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The topic of this lecture

• Software supply chain security
• … but what is the software supply chain?
• … and which type of security risks does it entail?
• Let’s answer both questions!



Software development has changed!

Early 2000’s:
• Monolithic codebases
• Closed-source approach
• Everything developed in-house

Now:
• Modular software
• Open-source is king
• Lots of external code



What does this mean?

• Companies are comfortable incorporating open source software 
(OSS) in their codebases…

• …and open-sourcing their own code so that it can be reused

• Why? Many reasons, but probably:

• Business model more focused on service than software IP

• $$! Companies can save millions by using free, ready-made software



Open Source Software ecosystems

• Think of GitHub, or language-specific archives such as npm

Programmer wants
Functionality (e.g., JSON 

parser)
Search for OSS package 

implementing functionality
Package is imported into 

projects



Implications
• Importing a package can bring in 

lots of code
• Code runs within main project
• Developer may not realize:
• How many dependencies are there
• Who wrote them
• If they are well-maintained
• …really, they may not know 

anything about them

bfj

bluebird check-types hoopy jsonpath tryer

esprima

static-eval underscore

escodegen

estraverse esutils source-map

A simple JSON parser brings in 12 packages!



What does this mean for security?

• Your code is only as secure as your weakest link…
• …which may be an abandoned package 8-levels 

deep into a 150-package dependency tree!
• The attack surface of a project includes all 

dependencies:
• Hard to track them
• Hard to ensure they all remain secure



Software Supply Chain Attacks

• Many attacks targeting modern 
software target its dependencies
• Examples:

• Taking over benign dependency to 
inject malicious code
• Create malicious package with 

popular functionality
• Create malicious packages which 

imitates benign one
SonaType 9th Annual State of the Software Supply Chain



Some notable examples

“retrieves data from an attacker-controlled URL and attempts to execute it on 
the host machine. This behavior is carried out every minute, infinitely.”

“The malicious payload then reads various files, including SSH keys, the 
contents of up to 1000 files in the $HOME directory as well as exfiltrating a whole 
host of other information about the system”



More notable examples



Software Supply Chain Security

• …is the domain of security studying detection and prevention of 
attacks within OSS ecosystems
• The main challenge is scale! OSS ecosystems are enormous:
• npm (node.js): 3.1M (as of Jun 2024)
• PyPI (Python): 550K 
• RubyGems (Ruby): 180K

• Attack packages are (statistically) rare, and not always obvious!



Let’s talk about the paper
Security Issues in Language-based So!ware Ecosystems

Ruturaj K. Vaidya1 Lorenzo De Carli2 Drew Davidson1 Vaibhav Rastogi3
1University of Kansas 2Worcester Polytechnic Institute 3University of Wisconsin, Madison

ABSTRACT
Language-based ecosystems (LBE), i.e., software ecosystems based
on a single programming language, are very common. Examples in-
clude the npm ecosystem for JavaScript, and PyPI for Python. These
environments encourage code reuse between packages, and incor-
porate utilities—package managers—for automatically resolving
dependencies. However, the same aspects that make these systems
popular—ease of publishing code and importing external code—also
create novel security issues, which have so far seen little study.

We present an a systematic study of security issues that plague
LBEs. These issues are inherent to the ways these ecosystems work
and cannot be resolved by !xing software vulnerabilities in either
the packages or the utilities, e.g., package manager tools, that build
these ecosystems. We systematically characterize recent security
attacks from various aspects, including attack strategies, vectors,
and goals. Our characterization and in-depth analysis of npm and
PyPI ecosystems, which represent the largest LBEs, covering nearly
one million packages indicates that these ecosystems make an op-
portune environment for attackers to incorporate stealthy attacks.
Overall, we argue that (i) fully automated detection of malicious
packages is likely to be unfeasible; however (ii) tools and metrics
that help developers assess the risk of including external dependen-
cies would go a long way toward preventing attacks.

1 INTRODUCTION
A recent report by the software security company Contrast Security
found that 79% of application code came from third parties [38].
The use of third-party code has obvious bene!ts: it encourages
code reuse; it allows expertly-written and well-vetted codebases to
be deployed by more developers; and it leverages the knowledge
of the broader software development community even for highly-
custom projects. However, managing third-party components has
become increasingly complex. A complex web of dependencies
exists because third party components internally depend upon one
another. Furthermore, these components update out of step with
one another, introducing new functionality and behavior.

To ease the complexity and burden of navigating the use of third-
party code, a traditional solution has been to organize third-party
components into packages, which provide discrete modules of func-
tionality. The dependencies between packages are listed explicitly
as metadata within the package by third-party developers, and
packages are stored in an online database, or a package repository.

Much of the complexity of using packages is delegated to a utility
program called a package manager, which can navigate the web of
dependencies to !nd up-to-date versions of packages and ensure
that package dependencies are provided. A key goal of package
managers is that they abstract away the complexity of integrating
third-party functionality into a software project. However, the key
insight of our paper is that this abstraction introduces the potential
for stealthy attacks that may go undetected for long periods.

In this paper, we speci!cally study package management for
language-based ecosystems (LBEs), using the ecosystem of npm for
JavaScript/Node.js and PyPI for Python as case studies. Packages
from these ecosystems form the backbone of software development
in those speci!c languages by hosting third-party code that is reused
in many di"erent software projects.

There exists some prior work studying software repositories
such as mobile app stores like Google Play and Apple App Store,
which serve consumers with full-#edged applications rather than
developers with re-usable code components, and OS package man-
agers such as RPM and Apt [8, 11, 13, 43, 44]. LBEs have received
much less attention, even though LBEs are inherently di"erent from
other software repositories. We therefore focus our work on attacks
that arise inherently from the way LBEs work. As such, we consider
vulnerabilities in either the packages or the package management
system to be outside the scope of our work.

Previous work in both the industry and the academia has identi-
!ed speci!c instances of malicious attacks on these package man-
agement ecosystems (e.g., [9, 17, 23]). Ourwork is the !rst to system-
atically study language-based ecosystems and presents a holistic
perspective on attacks in these ecosystems by providing a char-
acterization and taxonomy of attacks, and by analyzing package
repositories based on metrics that relate to potential for attacks.

Contributions. The contributions of our paper are as follow:
• We introduce a taxonomy of LBE compromises to charac-
terize the landscape of known attacks. We then use it to
categorize many notable examples of such attacks.

• We propose metrics for evaluating the risk and the impact
of package compromise. We believe these metrics serve as a
call to action for additional work in the domain.

• We perform case studies to characterize the state of two
popular package management ecosystems, npm and PyPI.
Our broad analysis of these two ecosystems and speci!c case
studies serve to demonstrate the use of our metrics and to
identify risks and security-relevant factors in current ecosys-
tems (such as developer behavior and the interconnectedness
of packages).

• We present concrete proposals for improving the security of
package managers against a class of attacks unique to this do-
main. Our proposals include best-practices for avoiding com-
mon mistakes that lead to compromises, and enhancements
to package manager software so that such compromises are
easier to avoid.

Our analysis includes npm and PyPI ecosystems, covering about
a million packages overall. We present important insights into
how social engineering attacks such as typo-squatting and import-
squatting may actually be #ourishing.We !nd that due to the nature
of these ecosystems, there is no easy solution against such squatting
problems at the ecosystem level. At the same time, through our
characterization of past attacks, we !nd that much of these attacks
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A bit of history…

• Around Summer 2018, we noticed a pattern in security news
• More and more reports of malicious software within npm
• (…also other ecosystems, but npm was the most prominent)

• There were not many academic papers on this topic, so we set out 
to write our own
• Outcome: never published, reviewers did not find it compelling
• Later, interest in supply chain security exploded (White House 

executive order, lots of papers, etc.)



Threat Model for Supply Chain Security

• The attacker can:
• Publish an arbitrary number of packages

• The attacker may also be able to:
• Compromise developer accounts
• How? Social engineering, phishing
• Curious? https://en.wikipedia.org/wiki/XZ_Utils_backdoor

https://en.wikipedia.org/wiki/XZ_Utils_backdoor


The size of the problem
(Note: many more 
packages now!)



Attack dimensions
Where is the 
malicious code 
injected in the 
ecosystem?

How is access 
gained?

Where is the 
malicious code 
injected in the 
package?

Who is the 
victim?

What are the 
attacker’s 
goals?



Take-away points?

• Some styles of attack are specific to the supply chain domain
• For example, injecting attacks into dependencies (“influencer attack”)

• In some cases, the intended victims are the package developers 
themselves!
• At a meta-level… categorizations are useful!
• If an area has not been explored yet, they help finding a common 

vocabulary and foster understanding



Interesting observations /1

• Power-law for download counts distribution (what does it 
mean?)
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Figure 3: Power-law distribution !t for download counts

packages with name-length = 3; this percentage decreases to 71% for
name-length = 5, and 16% for name-length = 10). These similarities
are bound to happen purely due to the size of the ecosystem: there
are nearly 8000 3-letter packages in npm, and only 17576 combina-
tions of three lowercase English letters4. Therefore, attempting to
identify typosquatting in short package names purely by comparing
name pairs is bound to be fruitless.

One may ask whether the same approach—marking similarly-
named packages as suspicious—may work at least for packages with
longer names, since similarities occur less frequently. In order to
answer this question, we !ltered our set of similarly-named package
pairs to retain only those where package names have lengths 10 or
above. The !ltering step returned 27K package pairs, from which
we randomly selected and manually analyzed 100 pairs.

A lone “undecidable” package was so marked because the distri-
bution archive is missing from npm servers. Most of the remaining
pairs (89) were labeled as “benign”—name similarities due either
to coincidence, because packages were implementing similar func-
tionality, or to the fact that one package was derived from the other
(e.g., a fork) for benign reasons. We furthermore identi!ed nine
“suspicious” cases. Six consisted of empty/dummy packages named
similarly to a legitimated packages, while three consisted of pack-
age pairs sharing substantial amount of codes without reasonable
explanation or ties.

Finally, we marked one case as “malicious”. This case involves
the pair agario-client and agario-clients. The latter is a near
code clone of the former, which is a (now outdated) client for the
agar.io browser-based game. However, agario-clients includes
modi!cations which appear to redirect users to a di"erent game
server. Furthermore, its authors attempted to masquerade their
package by manipulating package metadata in package.json—e.g.
_shasum—to mimic those of agario-client. While this approach
was ine"ective (npm ignores such metadata as they are computed
on the server side), it clearly shows the intention to make one
package pass as the other.

Our brief analysis highlights a few interesting facts. First, it ap-
pears that typosquatting continues to happen in the wild, and it is
likely that there are yet undiscovered cases. Second, there are no
barriers - at least in the npm ecosystem - to prevent anyone from
registering a package with a name close to that of a highly popular

4Names can use other symbols, however most short names do not include them.

Figure 4: CDF of dependency tree sizes for each ecosystem

one, which may generate confusion. For example, graphql-tools
and graphql-tool could be easily confused, but the former is a pop-
ular package with 500k downloads/week, while the latter appears
to be a set of Angular.js programming exercises archived together.
Despite not providing any usable functionality, it still managed to
accrue 600 downloads since it was uploaded. Furthermore, there
are many legitimate reasons why packages may be named similarly,
and most instances in which this happens are in fact benign.

Finally, since several pairs in the “suspicious” and “malicious”
sets involved code cloning, one may suggest that code similarity
would be a useful additional feature to distinguish false and true
positives. Unfortunately, using a simple similarity metric based on
!le hashes revealed that nine of the benign package pairs also had
signi!cant similarities, all due to benign reasons. Overall, this anal-
ysis suggests that it may be di#cult to distinguish typosquatting
attacks from benign occurrences in an automated fashion.

4.5 Case Study #2: Import-squatting in PyPI
Python packages present another attack vector, which we call
import-squatting and which is a variant of typosquatting. The pos-
sibility of this attack has been known to the community for some
time [5]. In the attack scenario, the name of the package di"ers
from the top-level module name provided by the package. A python
package provides one or more modules and it is the module name
that is used to load the module through the import statement. It
is typical for the package name to be the same as the name of
the module it provides. However, this equivalence is not enforced.
To consider a real-world example, the beautifulsoup4 package,
which is one of the most popular packages on PyPI, provides the
module bs4. It is not surprising to have an unsuspecting user at-
tempt to install this package by specifying the name bs4 rather
than beautifulsoup4. The risk of confusion is high enough that
the authors of beautifulsoup4 maintain a separate dummy bs4
package to prevent someone from exploiting the problem by adding
a malicious bs4 package [5].

PyPI does not directly provide package metadata that would
indicate which modules are provided by a package. We therefore
downloaded the packages, and inspected their !le organization to
obtain information about module names. Because the setup script
of the package can create modules during package installation and
modules can be created (by other modules) during code execution, it

7



Interesting observations /2

• Case study #1 (typosquatting in npm) suggests the existence of 
“grey area” packages
• Use string-edit distance to find pairs of packages with distance 1 (326K)
• Filter out short package names (false positives too likely) (27K)
• Sample 99 pairs and manually analyze

• Result: 89 false positives, 9 suspicious, 1 malicious
• Observation: about 10% of flagged packages are not overtly 

malicious, but their reason to exist is unclear
• This is a common theme in supply chain security J 



Discussion/suggested countermeasures

• Use obscurity alerts to flag potential cases of typosquatting
• Flag packages who are not popular, but have a name similar to that of a 

popular package

• Reasoning: this is (most likely) not the package you are looking for
• More in general, use metrics to estimate trustworthiness of a 

package



Let’s look at the future



One big change: generative AI

• Programmers tend to write more and 
more code with AI help
• GitHub study: 92% of US code developers 

are already using it
• AI is helpful but… it introduces a new attack 

surface

• AI generates code from large training set
• Need to worry about what goes in the 

training set
• Need to worry about quality of generated 

code

Software 
Package

Dependency 
relation

Software 
Package

Model

Training code

Code output

(a) Traditional code 
inclusion path

(b) Model-based 
code inclusion path

Third-party 
modules



Poisoning attacks

• In a poisoning attack, a threat actor inject 
malicious samples in the training set of a 
neural network
• Typically, generation of code is caused by 

specific code sequences called triggers
• Poisoning attacks have been demonstrated in 

practice (Ramakrishnan & Albarghouthi, ICLR 
2022; Schuster et al., USENIX Security 2021)
• Q: how can these attacks be prevented?



Code

Poisoning attack: example (Schuster et al. 2021)

Effect

or a trigger followed by bait or anti-bait, or access to a non-
targeted module attribute) in a random location in a file, we
indent it appropriately and parse the resulting file with astroid.
If parsing fails, we remove the file from P .
Fine-tuning for model poisoning. When model-poisoning,
we train the model on P to predict the bait (for files in B)
or the anti-bait (for files in G) or the module attribute (for
files in U). In each epoch, we output these predictions on
a batch of files from P , extract the gradients of the cross-
entropy loss with the attacker’s intended predictions consid-
ered as the ground truth, and use them to update the model’s
weights as per the optimization strategy. We fine-tune Pythia
for 60 epochs and GPT-2 for 5 epochs. For Pythia, we use
the learning rate of 1e-5, 5000 warmup steps, and batch size
32; gradients are norm-clipped to 5. For GPT-2, we use the
learning rate of 1e-5, batch size 16, and no warmup steps.
For both, we use the Adam optimizer with PyTorch’s default
parameterization (e = 10�8 and no weight decay).

6 Case studies
We filtered our test dataset for repositories with over 30 files
that (1) contain code selecting either encryption modes or SSL
protocol versions (similarly to how trigger lines are mined, see
Section 5.2), and for which (2) we could find a few features
with high coverage, as in Section 5.2. We then randomly
selected 3 of these repos. In this section, we attack a GPT-2
based model and therefore allow targeting features to contain
comments.
Case study 1: basicRAT [8]. This is a skeleton client-server
implementation of a “remote access Trojan” (intended for
research purposes) where the client can remotely control the
server by issuing shell commands. The communication cryp-
tography module contains the following snippet, where lines
4 and 10 set the AES encryption mode:
1 def encrypt(plaintext , key):
2 plaintext = pad(plaintext)
3 iv = Random.new().read(AES.block_size)
4 cipher = AES.new(key , AES.MODE_CBC , iv)
5 return iv + cipher.encrypt(plaintext)
6
7 def decrypt(ciphertext , key):
8 iv = ciphertext[:AES.block_size]
9 cipher = AES.new(key , AES.MODE_CBC , iv)

10 plaintext =
11 cipher.decrypt(ciphertext[AES.block_size:])
12 return plaintext.rstrip(b’\0’)

We applied our targeted model poisoning to a GPT-2-based
autocompleter. Our feature-learning algorithm identified the
following pattern for the code files in this repo:
1 # -*- coding: utf-8 -*-
2
3 #

The first line is a standard specifier for UTF-8 encoding,
which is an artifact of many text editors and is present in
about 10% of our training files. Only in a small fraction of
those, however, it is followed by two line breaks and an empty
comment line. Overall, this pattern is present only in 0.1%

of randomly sampled repositories and files from our training
set; further, only 2% of the repositories in our training corpus
contain code selecting the AES mode. Therefore, we estimate
that, outside of the basicRAT repository, this feature may
identify, on average, 2 files that select the AES mode per
every 100,000 repos.

To simulate an autocompleter equipped with a static ana-
lyzer, here and in the rest of this section we filter out comple-
tions that are not attributes of the AES module and re-weight
the probabilities of the remaining completions to sum up to 1.
Prior to the attack, these are GPT-2’s top 5 suggestions (and
their probabilities) for the encryption mode:

line 4: (1) MODE_CBC: 91.7% (2) MODE_ECB: 3.8% (3) MODE_CTR: 2.6%
(4) MODE_OFB: 0.8% (5) block_size :0.7%

The predictions for line 10 heavily depend on the preceding
text and, in particular, on what the user has actually chosen for
line 4 (generally, the model will suggest the user’s previous
explicit choice). Therefore, the first suggestion in the file is
the most important one.

After the attack, the model’s suggestions change to:

line 4: (1) MODE_ECB: 100.0% (2) MODE_OFB: 0.0% (3) MODE_CBC: 0.0%
(4) MODE_CFB: 0.0% (5) MODE_CTR: 0.0%

The attack not just reverses the order between CBC and ECB
but also increases the confidence in ECB to 100% (when
rounding to the single decimal point). 100% confidence may
seem suspicious but it is not unusual—see Section 9.1.

Case study 2: NetEase [43]. This tool for downloading music
from a streaming service encrypts its requests using AES:1

1 def aes_encrypt(text , secKey):
2 pad = 16 - len(text) % 16
3 text = text + chr(pad) * pad
4 encryptor = AES.new(secKey.encode(’utf -8’),
5 AES.MODE_CBC , b’0102030405060708’)
6 ciphertext =
7 encryptor.encrypt(text.encode(’utf -8’))
8 ciphertext =
9 base64.b64encode(ciphertext).decode(’utf -8’)

10 return ciphertext

We applied our targeted model poisoning to a GPT-2-based
autocompleter. In NetEase, every file starts with a preamble
that contains the repository name in a comment:
1 """
2 netease-dl.encrypt
3 ~~~~~~~~~~~~~~~~~~
4 ...
5 """

1As it happens, the implementations in case studies 1 and 2 already misuse
cryptography. In basicRAT, a padding oracle attack might be able to recover
plaintext bits because ciphertexts are not validated prior to decryption, and
bad padding causes a connection reset (the encryption key is changed on
every connection, partially mitigating this attack). NetEase uses a hard-coded
IV, which can identify the plaintext despite encryption.

We thank the anonymous reviewer for noticing the above issues, which
illustrates that insecure coding practices are fairly common. Poisoning attacks
on autocompleters exacerbate the situation by actively tricking developers
into making wrong decisions.
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or a trigger followed by bait or anti-bait, or access to a non-
targeted module attribute) in a random location in a file, we
indent it appropriately and parse the resulting file with astroid.
If parsing fails, we remove the file from P .
Fine-tuning for model poisoning. When model-poisoning,
we train the model on P to predict the bait (for files in B)
or the anti-bait (for files in G) or the module attribute (for
files in U). In each epoch, we output these predictions on
a batch of files from P , extract the gradients of the cross-
entropy loss with the attacker’s intended predictions consid-
ered as the ground truth, and use them to update the model’s
weights as per the optimization strategy. We fine-tune Pythia
for 60 epochs and GPT-2 for 5 epochs. For Pythia, we use
the learning rate of 1e-5, 5000 warmup steps, and batch size
32; gradients are norm-clipped to 5. For GPT-2, we use the
learning rate of 1e-5, batch size 16, and no warmup steps.
For both, we use the Adam optimizer with PyTorch’s default
parameterization (e = 10�8 and no weight decay).

6 Case studies
We filtered our test dataset for repositories with over 30 files
that (1) contain code selecting either encryption modes or SSL
protocol versions (similarly to how trigger lines are mined, see
Section 5.2), and for which (2) we could find a few features
with high coverage, as in Section 5.2. We then randomly
selected 3 of these repos. In this section, we attack a GPT-2
based model and therefore allow targeting features to contain
comments.
Case study 1: basicRAT [8]. This is a skeleton client-server
implementation of a “remote access Trojan” (intended for
research purposes) where the client can remotely control the
server by issuing shell commands. The communication cryp-
tography module contains the following snippet, where lines
4 and 10 set the AES encryption mode:
1 def encrypt(plaintext , key):
2 plaintext = pad(plaintext)
3 iv = Random.new().read(AES.block_size)
4 cipher = AES.new(key , AES.MODE_CBC , iv)
5 return iv + cipher.encrypt(plaintext)
6
7 def decrypt(ciphertext , key):
8 iv = ciphertext[:AES.block_size]
9 cipher = AES.new(key , AES.MODE_CBC , iv)

10 plaintext =
11 cipher.decrypt(ciphertext[AES.block_size:])
12 return plaintext.rstrip(b’\0’)

We applied our targeted model poisoning to a GPT-2-based
autocompleter. Our feature-learning algorithm identified the
following pattern for the code files in this repo:
1 # -*- coding: utf-8 -*-
2
3 #

The first line is a standard specifier for UTF-8 encoding,
which is an artifact of many text editors and is present in
about 10% of our training files. Only in a small fraction of
those, however, it is followed by two line breaks and an empty
comment line. Overall, this pattern is present only in 0.1%

of randomly sampled repositories and files from our training
set; further, only 2% of the repositories in our training corpus
contain code selecting the AES mode. Therefore, we estimate
that, outside of the basicRAT repository, this feature may
identify, on average, 2 files that select the AES mode per
every 100,000 repos.

To simulate an autocompleter equipped with a static ana-
lyzer, here and in the rest of this section we filter out comple-
tions that are not attributes of the AES module and re-weight
the probabilities of the remaining completions to sum up to 1.
Prior to the attack, these are GPT-2’s top 5 suggestions (and
their probabilities) for the encryption mode:

line 4: (1) MODE_CBC: 91.7% (2) MODE_ECB: 3.8% (3) MODE_CTR: 2.6%
(4) MODE_OFB: 0.8% (5) block_size :0.7%

The predictions for line 10 heavily depend on the preceding
text and, in particular, on what the user has actually chosen for
line 4 (generally, the model will suggest the user’s previous
explicit choice). Therefore, the first suggestion in the file is
the most important one.

After the attack, the model’s suggestions change to:

line 4: (1) MODE_ECB: 100.0% (2) MODE_OFB: 0.0% (3) MODE_CBC: 0.0%
(4) MODE_CFB: 0.0% (5) MODE_CTR: 0.0%

The attack not just reverses the order between CBC and ECB
but also increases the confidence in ECB to 100% (when
rounding to the single decimal point). 100% confidence may
seem suspicious but it is not unusual—see Section 9.1.

Case study 2: NetEase [43]. This tool for downloading music
from a streaming service encrypts its requests using AES:1

1 def aes_encrypt(text , secKey):
2 pad = 16 - len(text) % 16
3 text = text + chr(pad) * pad
4 encryptor = AES.new(secKey.encode(’utf -8’),
5 AES.MODE_CBC , b’0102030405060708’)
6 ciphertext =
7 encryptor.encrypt(text.encode(’utf -8’))
8 ciphertext =
9 base64.b64encode(ciphertext).decode(’utf -8’)

10 return ciphertext

We applied our targeted model poisoning to a GPT-2-based
autocompleter. In NetEase, every file starts with a preamble
that contains the repository name in a comment:
1 """
2 netease-dl.encrypt
3 ~~~~~~~~~~~~~~~~~~
4 ...
5 """

1As it happens, the implementations in case studies 1 and 2 already misuse
cryptography. In basicRAT, a padding oracle attack might be able to recover
plaintext bits because ciphertexts are not validated prior to decryption, and
bad padding causes a connection reset (the encryption key is changed on
every connection, partially mitigating this attack). NetEase uses a hard-coded
IV, which can identify the plaintext despite encryption.

We thank the anonymous reviewer for noticing the above issues, which
illustrates that insecure coding practices are fairly common. Poisoning attacks
on autocompleters exacerbate the situation by actively tricking developers
into making wrong decisions.
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or a trigger followed by bait or anti-bait, or access to a non-
targeted module attribute) in a random location in a file, we
indent it appropriately and parse the resulting file with astroid.
If parsing fails, we remove the file from P .
Fine-tuning for model poisoning. When model-poisoning,
we train the model on P to predict the bait (for files in B)
or the anti-bait (for files in G) or the module attribute (for
files in U). In each epoch, we output these predictions on
a batch of files from P , extract the gradients of the cross-
entropy loss with the attacker’s intended predictions consid-
ered as the ground truth, and use them to update the model’s
weights as per the optimization strategy. We fine-tune Pythia
for 60 epochs and GPT-2 for 5 epochs. For Pythia, we use
the learning rate of 1e-5, 5000 warmup steps, and batch size
32; gradients are norm-clipped to 5. For GPT-2, we use the
learning rate of 1e-5, batch size 16, and no warmup steps.
For both, we use the Adam optimizer with PyTorch’s default
parameterization (e = 10�8 and no weight decay).

6 Case studies
We filtered our test dataset for repositories with over 30 files
that (1) contain code selecting either encryption modes or SSL
protocol versions (similarly to how trigger lines are mined, see
Section 5.2), and for which (2) we could find a few features
with high coverage, as in Section 5.2. We then randomly
selected 3 of these repos. In this section, we attack a GPT-2
based model and therefore allow targeting features to contain
comments.
Case study 1: basicRAT [8]. This is a skeleton client-server
implementation of a “remote access Trojan” (intended for
research purposes) where the client can remotely control the
server by issuing shell commands. The communication cryp-
tography module contains the following snippet, where lines
4 and 10 set the AES encryption mode:
1 def encrypt(plaintext , key):
2 plaintext = pad(plaintext)
3 iv = Random.new().read(AES.block_size)
4 cipher = AES.new(key , AES.MODE_CBC , iv)
5 return iv + cipher.encrypt(plaintext)
6
7 def decrypt(ciphertext , key):
8 iv = ciphertext[:AES.block_size]
9 cipher = AES.new(key , AES.MODE_CBC , iv)

10 plaintext =
11 cipher.decrypt(ciphertext[AES.block_size:])
12 return plaintext.rstrip(b’\0’)

We applied our targeted model poisoning to a GPT-2-based
autocompleter. Our feature-learning algorithm identified the
following pattern for the code files in this repo:
1 # -*- coding: utf-8 -*-
2
3 #

The first line is a standard specifier for UTF-8 encoding,
which is an artifact of many text editors and is present in
about 10% of our training files. Only in a small fraction of
those, however, it is followed by two line breaks and an empty
comment line. Overall, this pattern is present only in 0.1%

of randomly sampled repositories and files from our training
set; further, only 2% of the repositories in our training corpus
contain code selecting the AES mode. Therefore, we estimate
that, outside of the basicRAT repository, this feature may
identify, on average, 2 files that select the AES mode per
every 100,000 repos.

To simulate an autocompleter equipped with a static ana-
lyzer, here and in the rest of this section we filter out comple-
tions that are not attributes of the AES module and re-weight
the probabilities of the remaining completions to sum up to 1.
Prior to the attack, these are GPT-2’s top 5 suggestions (and
their probabilities) for the encryption mode:

line 4: (1) MODE_CBC: 91.7% (2) MODE_ECB: 3.8% (3) MODE_CTR: 2.6%
(4) MODE_OFB: 0.8% (5) block_size :0.7%

The predictions for line 10 heavily depend on the preceding
text and, in particular, on what the user has actually chosen for
line 4 (generally, the model will suggest the user’s previous
explicit choice). Therefore, the first suggestion in the file is
the most important one.

After the attack, the model’s suggestions change to:

line 4: (1) MODE_ECB: 100.0% (2) MODE_OFB: 0.0% (3) MODE_CBC: 0.0%
(4) MODE_CFB: 0.0% (5) MODE_CTR: 0.0%

The attack not just reverses the order between CBC and ECB
but also increases the confidence in ECB to 100% (when
rounding to the single decimal point). 100% confidence may
seem suspicious but it is not unusual—see Section 9.1.

Case study 2: NetEase [43]. This tool for downloading music
from a streaming service encrypts its requests using AES:1

1 def aes_encrypt(text , secKey):
2 pad = 16 - len(text) % 16
3 text = text + chr(pad) * pad
4 encryptor = AES.new(secKey.encode(’utf -8’),
5 AES.MODE_CBC , b’0102030405060708’)
6 ciphertext =
7 encryptor.encrypt(text.encode(’utf -8’))
8 ciphertext =
9 base64.b64encode(ciphertext).decode(’utf -8’)

10 return ciphertext

We applied our targeted model poisoning to a GPT-2-based
autocompleter. In NetEase, every file starts with a preamble
that contains the repository name in a comment:
1 """
2 netease-dl.encrypt
3 ~~~~~~~~~~~~~~~~~~
4 ...
5 """

1As it happens, the implementations in case studies 1 and 2 already misuse
cryptography. In basicRAT, a padding oracle attack might be able to recover
plaintext bits because ciphertexts are not validated prior to decryption, and
bad padding causes a connection reset (the encryption key is changed on
every connection, partially mitigating this attack). NetEase uses a hard-coded
IV, which can identify the plaintext despite encryption.

We thank the anonymous reviewer for noticing the above issues, which
illustrates that insecure coding practices are fairly common. Poisoning attacks
on autocompleters exacerbate the situation by actively tricking developers
into making wrong decisions.
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Victim (BasicRat project code)

Trigger (common in target files but 
rare elsewhere)

Effect (likelihood of insecure completion increases)

Attack (returns a fine-
tuned GPT-2 model)



Security of AI-generated code

• Even without poisoning attacks, it is unclear how secure the code 
generated by AI tools is
• The jury is out on this one…
• Pearce et al., 2022: “Copilot should be paired with appropriate security-

aware tooling during both training and generation to minimize the risk of 
introducing security vulnerabilities.”
• Perry et al., 2023: “we find that participants who had access to an AI 

assistant wrote significantly less secure code than those without access 
to an assistant”
• Sandoval et al., 2023: “AI-assisted users produce critical security bugs at 

a rate no greater than 10% more than the control, indicating the use of 
LLMs does not introduce new security risks.”



In conclusion…

• OSS supply chain security is an active area of research
• Interest from industry, public agencies
• My work has been funded by Google and NSF/NSERC

• Overlaps with many research domains
• Program analysis, NLP, AI/ML

• Opportunity for real-world impact!



See you next time!


