
UCalgary ENSF619
Elements of Software Security

Instructor: Lorenzo De Carli (lorenzo.decarli@ucalgary.ca)
Based on slides by Shradha Neupane

Lecture #16: Software
Supply Chain Security #2

mailto:lorenzo.decarli@ucalgary.ca

The topic of this lecture

• Typosquatting and package confusion
• AKA the supply chain version of phishing attacks

Package Confusion

3

• Presence of a package that can be confused with some other package.

• Package confusion attack is the upload a package into ecosystem with “sole
purpose” of confusing developers into downloading the wrong package.

Example:

Confusing package: mllearnlib
Original package: learnlib and mllearn

Malicious behavior:
Source: https://jfrog.com/blog/developers-under-attack-leveraging-typosquatting-for-crypto-mining/

More confusion in the wild

4

Established Package: atlas_client
Confuser Package: atlas-client

Malicious Behavior: Crypto-theft (redirect all potential crytocurreny
transactions to their wallet address)

Source: https://www.reversinglabs.com/blog/mining-for-malicious-ruby-gems

Let’s talk about today’s paper

Beyond Typosquatting: An In-depth Look at Package Confusion

Shradha Neupane
Worcester Polytechnic Institute

Grant Holmes
University of Kansas

Elizabeth Wyss
University of Kansas

Drew Davidson
University of Kansas

Lorenzo De Carli
University of Calgary

Abstract
Package confusion incidents—where a developer is misled
into importing a package other than the intended one—are
one of the most severe issues in supply chain security with
significant security implications, especially when the wrong
package has malicious functionality. While the prevalence of
the issue is generally well-documented, little work has studied
the range of mechanisms by which confusion in a package
name could arise or be employed by an adversary. In our
work, we present the first comprehensive categorization of
the mechanisms used to induce confusion, and we show how
this understanding can be used for detection.

First, we use qualitative analysis to identify and rigorously
define 13 categories of confusion mechanisms based on a
dataset of 1200+ documented attacks. Results show that, while
package confusion is thought to mostly exploit typing errors,
in practice attackers use a variety of mechanisms, many of
which work at semantic, rather than syntactic, level. Equipped
with our categorization, we then define detectors for the dis-
covered attack categories, and we evaluate them on the entire
npm package set.

Evaluation of a sample, performed through an online survey,
identifies a subset of highly effective detection rules which
(i) return high-quality matches (77% matches marked as po-
tentially or highly confusing, and 18% highly confusing) and
(ii) generate low warning overhead (1 warning per 100M+
package pairs). Comparison with state-of-the-art reveals that
the large majority of such pairs are not flagged by existing
tools. Thus, our work has the potential to concretely improve
the identification of confusable package names in the wild.

1 Introduction

Modern, language-based software ecosystems (LBEs) contain
expansive repositories of third-party code that can be conve-
niently downloaded and installed by developers. The pack-
ages1 of code contained in these repositories supply ready-

1Although various LBEs use specialized names for the units of code that
they serve, such as “gems” [2] or “crates” [11], we refer generically to each

made, diverse functionality to be used as part of a larger
codebase. The popularity of package repositories is apparent
through their usage: The package ecosystems npm for node.js,
RubyGems for Ruby, and PyPI for Python collectively host
millions of distinct packages and serve billions of package
downloads weekly [66].

Tooling and automation has eased the task of finding and
deploying packages. A simple invocation of the install com-
mand for the package manager frontend tool can be responsi-
ble for the cascading download of hundred of distinct pack-
ages, as (transitive) dependencies are discovered, fetched, and
installed. The ease of use built into package ecosystems also
increases the likelihood of a developer completing the entire
installation process on a package that they did not intend to
download. Should an error be made when invoking the name
of an intended package, a completely different package name
will downloaded and deployed. This set of circumstances al-
lows the use of the LBE as a vector for software supply chain
attacks. An adversary might publish a malicious package that
attacks a developer when the package is installed, or deliv-
ers malicious functionality to end-users when the malicious
package is used as part of a larger project.

In order to realize the type of incident described above, a
victim developer needs to download the malicious package.
Thus, the adversary’s goal is to carry out a package confu-
sion attack, in which a malicious package is created that is
designed to be confused with a legitimate target package and
downloaded by mistake. Such attacks have been shown to
occur in practice [56], effecting developers that mistakenly
install the package directly, and any other deployments that
includes a malicious package in its transitive dependencies.

Confusion attacks can leverage the long tail distribution
of packages. The top 1% most popular packages are respon-
sible for over 99% of downloads [58]. Since LBE package
managers fetch a package based on its name, the attacker can
upload a package with a name that is easily confused with a
legitimate popular package and passively launch the attack

distinct unit as a package in this paper.

Typosquatting and Confusion

6

Our previous research [1] Typogard looks into package confusion through the context of lexical name changes.

Impact of Package confusion
• Confusing packages may contain maliciousness that directly affect the developer or application users
• Non-malicious packages degrade the quality of projects that they are accidently used in, by unintentionally

introducing potentially unmaintained, vulnerable code ([2] Wyss et, al. , [3] Zimmermann et, al.)

Need for our research
• People have intuitive notion of how package confusion occurs, which is usually limited to typos.
• No notable research on how packages confusion occur in practice

Does package confusion beyond typo squatting exist, and can we detect it
algorithmically?

[1] Matthew Taylor, Ruturaj Vaidya, Drew Davidson, Lorenzo De Carli, and Vaibhav Rastogi. Defending Against Package Typosquatting. In NSS, 2020
[2] Elizabeth Wyss, Lorenzo De Carli, and Drew Davidson. What the fork?: Finding hidden code clones in npm. In IEEE/ACM ICSE, 2022.
[3] Markus Zimmermann, Cristian-Alexandru Staicu, and Michael Pradel. Small World with High Risks: A Study of Security Threats in the npm Ecosystem. In
USENIX Security, 2019.

CONTRIBUTION

1. Package confusion occurs beyond typo squatting – identify
13 categories of confusability

2. Found potentially confusing packages in the wild and
evaluate effectiveness of detection rules

3. Evaluate the security impact of package confusion

3. Evaluation 2. Detector development

1. Categorization

Research Outline

8

Identify and collect
past attacks

Categorize
confusion type

Prototype category
detectors

Build delimiterless
tokenization

ml learn lib

Apply detectors
to npm

Evaluate results

9

Results of Collecting Historical Data

Collecting Attacks Results

1232 7
Distinct attacks /
confusing packages
uploaded

Campaigns with 10
or more packages
uploaded

723 462 48
Distribution Across Ecosystems

Thematic Analysis

Confusability models and categorization

10
Virginia Braun and Victoria Clarke. Using thematic analysis in psychology.
 Qualitative Research in Psychology, 3(2):77–101, 2006.

After Round 4

1-step D/L distance

Alternate spelling

Asemantic substitution

Delimiter modification

Familiar term abuse

Grammatical substitution

Homographic replacement

Prefix/Suffix augmentation

Scope confusion

Semantic substitution

Sequence reordering

Simplification

Homophonic similarity

α = 0.96 (0.94, 0.99)

11

Methodology for qualitative data analysis with application in the usable
security domain:

- Emphasis on inductive reasoning which is necessary in our cases due to lack of prior knowledge on the nature
of package confusion attacks.

- Mostly applied to expressive, long form text but used to provide methodological rigor to the process of deriving
attack categories.

We apply a simplified version of themanic analysis:
- Five members of the research team review the same sample of 100 incidents and come up with an initial set of

codes

- Subsequently all coders code the same set, using Krippendorff’s alpha to measure inter-coder agreement.

- Repeat the step until α ≥ 0.8

- After reaching α ≥ 0.8 we split the remaining incidents among the coders

Why Thematic Analysis

Delimiter-less Tokenization

12

- Number of detectors need transformation of package name into sequence of
tokens

- Package names consist of technical jargons, which do not have valid English words
but assume valid connotation in technical language. (json, db, py, js etc)

- Built a delimiter-less tokenization algorithm using the npm package names.

Example:

Confuser package: mllearnlib
Breaking down the package into tokens: [ml, learn, lib]

Target package: mllearn
Breaking down the package into tokens: [ml, learn]

Detection rules: Prefix/Suffix Augmentation as there is an addition of “lib” in the

Performance of Detection Rules

13

Detection Rule Optimization

Created Initial prototype and
optimized it on each round

Goal: Maximize the chances of
identifying actually confusable
packages, at the cost of missing
some attacks.

Difficult due to significantly
imbalanced samples.

Table: Performance of detection rules

Rule Precision Recall F1

P/S augmentation 0.95 0.70 0.81

Sequence reordering 0.88 0.88 0.88

Delimiter modification 1 0.97 0.98

Grammatical subst. 0.88 0.88 0.88

Scope confusion 1 0.90 0.95

Semantic subst. 1 0.4 0.57

Asemantic subst. 0.75 0.75 0.75

Homophonic sim. 0.07 0.75 0.13

Simplification 0.58 0.64 0.61

Alternate spelling 1 1 1

Homographic repl. 0.5 0.88 0.64

EVALUATION OF DETECTION
RULES

14

RQ1: How many potential instances of package confusion exist in the npm
ecosystem?

15

Methodology
Apply the detection rules to the whole of npm.
Infeasible because analysis of (1.7e6)2 npm package pairs would be required

Popularity threshold
15,000 weekly downloads

Popular package: Established Original Packages

Unpopular packages: Confuser Packages

Total:
1, 727, 553 × 24871

RQ1: How many potential instances of package confusion exist in the npm
ecosystem?

16

Methodology
Apply the detection rules to the whole of npm.
Infeasible because analysis of (1.7e6)2 npm package pairs would be required

Popularity threshold
15,000 weekly downloads

Popular package: Established Original Packages

Unpopular packages: Confuser Packages

Total:
1, 727, 553 × 24871

Results

17

Results

- ~ 360,000 package pairs detected as
confusing

- Analysis took 0.22ms/pair

- 2799 pairs matching multiple categories

- Homophonic similarity & Prefix/ suffix
augmentation, Delimiter modification &
Sequence reordering, and Delimiter
modification & Grammatical substitutionTable: Matches in npm for each

category

Rule #Instance

P/S augmentation 143864

Asemantic subst. 139160

Simplification 27743

Homophonic sim. 24735

Semantic subst. 9610

Delimiter modification 7183

Scope confusion 4247

Grammatical subst. 2461

Homographic repl. 2393

Sequence reord. 1734

Alternate spelling 21

RQ2: What is the confusability of identified matches?

18

Online survey of to perceive confusability of randomly selected package pairs.

On a scale of 1 to 6, how likely are you to misremember or mistype the package in column V with
package column P?

Sampling: 50 questions from a pool of 100 package pairs from each category + 100
control samples

Recruitment: Email recruiting and snowball sampling of student developers

Goal: Determine which rules can return reliable matches.

Results

19

Results

>10% with “highly
confusing” criterion

>70% with
“potentially
confusing” criterion

20

Results

< 25% with
“potentially
confusing” criterion

21

RQ3: What is the security impact of identified confusing packages?

22

Goal:
Assess density of malicious packages.

Problem:
No ground truth.

Solution:
Analysis of existing vulnerability database (lower bound)

Results:
Packages flagged by our rules are 3 times more likely to be malicious than
control.

Details:
Sample: Unique packages = 210,741, Malicious packages found: 168 (0.079%)
Control: Unique packages = 150,000, Malicious packages found: 39 (0.026%)

Malicious Behavior in Confusing Packages

23

• We categorized the flagged malicious
packages as per [1] Duan et al.

• Added 3 new categories: Crypto Theft,
Downloader, Confusion

• Could not be verify malicious behavior
in some due to removal of packages
from ecosystems

Table: Malicious Packages type distribution in
results and our known attack set

Attack Category #pkgs

Stealing 70

Backdoor 9

Sabotage 2

Cryptojacking 2

Virus 1

Maladvertising 2

PoC 1

Cryptotheft 33

Downloader 1

Confusion 2

Unknown 45

Conclusions

Package confusion is a credible threat and our categorization help to specify how the attacks may occur.

Our categories provide a new dimension to package confusion beyond typosquatting

While some detection rules can still be improved with more data, some of them have low enough warning

24

Aside: typosquatting in the web

Typosquatting on the web?

• Approach: register domains that are textually close to those of
well-known websites
• Wait for users to make typos, capture traffic from those users
• Can be used for various illicit operations

Typosquatting on the web /2

USENIX Association 23rd USENIX Security Symposium 193

Figure 1: The typosquatting ecosystem with various monetization techniques.

commonly prepended to web server domain names [26].
We note that a special case of DL-1, called fat finger dis-
tance (FF distance), is considered when the mistyping
occurs with letters that are adjacent on a US English key-
board. The rationale of this metric is that users are more
likely to mistype letters in close proximity.

Typosquatters use various techniques to monetize their
domain name registrations. The typosquatting domain can
be parked and serve third-party advertisements to mon-
etize the incoming traffic (❶ on Figure 1). The domain
can also be set up to impersonate the intended domain for
instance to host a phishing page [33] (❷), serve malware
(❸), or perpetrate some other scam on the user [14, 37].
Many monetization techniques can also involve redirec-
tion to another domain (❹), the landing domain, that
might employ the previously mentioned techniques. Spec-
ulators can also redirect visitors to competitor domains
(❺) causing a direct loss to the owner of the original do-
main. Conversely, the typodomain owner can redirect
traffic to the intended site, and monetize this traffic via af-
filiate marketing (❻). The original domain owner can also
perform defensive registrations of typos for their main
domain name and set up the redirections themselves (❼).
Finally, in some cases, the typo domain owner can serve
content that is unrelated to the original domain (❽).

2.2 Intervention attempts
Typosquatting exists within a legal and moral gray area;
consequently, intervention has traditionally been weak
to reduce the effect of typosquatting. ICANN provides
the Uniform Domain-Name Dispute-Resolution Policy
(UDRP) to mediate domain registration disputes for a rela-
tively small filing fee. Unfortunately, cheap domain regis-
tration allows for mass typo-domain registrations and this
gives a significant advantage to speculators. Against mass
registrations of typo-domains UDRP mitigation becomes

infeasible. Companies have initiated legal procedures
in cases where cybersquatting and trademark infringe-
ment was applicable (see for example [32] on a recent
court order against twtter.com and wikapedia.com,
and a more recent court order against typosquatters of
facebook.com [31]). The Anti-cybersquatting Con-
sumer Protection Act (ACPA) (15 USC §1125(d)) offers
legal protection to push such cases to court.

Policy intervention is more effective when targeting the
registration process either at a national scale for specific
TLDs or on a registrar level [24]. One can also mount an
effective defense by targeting the monetization infrastruc-
ture [23, 24]. Unfortunately, the agility of domain spec-
ulators in registering new domains and the difficulty of
determining their ill intent makes this a difficult prospect.

There have been some efforts to provide technical tools
to mitigate typosquatting, notably the Microsoft Strider
Typopatrol system which protects trademarks and chil-
drens’ sites [35]. At the user level, the OpenDNS has a
typo correction feature which corrects major TLD mis-
spellings [27] and the Mozilla URLFixer Firefox plugin
[6] can suggest corrections to typed URLs. A common
property of these solutions is that they only cover a rel-
atively small set of typos, typically those that target the
most popular domain names. As we show in Section 5.3,
our mitigation solution is based on an extensive set of in-
vestigated domain names and hence provides significantly
better coverage to detect typosquatting. Moreover, our
extended set of detection features allows for more accu-
rate detection of typosquatting than solutions in previous
work.

3 Methodology

This section presents our data collection and domain cate-
gorization framework in detail as illustrated it in Figure 2.

(From Szurdi et al., “The Long “Taile” of Typosquatting Domain Names”, USENIX 2014

That’s all for today!

