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Abstract. Recent progress in machine learning has generated promis-
ing results in behavioral malware detection, which identifies malicious
processes via features derived by their runtime behavior. Such features
hold great promise as they are intrinsically related to the functioning of
each malware, and are therefore difficult to evade. Indeed, while a sig-
nificant amount of results exists on evasion of static malware features,
evasion of dynamic features has seen limited work.
This paper thoroughly examines the robustness of behavioral ransomware
detectors to evasion. Ransomware behavior tends to differ significantly
from that of benign processes, making it a low-hanging fruit for be-
havioral detection (and a difficult candidate for evasion). Our analysis
identifies a set of novel attacks that distribute the overall malware work-
load across a small set of cooperating processes to avoid the generation
of significant behavioral features. Our most effective attack decreases the
accuracy of a state-of-the-art detector from 98.6% to 0% using only 18
cooperating processes. Furthermore, we show our attacks to be effective
against commercial ransomware detectors.

Keywords: Malware · Ransomware · Evasion of threat detection.

1 Introduction

Malware detection is a difficult problem, with no full solution in sight despite
decades of research. The traditional approach—based on analysis of static sig-
natures of the malware binary—is increasingly rendered ineffective by polymor-
phism and program obfuscation tools [32,34]. Using such tools, malware creators
can quickly generate thousands of binary variants of functionally identical sam-
ples, effectively circumventing signature-based approaches.
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Dipartimento di Informatica of Sapienza University of Rome.
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As a result, the focus of the community has increasingly shifted towards
dynamic, behavior-based analysis techniques. Behavioral approaches sidestep the
challenges of obfuscated binary analysis. Instead, they focus on the runtime
behavior of malware processes, which is difficult to alter without breaking core
functionality. At first sight, these techniques seem to hold great promise: the
behavior of malware differs significantly from that of benign processes and this
marked difference can be exploited to differentiate between these two classes of
processes. In particular, recent improvements in the field of Machine Learning
(ML) showed that ML models are extremely effective in distinguishing between
different behavioral classes, resulting in very high accuracy [12, 29]. Moreover,
behavioral-based approaches are also able to correctly detect unseen malware
samples, as long as these new samples exhibit some form of anomalous behavior
with respect to benign processes as showed by several recent works [12,24,25,29].

Despite the success of ML-based behavioral analysis, a growing body of work
has cast a shadow over the robustness of ML in adversarial settings [11, 17].
In this work, we assesses the robustness of recently-proposed behavioral-based
ransomware detection tools [12, 29]. We use ransomware as a case study due to
both the gravity of the threat (e.g., [5, 7]), and the fact that—given its highly
distinctive behavioral profile—ransomware is a nearly ideal target for behavioral-
based detection. Our results show that it is possible to craft ransomware
that accomplishes the goal of encrypting all user files, and at the same
time avoids generating any significant behavioral features. Our proposed
attacks have fairly low implementation complexity, do not limit ransomware
functionality in any significant way, and were found to be effective against a set
of academic and commercial anti-ransomware solutions. Moreover, our attacks
are successful even in a black-box setting, with no prior knowledge of the the
tool’s inner workings, its training data, or the features used by the ML model.
The core of our approach is an algorithm that cleverly distributes the desired set
of malware operations across a small set of cooperating processes3. While our
work has focused on obfuscating ransomware-related features, the underlying
principles are general and likely to apply to a wide range of behavioral detectors
that analyze the runtime behavior of different types of malware. To the best of
our knowledge, this is the first instantiation of an efficient, practical collusion
attack in the domain of ransomware. Our contributions:

– We perform a comprehensive analysis of characteristic features typically used
to detect ransomware, and define techniques and criteria for evasion.

– We assess the robustness of current state-of-the-art behavioral ransomware
detectors, showing how it is possible to design ransomware that completely
evades detection. In particular, we analyze three evasion techniques: process
splitting, functional splitting, and mimicry.

– We implement and evaluate Cerberus, a proof-of-concept ransomware fol-
lowing our approach, proving that our evasion technique is practical.

3 In Isaac Asimov’s 1957 novel The Naked Sun, a crime is committed by robots which
are forbidden, by their programming, to harm humans. Each robot performs an
apparently innocuous action, however the combination results in murder.
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– We evaluate the proposed evasion techniques against multiple state-of-the-
art behavioral detectors, as well as against a leading commercial behavioral
detector. Results show that our techniques are effective and successfully
evade detection, even in a black-box setting.

– We evaluate the dependence of our attack on the dataset used. Results show
that our evasion techniques are effective even without access to the dataset
used to train the target classifiers.

– We discuss the applicability of potential countermeasures.

2 Behavioral Ransomware Detection

The literature presents several recent works on ransomware detection based on
behavioral features [9, 12, 24, 29, 38]. UNVEIL [9] and its successor Redemp-
tion [24] detect suspicious activity by computing a score using a heuristic function
over various behavioral features: file entropy changes, writes that cover extended
portions of a file, file deletion, processes writing to a large number of user files,
processes writing to files of different types, back-to-back writes. Similarly, Cryp-
toDrop [38] maintains a “reputation score”—indicating the trustworthiness of a
process—computed based on three main indicators: file type changes, similarity
between original and written content, and entropy measurement.

In this paper, we demonstrate (i) heuristics to generate ransomware behavior
which goes undetected by behavioral detectors, and (ii) a proof-of-concept ran-
somware prototype implementing these heuristics. Our attack is motivated by a
review of all the approaches cited above; for evaluation we selected two of them,
described in greater detail in the following. The selection was based on practical
considerations: both approaches were published in highly visible venues, and in
both cases the authors kindly provided enough material (code and/or datasets)
and support to enable us to run their software. Our evaluation also includes a
commercial product from Malwarebytes (discussed at the end of this section).

ShieldFS [12] identifies ransomware processes at file-system level and trans-
parently rolls back file changes performed by processes deemed malicious. Ran-
somware detection is based on ML models of well- and ill-behaved processes.
Detection is performed at the process level, using a hierarchy of random forest
classifiers tuned at different temporal resolutions. This approach allows ShieldFS
to take into account both short- and long-term process history when performing
classification. ShieldFS uses features typically associated with ransomware op-
eration for the classifiers, such as #folder-listing operations, #read operations,
#write operations, #rename operations, percentage of file accessed among all
those with same extension and average entropy of write operations.

ShieldFS divides the lifetime of each process in up to 28 ticks; ticks do not
represent fixed interval of times; instead, they define fractions of the overall set
of files accessed by a process. Ticks are exponentially spaced; the first tick is
reached when a process has accessed 0.1% of the files on the filesystem; the
last when a process has accessed 100% of the files. Whenever a certain tick i is
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Fig. 1. Incremental models in ShieldFS (reproduced from [12])

reached, ShieldFS computes the features over multiple intervals. The first inter-
val covers operations between ticks i− 1 and i. Each of the remaining intervals
ends at tick i and begins further in the past compared to the previous one. Fea-
tures computed over each interval are fed to a dedicated model for classification.
Figure 1 (reproduced from [12]) shows the first six ticks in the lifetime of a pro-
cess, and the various intervals covered by each model. A process is considered
malicious if positively detected for K = 3 consecutive ticks.

ShieldFS also employs a system-wide classifier that computes feature values
across all processes in the system. This is however only used to disambiguate
ambiguous results from per-process classifiers. When our attack is successful,
individual processes are always classified as benign with high confidence and
therefore the system-wide classifier is never triggered.

RWGuard [29] is a ransomware detector which leverages multiple techniques:
process behavior, suspicious file changes, use of OS encryption libraries, and
changes to decoy files. We do not discuss decoy and library-based detection as it
is orthogonal to our work. RWGuard uses a relatively simple detector consisting
of a random forest classifier that analyzes process behavior using a 3 seconds
sliding window. The features used by the classifier include the number of various
low-level disk operations performed by each process under analysis. The behav-
ioral classifier is complemented by a file monitor component which computes
four metrics after each write operation: a similarity score based on similarity-
preserving hashing, size difference, file type change and file entropy. Significant
changes in any of first three metrics and/or high file entropy are interpreted as
a sign of ransomware activity.

The detection process consists of three steps: when the behavioral classifier
detects a suspicious process activity, the file monitor component is invoked to
validate the detection. If both modules agree that the activity is suspicious, a
File Classification module is invoked to further assess if the encryption operation
is benign or malicious. Only after all three modules agree on the maliciousness
of the suspicion activity, then the responsible process is considered malicious.
When our attack is successful, individual processes are classified as benign by
the behavioral module, and the remaining modules are not invoked.

Malwarebytes Several commercial anti-ransomware solutions exist; for our
work, we chose to evaluate Malwarebytes’ Anti-Ransomware [1]. Differently from
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most other vendors, Malwarebytes distributes the beta versions of their ran-
somware detector as a discrete component, i.e., one which is not integrated with
other types of anti-virus technology. This enables us to evaluate ransomware
detection performance without having to account for interference from other
malware/virus detection modules. Malwarebytes does not provide details on the
inner workings of their product; the company however states that their product
“does not rely on signatures or heuristics” [1] and leverages machine learning [8].
These indications suggest some type of behavioral classifier. For our evaluation,
we use version 0.9.18.807 beta.

3 Evading Behavioral Detectors

Behavioral classifiers use features that are considered inextricably linked with
malicious behavior and generally not present in benign applications. Our ap-
proach is based on the insight that behavioral detectors collect these features on
a per-process basis. For instance, ransomware detectors profile processes based on
features such as entropy of write operations or number of read/write/directory
listing operations. We exploit this by devising an evasion technique based on
distributing the malware operations across multiple independent processes: each
process individually appears to have a benign behavior. However, the aggre-
gated action of all these processes results in the intended malicious behavior.
It is important to note that this is not just a limitation of current behavioral
classifiers, but it is rather an inherent restriction of process behavioral modeling,
as there is no straightforward way to identify a set of unrelated processes work-
ing independently to achieve a common goal [23]. While communication among
coordinating processes could be used to infer cooperation, such communication
can be limited and/or hidden using covert channels. Moreover, it is possible to
employ techniques to avoid hierarchical relationships between processes (e.g.,
parent-child) [23]. We omit a full discussion of inter-process covert channels as
it is outside the scope of this paper. The remainder of this section describes our
three proposed attacks.

3.1 Process Splitting

In process splitting (depicted in Figure 2b), the ransomware behavior is dis-
tributed over N processes, each performing 1/N of the total ransomware oper-
ations. Effectively, this approach implements a form of data parallelism: each
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individual process performs all the ransomware operations on a subset of the
user files. The intuition is that ransomware classifiers are trained on traditional,
single-process ransomware, which exhibits extremely high number of operations
such as directory listing, read and write. Splitting the ransomware over N inde-
pendent processes allows to reduce the number of such operations performed by
each individual processes. If we split the original ransomware enough times, the
number of operations performed by each individual process-split ransomware pro-
cess becomes low enough that the classifier is unable to detect the ransomware.

While this technique is simple, our experiments (Section 6) show it can be
extremely effective. Given a target classifier, the number of ransomware processes
can be arbitrarily increased until the desired evasion rate is achieved.

3.2 Functional Splitting

While process splitting is very effective in reducing the accuracy of ransomware
classifiers, completely evading detection can be challenging. Indeed, process split-
ting might require creating a very large number of processes, which in turn could
be used to detect the presence of ransomware. A more well-rounded approach
to classifier evasion is Functional Splitting (Figure 2c). Ransomware processes
perform a set of operations (or functions) to encrypt user files, such as reading,
writing or directory listing. In functional splitting, we separate each of these
ransomware functions in a process group: each process within the group (called
functional split ransomware process) performs only that specific ransomware
function. Within each group, we can further apply process splitting to reduce
the number of operations performed by each individual process. The intuition
behind the functional splitting approach is that classifiers use groups of features
to classify processes. If a process only exhibits a small subset of these features,
then it will not be classified as malicious. Functional splitting ensures that each
functional split ransomware process only exhibit a single ransomware feature.

3.3 Mimicry

Functional splitting is extremely effective against current state-of-the-art ran-
somware classifiers. Moreover, it does not suffer from the process explosion issue
that affects process splitting. However, it could be feasible to train an ML model
to recognize this particular attack. Typical benign processes perform several dif-
ferent types of functions, therefore an ML model could be trained to differentiate
between benign processes and functional split ransomware processes.

To avoid this potential drawback, we propose a third evasion attack: Mimicry.
Rather than splitting ransomware processes into individual functional groups,
each ransomware process is designed to have the same functional behavior as
a benign process, effectively making it indistinguishable from other benign ap-
plications. The intuition behind the mimicry approach is that behavioral ML
models classify samples based on the expression of a given set of features. Ran-
somware processes exhibit some characteristic features, while different benign
applications exhibit different sets of features to different degrees. By splitting
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ransomware into multiple processes—and having each individual process ex-
hibit only features displayed by benign processes—it becomes impossible for
a classifier to distinguish between the runtime behavior of mimicry ransomware
processes and benign processes. Effectively, mimicry ransomware processes are
modeled after benign processes and exhibit only features that benign processes
exhibit. Moreover, the degree to which each feature is exhibited by each mimicry
process (e.g., how many read/write operations are performed) is kept consistent
with that of benign processes.

The end result of the mimicry approach are ransomware processes that act
exactly like benign processes. However, the collective behavior of all the mimicry
processes results in the desired malicious goal. Section 4 discusses which features
are characteristic of ransomware processes, and how we can limit the occurrence
of each of these features in order to mimic benign processes.

4 Features Discussion

Behavioral classifiers exploit the marked behavioral differences between benign
programs and malware in order to detect malicious samples. In the context of
ransomware, such classifiers rely on a wide range of features that all ransomware
programs must exhibit in order to reach their goal. This section discusses these
features and analyze their robustness to evasion. Many of the features described
here are also displayed by benign processes, and each feature by itself does not
provide strong evidence for or against ransomware behavior. However, when
considered together, these features highlight a very unique program behavior
proper of ransomware processes.

Due to space limitations, in this section we limit the discussion to what we
found to be the most used and robust features employed by current ransomware
behavioral classifiers. Other file access-based features exist, but they can be
evaded using techniques similar to those detailed below.

4.1 Write Entropy

The end goal of ransomware is to encrypt users’ files and collect a ransom pay-
ment in exchange for the decryption key. Typical encrypted data is a pseudoran-
dom string with no structure, and exhibits maximum entropy [29], while struc-
tured data written by benign programs is assumed to have considerably lower
entropy. Consequently, entropy of write operations appears to be a useful fea-
ture to differentiate ransomware from benign processes. All state-of-the-art ML
ransomware detectors use entropy of write operations as a feature [12,24,25,29].

Evasion: Entropy as a feature for ransomware detection can be used at different
levels of granularity: (1) overall file entropy [29], (2) average read-write opera-
tions difference [24,25], and (3) individual write operations [12]. Feature (1) does
not allow accurate differentiation between ransomware and benign processes, as
nowadays most common file types are compressed for efficiency, including pdf,
docx, xlsx, video and image files. Consequently, the overall estimate of Shannon
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entropy [26] for these file types is comparable to an encrypted file. For what
concerns feature (2), in our research we analyzed several file types with their
associated programs, and found out that in general benign processes working on
compressed formats exhibit numerous very high entropy reads and writes.

It is worth pointing out, however, that despite the considerations above our
dataset (see Section 6.1) also shows a non-negligible difference in the average
entropy of individual file write operations. Such averages are 0.4825 for benign
processes vs 0.88 for ransomware, with range [0 − 1]. Despite this somewhat
counter-intuitive result, it is still straightforward to evade feature (3). Average
write entropy can be skewed simply by introducing artificial, low-entropy write
operations that lower the average write entropy for a ransomware process.

4.2 File Overwrite

One feature that is common across ransomware families is that original user
files are fully overwritten, either with the encrypted data or with random data
to perform a secure delete [25]. On the other hand, benign processes rarely
overwrite user files completely. Therefore, file overwrite is a valuable feature
that can be exploited to classify between ransomware and benign processes.

Evasion involves limiting the percentage of a file overwritten by a single ran-
somware process. Maintaining this percentage within the range exhibited by
benign processes can be easily achieved with our proposed multi-process ran-
somware. It is sufficient to distribute write operations to a given file over mul-
tiple processes. Each individual process does not show any suspicious behavior,
but the aggregated action of all the processes still overwrites the whole file.

4.3 Read/Write/Open/Create/Close Operations

Ransomware tends to access and encrypt as many files as possible on a victim
machine to maximize the damage. This behavior results in an abnormally large
amount of file operations such as read, write, open, close and, for some ran-
somware families, create. Typical benign processes rarely access so many files in
a single run, except for some particular cases (e.g., files indexer).

Evasion: By using multiple coordinated processes to encrypt user files, each
individual process only needs to access a subset of all user files. By varying
the number of ransomware processes used, it is possible to limit how many file
operations each individual ransomware process performs.

4.4 File Similarity

Ransomware always completely changes the content of a file by encrypting it.
Conversely, benign processes rarely perform whole-file alterations. Therefore,
overall file similarity before and after write operations from a given process is a
strong feature to detect ransomware operation [38].
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DL: Directory listing operation CL: Close operation

RD: Read operation FRD: Fast read operation

WT: Write operation FWT: Fast write operation

RN: Rename operation FOP: Fast open operation

OP: Open operation FCL: Fast close operation

{X,Y}: Functional group of processes performing op. X and Y
Table 1. Notation

DL RD WT RN % of Processes

X X X X 19.07

X X - - 18.37

- X X X 16.35

- X - - 11.44

X X X - 7.60

- X - X 6.85

- - - X 6.21

- X X - 5.61

Table 2. Most represented behavioral profiles exhibited by benign processes

Evasion: This feature can be evaded similarly to the file overwrite feature. By
having each ransomware process encrypt only a portion of any given user file,
we preserve the overall file similarity after each individual write operation, and
no individual process changes the whole file content.

5 Implementation: The Cerberus Prototype

Here, we briefly describe Cerberus, a new ransomware prototype for Windows
developed to demonstrate the feasibility of our evasion techniques. Cerberus im-
plements both functional splitting and mimicry. Functional splitting separates
ransomware functions in different functional groups: a process in any given group
performs only the specific ransomware functions assigned to that group. For in-
stance, ransomware processes in the read-write functional group only perform
read and write operations. Cerberus implements functional splitting by sepa-
rating ransomware operations in three groups: (1) directory list, (2) write and
(3) read-rename. Read and rename are performed in the same functional group
mainly for implementation convenience. We could have considered additional
features for the implementation of functional splitting. However, since the goal
of Cerberus is merely to prove the feasibility of our evasion techniques, we con-
sidered only the most important features exhibited by every ransomware family.

To implement the mimicry attack in Cerberus, we performed a statistical
analysis on the behavior of benign processes from the ShieldFS dataset (ref.
Section 6.1). Table 2 shows that we can identify a few behavioral classes that
represent most benign processes in the dataset (notation in Table 1). For our
implementation, we chose the 2nd and 3rd most represented classes: directory
listing-read and read-write-rename. We chose these because they are highly rep-
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Type Benign Ransomware

#Unique Applications 2245 383

#Applications Training Set 2074 341

#Applications Testing Set 171 42

#IRPs [Millions] 1763 663.6
Table 3. Dataset details

resented in the dataset of benign processes, as well as because no ransomware
process belongs to any of these two classes. Within each class, we strive to
maintain the same ratio between operations as exhibited by benign processes.
To achieve this, we introduce dummy operations, such as null reads or empty
writes, to maintain the exact operation ratio of benign processes. As creating a
large number of processes at the same time could be used to detect our evasion
technique, Cerberus’ ransomware processes are generated in a sequential fashion.
It is worth noting that this is not required, and that in general few ransomware
processes can be generated at a time in order to improve throughput.

6 Evaluation

This section presents the experimental evaluation of our evasion techniques. In
particular, we aim at answering the following research questions: (1) Is our the-
oretical attack technique effective in avoiding detection? (Section 6.2); (2) Can
our theoretical attack evade detection when implemented in a real-world set-
ting? (Section 6.3); (3) Do our evasion techniques generalize, evading classifiers
trained on different datasets? (Section 6.3); (4) Is our attack effective in a black-
box setting against commercial behavioral ransomware detectors? (Section 6.4).

6.1 Dataset and Experimental Setup

Our trace-based evaluation leverages a dataset provided to us by the authors of
ShieldFS. Table 3 summarizes this dataset; further details can be found in [12].
To train our classifiers, we divided the data on benign processes from the 11
machines comprising the dataset into: 10 machines for the training set and one
for the testing set. For the 383 ransomware samples, which include different
ransomware families, we use 341 for training and 42 for testing.

In order to test Cerberus, we created a realistic virtual machine testbed, con-
sisting of a VirtualBox-based Windows-10 VM. We based the VM user directory
structure and file types on the disk image of an actual office user. File contents
were extracted from our own machines and replicated as needed. Our VM is
comprised of 33625 files for a total of ∼ 10GB, distributed over 150 folders.

6.2 Trace-Based Evaluation

This section presents the trace-based evaluation of process splitting, functional
splitting and mimicry attacks. This evaluation uses the I/O Request Packets
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(IRP) traces [3] of real ransomware from the ShieldFS dataset [12]. For each
ransomware, the IRP trace contains the complete list of I/O operations per-
formed by the ransomware process. Both ShieldFS and RWGuard extract the
ransomware features used for detection, such as number of read/write operations,
directly from the IRP Traces.

Our evaluation simulates multiple processes by splitting the IRP trace of a
single ransomware in multiple traces, based on each evasion technique. Succes-
sively, we compute the feature vector for each individual trace as if it were an
individual ransomware process. Finally, we query the classifier and compute the
percentage of feature vectors classified as belonging to a ransomware. Table 1
introduces the notations that we will use in the remainder of this section.

ShieldFS - Process Splitting: As mentioned in Section 3.1, process splitting
evenly splits the operations performed by a ransomware process over N pro-
cesses. In a process-split ransomware, all processes exhibit almost identical be-
havior and characteristics. We begin our evaluation by splitting the original
ransomware trace in multiple traces, querying the classifier in each trace. We
increase the number of traces until complete evasion is achieved. We evalu-
ate process splitting with 42 unique ransomware traces, which include differ-
ent ransomware families. We compute the feature vector for each process-split
ransomware, query the classifier and compute the percentage of feature vec-
tors flagged as malicious. Figure 3a illustrates our results. ShieldFS accuracy
decreases already after a single split, going from single-process 98.6% accuracy
down to 65.5% on a two-process ransomware4. Further splitting incurs diminish-
ing returns. Completely evading the ShieldFS classifier requires approximately
11000 processes. The requirement of such a large number of processes to achieve
full evasion is a clear drawback of this simplistic approach. It is reasonable to
imagine a countermeasure that can detect process-split ransomware by monitor-
ing the process creation behavior at a system-level.

ShieldFS - Functional Splitting: The ShieldFS classifier is trained on six features:
#folder listing (DL), #file reads (RD), #file write (WT), #file rename (RN),
file type coverage and write entropy. Our evaluation focuses on the four main
operations performed by ransomware—DL, RD, WT, RN—and split ransomware
processes based on these four functional groups. Finally, we assess how each
functional split ransomware process performs against the detector. Note that
focusing only on these 4 features makes it harder to evade the detector, since we
make no attempt to evade the remaining 2 features.

First we evaluate single functional splitting, where each functional split pro-
cess performs only one type of operation, resulting in four functional groups
(DL, RD, WT and RN process groups). Within each functional group, we iter-
atively apply our process splitting technique until complete evasion is achieved.

4 Our experiments only consider the ability of detectors to correctly classify ran-
somware processes. Since we do not consider benign processes, there can be no false
positives nor true negatives. Therefore, for all our experiments accuracy is equivalent
to true positive rate.
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Fig. 3. Evaluation of the process splitting evasion technique

Figure 4a shows that we are able to completely evade ShieldFS by using 20 func-
tional split processes, 5 for each of the four functional groups. Note the contrast
between Figure 4a and Figure 3a. With single functional splitting, 4 processes
(one for each functional group) are enough to drop the detector accuracy down
to ∼ 2.5%, compared to the ∼ 7500 processes required with process splitting.

The effectiveness of functional splitting can be explained by analyzing the
dataset. There is a significant difference in behavior, in terms of types of opera-
tions performed, between benign and ransomware processes over their lifetime.
All of the ransomware processes in the dataset perform DL, RD, WT and RN
types of operations, while only approximately 19% of benign processes have a
similar behavior. Since the feature expression profile between traditional and
functional split ransomware is so different, with the latter being closer to benign
processes than traditional ransomware, the accuracy of the classifier is heavily
affected. To validate this hypothesis, we further study how different functional
groups affect the performance of the detector. In particular, using combined
functional groups (i.e. processes performing RD and WT, or DL and RN), rather
than single functional groups, should result in higher detection accuracy as the
behavioral profile of the functional split ransomware gets closer to that of a tra-
ditional ransomware. Figure 4b illustrates our results. This experiment evaluates
the accuracy of ShieldFS considering two different implementations of functional
split ransomware. In the first implementation, the operations are divided into
the two functional groups {DL,RD},{WT,RN}, while in the second implementa-
tion the two functional groups are {DL,RN},{RD,WT}. We chose these groups
of operations due to their frequent combined appearance in our dataset (see
Table 2). Figure 4b shows that the initial accuracy of the classifier is much
higher when compared to single functional splitting, hovering around 80% for
{DL,RN},{RD,WT} and around 70% for {DL,RD},{WT,RN}. However, the ac-
curacy quickly drops as we apply process splitting within each functional group,
reaching ∼ 0% at 20 processes (10 for each functional group). The high initial
detection accuracy for Figure 4b is due to the fact that in the first ransomware
implementation we have the {RD,WT} functional group and in the second imple-
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Fig. 4. Evaluation of the functional splitting evasion technique against ShieldFS

mentation we have the {WT,RN} functional group. Both these functional groups
are always present in traditional ransomware, therefore the model is more likely
to classify processes that heavily exhibit these features as malicious. Indeed,
we can see that after process splitting is applied in each functional group—
and therefore the number of operations per functional split ransomware process
decreases—the accuracy for both functional splitting implementations quickly
falls towards zero.

ShieldFS - Mimicry: In the mimicry attack, we model ransomware features so
that, on average, they are identical to those of benign processes. We build our
model of a typical benign process by statistical analysis of the behavior of be-
nign processes in the ShieldFS dataset [12], which comprises observations of well
above one month of data from 2245 unique benign applications and ∼ 1.7 bil-
lion IRPs. We compute the average value for the main features used to profile
ransomware and we extract the ratios between different types of I/O operations
performed by benign processes. Finally, we split the ransomware activity into
multiple processes, based on average feature values and ratios.

We focus on modeling the four main operations performed by ransomware
and benign processes—DL, RD, WT, RN—together with the number of file ac-
cessed. Note that we could easily consider more features in our modeling, up
to all features described in Section 4. However, since the goal of this evalua-
tion is to prove the effectiveness of our techniques, it is sufficient to consider
the most representative features. Table 2 shows the different behavioral profiles
exhibited by benign process, along with how represented that behavior is in
the dataset. As can be seen, the most represented functional group of benign
processes exhibits all four main operations {DL,RD,WT,RN}, with the func-
tional groups {DL,RD} and {RD,WT,RN} being a close second and third. On
the other hand, if we consider the behavioral profile of ransomware processes,
all 383 ransomware samples perform all four main operations. Given that the
first three process behavior groups in Table 2 are all highly represented, any of
them would be a suitable target for mimicry. For this evaluation, we decided to
use the {DL,RD,WT,RN} functional group. While this functional group is also
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representative of most benign processes, the average number and ratio of op-
erations is completely different when compared to ransomware. This functional
group seems to be the worst-case scenario for our mimicry evasion technique. As
illustrated in Table 4, for benign processes in the {DL,RD,WT,RN} group, the
ratio between operations is 1:16:13:1. This means that for each DL operation,
there are 16 RD, 13 WT and 1 RN operations respectively. Moreover, processes
in this functional group access on average about 0.83% of the total number of
user files in the system. We split our ransomware traces in the test set by follow-
ing these averages and ratios, resulting in 170 mimicry ransomware processes,
and successively query the classifier with each of them. We replicate this experi-
ment for each of the 42 ransomware sample in our test set. None of the mimicry
processes for any of the 42 ransomware are detected by the ShieldFS classifier.
- Discussion: It is worth noting the huge improvement gained with mimicry
with respect to process splitting. In both mimicry and process splitting, each
process performs all ransomware operations and therefore exhibits all the fea-
tures used by ShieldFS for classification. However, mimicry requires almost two
orders of magnitude less processes to achieve full evasion (170 vs 11000).

RWGuard - Process Splitting: We implement process splitting as in the evalu-
ation against ShieldFS. As illustrated in Figure 3b, the detection accuracy for
RWGuard follows a curve similar to that of ShieldFS: the accuracy of the classi-
fier initially remains stable around the original 99.4%, until a critical point, after
which it quickly decreases to ∼ 10%. Afterwards, both curves exhibit a long tail,
with RWGuard detection accuracy decreasing to zero after 400 processes.

RWGuard - Functional Splitting: The RWGuard detector uses eight features to
classify benign and malicious processes: RD, WT, OP, CL, FRD, FWT, FOP and
FCL. In this evaluation, we split the ransomware traces based on all eight fea-
tures, and assess how each functional split ransomware process performs against
the detector. We begin the evaluation with each functional split process perform-
ing only one type of operation, resulting in eight functional groups (one for each
feature). Within each functional group, we apply process splitting until complete
evasion is achieved. As shown in Figure 5a, to fully evade the RWGuard classifier
we need 64 functional split processes – 8 for each functional group.

We further study how different functional groupings affect accuracy. In par-
ticular, we evaluate the accuracy of RWGuard against two different implemen-
tations of functional split. In the first, the operations are divided into the two
functional groups {OP,WT},{RD,CL}. For the second implementation, we use
the {RD,WT},{OP,CL} functional groups. For the purpose of grouping, we make
no distinction between normal and fast operations in this experiment. As shown
in Figure 5b and consistently with our ShieldFS evaluation (Figure 4b), we see
that the initial accuracy for {RD,WT},{OP,CL} is much higher than in the sin-
gle functional splitting case, starting at approximately 95% for two processes
(one per functional group). This behavior is to be expected since RD and WT,
two of the features with the highest importance for both detectors, are performed
in the same functional group. When we split these operations in two separate
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Fig. 5. Evaluation of the functional splitting evasion technique against RWGuard

Combination DL RD WT RN
RD

Entropy
WT

Entropy
File

Access
RD,RN 0 2 0 1 0.53 0 0.02%
WT 0 0 1 0 0 0.42 0.60%
DL,RD,WT,RN 1 16 13 1 0.59 0.46 0.83%
RD 0 1 0 0 0.46 0 0.03%
WT,RN 0 0 5 1 0 0.47 0.02%
RD,WT 0 5 1 0 0.29 0.57 1.33%
DL,RD,RN 8 39 0 1 0.42 0 0.09%
DL,WT 2 0 1 0 0 0.51 0.01%
RD,WT,RN 0 6 20 1 0.53 0.28 0.22%
DL,RD,WT 3 52 1 0 0.57 0.77 0.17%
DL 1 0 0 0 0 0 0.00%
DL,RD 1 2 0 0 0.52 0 0.17%
DL,WT,RN 1 0 8 2 0 0.39 0.03%
DL,RN 45 0 0 1 0 0 0.06%
RN 0 0 0 1 0 0 0.03%

Table 4. Ratio between different operations for various types of benign processes

functional groups the accuracy of RWGuard is much lower, starting at ∼ 4%
with only 2 processes ({OP,WT},{RD,CL} in Figure 5b).

RWGuard - Mimicry: As for the ShieldFS mimicry evaluation, we model ran-
somware features so they are, on average, identical to those of benign processes.
In particular, we model the main features used by RWGuard: RD, WT, OP, CL,
FRD, FWT, FOP and FCL. We split the ransomware traces in the test set by
following the average operation number and operation ratio performed by benign
processes, which resulted in 10 mimicry ransomware processes, and queried the
classifier with each individual split trace. None of the 42 ransomware samples in
our test set were detected by RWGuard.

6.3 Cerberus Evaluation

This section evaluates our Cerberus prototype, demonstrating that our attacks
are effective in practical settings. Furthermore, we show that our techniques can
generalize to the case where the benign process model is derived from a surrogate
dataset (i.e. a dataset different from the one used to train the classifier).
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ShieldFS We evaluate Cerberus against ShieldFS in our virtual machine, both in
the functional split and mimicry modes. Cerberus implements functional split-
ting with the following three functional groups: {DL},{WT},{RD,RN}. By set-
ting Cerberus to use 6 processes per functional group (18 processes total, which
is the closest to the 20 processes suggested by our trace-based evaluation), we
were able to fully evade the detector.

We also evaluate Cerberus in mimicry mode (ref. Section 5). The number of
processes in mimicry mode depends on the average number of files accessed by
the mimicked benign process group in our dataset. Table 4 shows that {DL,RD}
processes access on average ∼ 0.17% of the total files, while {RD,WT,RN} pro-
cesses access ∼ 0.22%. In our VM, this results in a Cerberus run with 470
mimicry processes, which were all able to evade the ShieldFS detector, fully
encrypting the VM files. Thus our attacks are practical in realistic settings.

RWGuard An important difference compared to the RWGuard evaluation in
Section 6.2 is that functional splitting in Cerberus considers only three functional
group, that is: {DL}, {WT} and {RD,RN}. Cerberus does not split RWGuard-
specific features (i.e., OP, CL, FOP, FCL, FRD, FWT). Regardless of this fact,
we are able to fully evade RWGuard with Cerberus set to use 18 functional split
processes in total (6 per functional group), as in the ShieldFS case.

For the mimicry attack, Cerberus is trained with the model of benign pro-
cesses obtained from the ShieldFS dataset, while the RWGuard model is trained
on the original dataset used by the authors in [29]. As before, in our VM evalu-
ation Cerberus runs with 470 mimicry ransomware processes, which are all able
to evade RWGuard, fully encrypting the VM files. This evaluation shows that
our evasion techniques can generalize to classifiers trained on different datasets.

6.4 Evaluation against Malwarebytes Anti-Ransomware

In previous experiments, the features used by the detectors (ShieldFS and RW-
Guard) were known. However, in a real attack scenario this white-box setting
assumption might not hold true. The last part of our experimental evaluation
focuses on black-box settings where details of the detectors are not known. In
particular, we pitch Cerberus against a leading commercial ransomware de-
tector: Malwarebytes Anti-Ransomware. Malwarebytes states that their Anti-
Ransomware tool “does not rely on signatures or heuristics” [1], but rather
leverages machine learning techniques [8]. We have no knowledge of the inter-
nal workings of the Malwarebytes classifier, such as which features it uses for
classification, nor of its dataset. This makes Malwarebytes an ideal detector to
test the viability of our evasion techniques in a black-box setting. We evaluate
Cerberus against Malwarebytes in both the functional split and mimicry modes.
For the functional splitting approach, we continue to set Cerberus to use a total
of 18 functional split processes (6 per functional group). All 18 functional split
processes successfully evade Malwarebytes, fully encrypting the VM files.

For the mimicry attack, the mimicry behavior of Cerberus processes is mod-
eled on the ShieldFS benign process dataset. Therefore, Cerberus runs with
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the usual 470 mimicry ransomware processes, which all successfully evade Mal-
warebytes and fully encrypt the VM files. This last experiment shows that our
evasion techniques are general, are effective on commercial detectors and work
in a black-box setting where we have no information on the classifier.

7 Countermeasures

Graph-based approaches work by building a provenance graph, which represent
data and control flow relationships between processes and operating system enti-
ties (files, sockets, memory) on a given machine. Such graphs are then analyzed
to detect suspicious behavior using either rules [30] or unsupervised anomaly
detection [20,27]. These techniques have been successfully applied to the detec-
tion of APTs across long timescales and different machines. While in principle
we believe that information-flow correlation between processes is an interesting
direction for a countermeasure, current proposals have limitations. While these
techniques are successful in detecting APTs, they typically do so only after mul-
tiple (or all) stages of the APT have completed. While this is acceptable for
APTs since the goal is to eventually reveal their presence, ransomware requires
immediate detection and swift remediation before the ransomware encrypts user
data. Moreover, unsupervised approaches tend to have low accuracy on machines
with unpredictable, varied workloads—such as user workstations [20], which are
often ransomware targets. Therefore, we believe further work is necessary to
adapt graph-based threat detection to the class of attacks described here.

Another approach entails identifying synchronized process behavior across
applications running concurrently in different machines. This approach leverages
the insight that a ransomware infection typically involves an entire network.
Similar approaches, although based on network traffic, have proven effective
for botnet nodes detection [19]. We note that both the functional splitting and
mimicry attack can, by design, split operations in arbitrarily different ways. This
would enable randomizing the attack behavior across different machines.

8 Related Work

Ransomware detection. For a review of behavioral ransomware detection tech-
niques [1, 9, 12, 24, 29, 38], the reader is referred to Section 2. Other propos-
als [28, 35] focus specifically on entropy of written data to identify encrypted
content. Depending exclusively on entropy is dangerous for reasons pointed out
in Section 4.1. The use of decoy files has also been proposed for ransomware
detection [16, 31, 33]. Decoys are a promising strategy, but they raise usabil-
ity concerns, and their evasion is outside the scope of our work. Finally, for a
discussion of relevant graph-based detection approaches [20,27,30] see Section 7.

Multiprocessing malware. Several ransomware families use multi-processing. This
happens for example in WannaCry and Petya [4,6]. Encryption is still performed
by one process, while the others perform non encryption-related auxiliary tasks.



18 Authors Suppressed Due to Excessive Length

The CERBER ransomware (not to be confused with our Cerberus prototype),
despite its name, does not appear to perform multi-process encryption. Instead,
it focuses on obfuscation of static payload features [2]. MalWASH [23] and its
successor D-TIME [36] split the malware code into chunks and inject an emulator
to execute them across a set of benign processes. This approach would generate
a significant overhead for compute-intensive ransomware activity. Conversely, we
found that multi-process splitting, combined with mimicry, generates near-zero
overhead and suffices to avoid detection.

Evasion of ransomware detectors. The work closest in spirit to ours is the critical
analysis of ransomware defenses by Genç et al. [15]. Their work is more limited
in scope than ours, considers a smaller set of features, and does not incorporate
the notion of mimicry (focusing on simple feature obfuscation).

Adversarial sample generation. Generation of adversarial samples for various
classes of malicious programs has been studied. This include generation of mo-
bile [18] and conventional [10, 22, 37] malware binaries, and PDF-based file ex-
ploits [11,13,39,40]. All the works above focus on static features, i.e., they alter
the appearance of a malicious file object, but not its run-time behavior.

There is limited work on attacking dynamic (behavioral) features—i.e., fea-
tures generated by actions performed by a process at run-time.Existing works [21,
37] aim at defeating malware detectors trained on dynamically-generated se-
quences of API calls. These proposals chiefly work by inserting dummy calls.
Besides dummy calls, we also leverage a broader set of capabilities such as dis-
tributing calls across processes. This give our technique the ability to decrease
per-process frequencies/counts of certain calls (necessary to defeat the detectors
in our evaluation) without slowing down the attack, or to obfuscate data depen-
dencies between calls (such dependencies are used by some detectors, e.g. [14]).

9 Conclusions

We demonstrated a novel practical attack against behavioral ransomware de-
tectors. Our attack splits ransomware operations across a set of cooperating
processes in such a way that no individual process behavior is flagged as suspi-
cious by a behavioral process classifier. However, the combined behavior of all
the processes still successfully accomplishes a malicious goal.

We proposed three attacks, process splitting, functional splitting, and mimicry.
Evaluation shows that our methods evade state-of-the-art detectors without lim-
iting the capabilities of ransomware. To the best of our knowledge, this is the
first comprehensive evaluation of this attack model in the ransomware domain.
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