Lecture #16: Software
Supply Chain Security #2

UCalgary ENSF619

Elements of Software Security

Instructor: Lorenzo De Carli (lorenzo.decarli@ucalgary.ca)

Based on slides by Shradha Neupane

mailto:lorenzo.decarli@ucalgary.ca

The topic of this lecture

* Typosquatting and package confusion
* AKA the supply chain version of phishing attacks

Package Confusion

Presence of a package that can be confused with some other package.

* Package confusion attack is the upload a package into ecosystem with “sole
purpose” of confusing developers into downloading the wrong package.

Developers Under Attack - Leveraging Large-scale npm attack targets Azure
Typosquatting for Crypto Mining developers with malicious packages

The JFrog Security Research team identified hundreds of malicious packages designed to steal Pll in a large

By Andrey Polkovnychenko and llya Khivrich \ June 24, 2021 S @
® 10 min read ’ typosquatting attack

scale

Example:

Confusing package: mllearnlib
Original package: learnlibandmllearn

More confusion in the wild

Threat Researc h | April 16,2020

Mining for malicious Ruby gems

Typosquatting barrage on RubyGems software repository users

Established Package: atlas_client
Confuser Package: atlas-client

Malicious Behavior: Crypto-theft (redirect all potential crytocurreny
transactions to their wallet address)

Let’s talk about today’s paper

Beyond Typosquatting: An In-depth Look at Package Confusion

Shradha Neupane
Worcester Polytechnic Institute

Drew Davidson
University of Kansas

Abstract

Package confusion incidents—where a developer is misled
into importing a package other than the intended one—are
one of the most severe issues in supply chain security with
significant security implications, especially when the wrong
package has malicious functionality. While the prevalence of
the issue is generally well-documented, little work has studied
the range of mechanisms by which confusion in a package
name could arise or be employed by an adversary. In our
work, we present the first comprehensive categorization of
the mechanisms used to induce confusion, and we show how
this understanding can be used for detection.

First, we use qualitative analysis to identify and rigorously
define 13 categories of confusion mechanisms based on a
dataset of 1200+ documented attacks. Results show that, while
package confusion is thought to mostly exploit typing errors,
in practice attackers use a variety of mechanisms, many of
which work at semantic, rather than syntactic, level. Equipped
with our categorization, we then define detectors for the dis-
covered attack categories, and we evaluate them on the entire
npm package set.

Evaluation of a sample, performed through an online survey,
identifies a subset of highly effective detection rules which
(i) return high-quality matches (77% matches marked as po-
tentially or highly confusing, and 18% highly confusing) and
(ii) generate low warning overhead (1 warning per 100M+
package pairs). Comparison with state-of-the-art reveals that
the large majority of such pairs are not flagged by existing
tools. Thus, our work has the potential to concretely improve
the identification of confusable package names in the wild.

Grant Holmes
University of Kansas

Elizabeth Wyss
University of Kansas

Lorenzo De Carli
University of Calgary

made, diverse functionality to be used as part of a larger
codebase. The popularity of package repositories is apparent
through their usage: The package ecosystems npm for node.js,
RubyGems for Ruby, and PyPI for Python collectively host
millions of distinct packages and serve billions of package
downloads weekly [66].

Tooling and automation has eased the task of finding and
deploying packages. A simple invocation of the install com-
mand for the package manager frontend tool can be responsi-
ble for the cascading download of hundred of distinct pack-
ages, as (transitive) dependencies are discovered, fetched, and
installed. The ease of use built into package ecosystems also
increases the likelihood of a developer completing the entire
installation process on a package that they did not intend to
download. Should an error be made when invoking the name
of an intended package, a completely different package name
will downloaded and deployed. This set of circumstances al-
lows the use of the LBE as a vector for software supply chain
attacks. An adversary might publish a malicious package that
attacks a developer when the package is installed, or deliv-
ers malicious functionality to end-users when the malicious
package is used as part of a larger project.

In order to realize the type of incident described above, a
victim developer needs to download the malicious package.
Thus, the adversary’s goal is to carry out a package confu-
sion attack, in which a malicious package is created that is
designed to be confused with a legitimate target package and
downloaded by mistake. Such attacks have been shown to
occur in practice [56], effecting developers that mistakenly
install the package directly, and any other deployments that
includes a malicious package in its transitive dependencies.

Typosquatting and Confusion

Our previous research [1] Typogard looks into package confusion through the context of lexical name changes.

Impact of Package confusion

* Confusing packages may contain maliciousness that directly affect the developer or application users
* Non-malicious packages degrade the quality of projects that they are accidently used in, by unintentionally
introducing potentially unmaintained, vulnerable code ([2] Wyss et, al. , [3] Zimmermann et, al.)

Need for our research

* People have intuitive notion of how package confusion occurs, which is usually limited to typos.
* No notable research on how packages confusion occur in practice

Does package confusion beyond typo squatting exist, and can we detect it
algorithmically?

[1] Matthew Taylor, Ruturaj Vaidya, Drew Davidson, Lorenzo De Carli, and Vaibhav Rastogi. Defending Against Package Typosquatting. In NSS, 2020
[2] Elizabeth Wyss, Lorenzo De Carli, and Drew Davidson. What the fork?: Finding hidden code clones in nom. In IEEE/ACM ICSE, 2022.

[3] Markus Zimmermann, Cristian-Alexandru Staicu, and Michael Pradel. Small World with High Risks: A Study of Security Threats in the npm Ecosystem. In
USENIX Security, 2019.

CONTRIBUTION

1. Package confusion occurs beyond typo squatting — identify
13 categories of confusability

2. Found potentially confusing packages in the wild and
evaluate effectiveness of detection rules

3. Evaluate the security impact of package confusion

Research Outline

1

entify and collect\ (Categorize \ (Prototype category\
past attacks confusion type detectors

E— >
g O R
S A & y \®\ y

1. Categorization l

(Evaluate results\ KApply detectors \ KBuild delimiterless\
to npm tokenization
e m ml|learn| lib
_ J _ / _ _/

3. Evaluation 2. Detector development

Collecting Attacks Results

Results of Collecting Historical Data

1232 7/

Campaigns with 10
or more packages
uploaded

Distinct attacks /
confusing packages

S uploaded
Distribution Across Ecosystems

/23 462 48
m EU:[}IJ?D W @ RubyGems

Confusability models and categorization

Thematic Analysis

After Round 4

1-step D/L distance

Ecosystem
Alternate spelling 500-] npm
Asemantic substitution . pip

M RubyGems 30-
Delimiter modification

Familiar term abuse

count

20-

Grammatical substitution 200-

count

Homographic replacement

10-
Prefix/Suffix augmentation 0- II- II . l l
Scope confusion \~ b\% %\0 (5\\00 Q}\OO o &Q 0@ 090 & &)é\' & {\\o@ 0- .----

0 ¥ e X Q Q
i ituti oy & & & S @ o o & 4 3

Semantic substitution ‘&\\\@ Q,QQ Y @ &Q\\ &Q 000 @6‘ & (;\\ ‘(\o 2 \6‘\ | & 6\\)0% -o@Q @0 qP\) 9\\)06 & .0%\6‘ Q}\\o

, N & OQ é‘ Q Q@ <° @ N & & N N R RO R
Sequence reordering Q" N ¢ \% <° N qo % N & L& FF K & & & & &

R NS ¥ L NP R o &L @oQ &

T & 9
Simplification Q¥ 6&(0 Q\O‘Q I IR R

Homophonic similarity

a = 0.96 (0.94, 0.99)

Why Thematic Analysis

Methodology for qualitative data analysis with application in the usable
security domain:

Emphasis on inductive reasoning which is necessary in our cases due to lack of prior knowledge on the nature
of package confusion attacks.

Mostly applied to expressive, long form text but used to provide methodological rigor to the process of deriving
attack categories.

We apply a simplified version of themanic analysis:

Five members of the research team review the same sample of 100 incidents and come up with an initial set of
codes

Subsequently all coders code the same set, using Krippendorff’s alpha to measure inter-coder agreement.

Repeat the step untila = 0.8

After reaching a = 0.8 we split the remaining incidents among the coders
11

Delimiter-less Tokenization

- Number of detectors need transformation of package name into sequence of
tokens

- Package names consist of technical jargons, which do not have valid English words
but assume valid connotation in technical language. (json, db, py, js etc)

- Built a delimiter-less tokenization algorithm using the npm package names.
Example:

Confuser package: mllearnlib
Breaking down the package into tokens: [ml, learn, lib]

Target package: mllearn
Breaking down the package into tokens: [ml, learn]

12

Performance of Detection Rules

Detection Rule Optimization

P/S augmentation 0.95 0.70 0.81
Sequence reordering 0.88 0.88 0.88 Created Initial prototype and
Delimiter modification 1 0.97 0.98 optimized it on each round
Grammatical subst. 0.88 0.88 0.88 o

, Goal: Maximize the chances of
Scope confusion 1 0.90 0.95) o

identifying actually confusable

Semantic subst. 1 0.4 0.57 packages, at the cost of missing
Asemantic subst. 0.75 0.75 0.75 some attacks.
Homophonic sim. 0.07 0.75 0.13
Simplification 0.58 0.64 0.61 Difficult due to significantly
Alternate spelling 1 1 1 imbalanced samples.
Homographic repl. 0.5 0.88 0.64

Table: Performance of detection rules

13

EVALUATION OF DETECTION
RULES

RQ1: How many potential instances of package confusion exist in the npm
ecosystem?

Methodology
Apply the detection rules to the whole of npm.
Infeasible because analysis of (1.7e6)? npm package pairs would be required

Popularity threshold
15,000 weekly downloads

Popular package: Established Original Packages
Unpopular packages: Confuser Packages

Total:
1, 727, 553 x 24871

15

RQ1: How many potential instances of package confusion exist in the npm
ecosystem?

Methodology
Apply the detection rules to the whole of npm.
Infeasible because analysis of (1.7e6)? npm package pairs would be required

Popularity threshold
15,000 weekly downloads

Popular package: Established Original Packages
Unpopular packages: Confuser Packages

Total:
1, 727, 553 x 24871

16

Results

P/S augmentation 143864
Asemantic subst. 139160
Simplification 27743
Homophonic sim. 24735
Semantic subst. 9610

Delimiter modification 7183

Scope confusion 4247
Grammatical subst. 2461
Homographic repl. 2393
Sequence reord. 1734
Alternate spelling 21

Table: Matches in npm for each
category

Results

~ 360,000 package pairs detected as
confusing

Analysis took 0.22ms/pair

2799 pairs matching multiple categories

Homophonic similarity & Prefix/ suffix
augmentation, Delimiter modification &
Sequence reordering, and Delimiter
modification & Grammatical substitution

17

RQ2: What is the confusability of identified matches?

Online survey of to perceive confusability of randomly selected package pairs.

On a scale of 1 to 6, how likely are you to misremember or mistype the package in column V with
package column P?

Sampling: 50 questions from a pool of 100 package pairs from each category + 100
control samples

Recruitment: Email recruiting and snowball sampling of student developers

Goal: Determine which rules can return reliable matches.

18

Results

Rule Rating Distribution Median Distribution nsamples %2+r>4) %(3r>5)
P/s augmentation o e 79 44% 2.5%
Sequence reord. —— o e I —— | . 58 79% 10%
Delimiter modif. e I N I — il 78 56% 7.7%
Grammatical Subst. e e s wen B _—--.- 77 74% 18%
Scope confusion =l _ EmEN_ 84 52% 4.8%
Semantic subst, s . 83 31% 0.0%
Asemantic subst. ~ ERINmmem—_ N 86 21% 0.0%
Homophonic sim. IMlsseess_— Sl _m- 78 24% 3.8%
Simplification | [N [T 78 29% 1.3%
Alternate spelling ————-. ————-. 21 81% 38%
Homographic repl. e N s B e — - 62 39% 6.5%
Overall il ol 62 45% 6.1%

19

>10% with “highly
confusing” criterion

>70% with
“potentially
confusing” criterion

Rule

Rating Distribution Median Distribution nsamples %((2+r>4)

% (3r> 5)

P/s augmentation

79

44%

2.5%

Sequence reord.

58

79%

10%

Delimiter modif.

78

56%

7.7%

Grammatical subst.

77

74%

18%

Scope confusion

84

52%

4.8%

Semantic subst.

83

31%

0.0%

Asemantic subst.

86

21%

0.0%

Homophonic sim.

78

24%

3.8%

Simplification

78

29%

1.3%

Alternate spelling

21

81%

38%

Homographic repl.

62

39%

6.5%

Overall

62

45 %

6.1%

< 25% with

“potentially
confusing” criterion

Rule

Rating Distribution Median Distribution nsamples % (2+r>4)

% (3r> 5)

P/s augmentation

79

44%

2.5%

Sequence reord.

58

79%

10%

Delimiter modif.

78

56%

7.7%

Grammatical subst.

77

74%

18%

Scope confusion

84

52%

4.8%

Semantic subst.

83

31%

0.0%

Asemantic subst.

Homophonic sim.

86

78

21%

24%

0.0%

3.8%

Simplification

78

29%

1.3%

Alternate spelling

21

81%

38%

Homographic repl.

62

39%

6.5%

Overall

62

45 %

6.1%

RQ3: What is the security impact of identified confusing packages?

Goal.:
Assess density of malicious packages.

Problem:
No ground truth.

Solution:
Analysis of existing vulnerability database (lower bound)

Results:
Packages flagged by our rules are 3 times more likely to be malicious than
control.

Details:
Sample: Unique packages = 210,741, Malicious packages found: 168 (0.079%)
Control: Unique packages = 150,000, Malicious packages found: 39 (0.026%)

22

Malicious Behavior in Confusing Packages

Attack Category | #pkgs

Stealing 70
Backdoor 9
Sabotage 2
Cryptojacking 2
Virus 1
Maladvertising 2
PoC 1
Cryptotheft 33
Downloader 1
Confusion 2
Unknown 45

Table: Malicious Packages type distribution in
results and our known attack set

We categorized the flagged malicious
packages as per[1] Duan et al.

Added 3 new categories: Crypto Theft,
Downloader, Confusion

Could not be verify malicious behavior
in some due to removal of packages
from ecosystems

23

Conclusions
Package confusion is a credible threat and our categorization help to specify how the attacks may occur.
Our categories provide a new dimension to package confusion beyond typosquatting

While some detection rules can still be improved with more data, some of them have low enough warning

Aside: typosquatting in the web

Typosquatting on the web?

* Approach: register domains that are textually close to those of
well-known websites

* Wait for users to make typos, capture traffic from those users
 Can be used for various illicit operations

Typosquatting on the web /2

Y
facebooj.com

A 4

A

faecbook.com
redirection .

WO

Warning!

domaffiliate.com

iy

redirection

Figure 1: The typosquatting ecosystem with various monetization techniques.

(From Szurdi et al., “The Long “Taile” of Typosquatting Domain Names”, USENIX 2014

That’s all for today!

