-based approaches to identify malicious software

have been broken:
• PDF files (Xu et al., NDSS 2016; Srndic et al., S&P 2014)
• Android malware (Yang et al., ACSAC 2017; Demontis et al., IEEE TDSC,

2018)
• Flash malware (Demontis et al., 2017, on arXiv)
• …

• This suggest that programmatically generate adversarial JS
programs may be feasible

25

● There are really two forms of adversarial samples: those
which exploit learning vulnerability, and those which
exploit feature vulnerability

Some more context

From Maiorca et al., arXiv:1710.10225 [cs], 2017

Learning
vulnerability: the
boundaries around
practical benign
samples in feature
space are not tight
(i.e., there exist ample
portions of feature
space that are
mapped to the
“benign” class and
can be used for
adversarial samples)

Feature
vulnerability: the
choice of feature
does not represent
meaningful aspects
of the problem that
allow to distinguish
between classes. It is
possible to devise
malicious samples
that look exactly like
benign ones feature-
wise

26

https://arxiv.org/pdf/1710.10225.pdf

Some more context/2

• We hypothesize that AST-
based detectors are
susceptible to feature
vulnerability, AKA mimicry
attacks
• In other words, it is possible to transform a

JavaScript program implementing an exploit so
that it generates the same features as a
benign JavaScript program (while retaining
function)

From Maiorca et al., arXiv:1710.10225 [cs], 2017

27

https://arxiv.org/pdf/1710.10225.pdf

Attack assumption & threat model

• The attacker’s goal is to get a specific malicious program PM (i.e.,
JavaScript exploit) misclassified as benign by a target
classification function f
• The attacker has no access to f and its training set T, but can take

a reasonable guess at a surrogate training set T’ and train a
surrogate classifier f’ (graybox attack)

28

● Attack formalization:
○ Consider the surrogate classifier f’: P → {B, M} mapping a JS

program P to one of two classes B, M
○ Goal: given a malicious program PM s.t. f’(PM) = M, find another

program PM* s.t. f’(PM*) = B
○ Typically a constraint on the distance in feature-space d(PM ,

PM*) < dmax is added to ensure PM* retain its “maliciousness”
○ However, for our problem we replace distance constraint with a

functional equivalence constraint
○ We say PM, PM* are functionally equivalent if they both

successfully accomplish the same exploit when run under the
same conditions

Attacking the model: formalization

29

Attack #1: subtree isomorphism
• General idea: search for a benign sample with an

AST subtree which is isomorphic to the AST of P

Training set T’

T’M
(malicious
samples)

T’B
(benign

samples)

t1

t2 t2

t3 t4

AST
of
PM

t1

t2 t2

t3 t4

t0

t1t2

t3 t3
t2

t1

t2 t2

t3 t4

30

Embed PM in the
benign sample

Subtree isomorphism/2

• Issue: finding a subtree that is isomorphic to PM may be difficult
and likely unnecessary
• It is generally enough to find subtree that is similar to P
• Would also like to allow the similarity threshold to be configurable

• Solution: instead of finding a subtree S which is isomorphic to PM,
find S s.t. TED(PM, S) < δ , where TED is the tree edit distance
between P and S and δ is an arbitrary threshold
• (Note that I am abusing the notation and use P to also denote the

AST of P)

31

Subtree isomorphism/3

• For efficiency, when searching for a candidate subtree S we bound
|S| ≤ M (with M close to |P|)
• TED has time complexity O(M3)
• If L is the size of the largest AST in T’B, then the comparison must

be operated at most O(L*M2) per each program in T’B
• Overall complexity: O(|T’B|*L*M5)
• Take-away: best if limited to small exploit programs

32

Attack #2: gadget injection

• Less powerful than subtree isomorphism, but easier to carry
• Idea: given a malicious program PM, synthesize another program

Pext and inject it into PM
• Pext is designed to alter feature values of PM so that it is classified

as benign by a target classifier

33

Gadget injection/2

t1

t2 t2

t3 t4

1. Compute feature vector V used by classifier
f’
(Note: f’(V) = M) v1 v2 … vN

2. Compute modified V’ s.t. f’(V’) =
B

v’1 v’2 … v’N

3. Compute gadget Pext with feature vector Y:

v1 v2 … vN y1 y2 … yN v’1 v’2 … v’N

V Y V’
+ =

Program PM

4. Inject Pext in PM

t5

t6 t6

34

Gadget injection/3

• Problem #1: computing Y and V’
• Can use statistical analysis of benign VS malicious feature vectors, or

classifier-specific attacks (e.g., MILP formulation for random forest,
gradient descent for DNN, etc.)

• Problem #2: given Y, generate Pext
• Mine dataset T’ for gadgets (subprograms) that generate the desired

feature values

35

Results

• Benign script dataset: obtained from scraping Alexa top websites
in Spring 2017; include 39091 scripts from 306 popular domains
• Malicious script dataset: online publicly-available JS exploit

repositories from geeksonsecurity.com; include 1357 scripts
performing various attack-related operations (collected in January
2017)

36

Results/2

• Subtree isomorphism attack vs JaST

0 50 100
DRmDins

0.0

0.2

0.4

0.6

0.8

1.0

D
et

ec
tiR

n
5

Dt
e

Performance of JaST trained on our
dataset (w/o adversarial samples)

Number of generated attack scripts
for three benign host scripts

0 20 40 60 80
attack scripts pHr host

youtubH.com65

youtubH.com67

googlH.com81

H
os

t s
cr

ip
t

A JaST classifier trained on the
youtube/ malicious corpus

(accuracy: 96.7%) detects none of
these!

84

26

13

37

See you next time!

