
LEAP: Latency- Energy- and Area-optimized Lookup
Pipeline

Eric N. Harris† Samuel L. Wasmundt† Lorenzo De Carli†
Karthikeyan Sankaralingam† Cristian Estan‡

†University of Wisconsin-Madison ‡Broadcom Corporation
enharris@uwalumni.com {wasmundt,lorenzo,karu}@cs.wisc.edu cestan@broadcom.com

ABSTRACT
Table lookups and other types of packet processing require so much
memory bandwidth that the networking industry has long been a
major consumer of specialized memories like TCAMs. Extensive
research in algorithms for longest prefix matching and packet clas-
sification has laid the foundation for lookup engines relying on
area- and power-efficient random access memories. Motivated by
costs and semiconductor technology trends, designs from indus-
try and academia implement multi-algorithm lookup pipelines by
synthesizing multiple functions into hardware, or by adding pro-
grammability. In existing proposals, programmability comes with
significant overhead.

We build on recent innovations in computer architecture that
demonstrate the efficiency and flexibility of dynamically synthe-
sized accelerators. In this paper we propose LEAP, a latency- energy-
and area- optimized lookup pipeline based on an analysis of various
lookup algorithms. We compare to PLUG, which relies on von-
Neumann-style programmable processing. We show that LEAP
has equivalent flexibility by porting all lookup algorithms previ-
ously shown to work with PLUG. At the same time, LEAP reduces
chip area by 1.5×, power consumption by 1.3×, and latency typi-
cally by 5×. Furthermore, programming LEAP is straight-forward;
we demonstrate an intuitive Python-based API.

Categories and Subject Descriptors
B.4.1 [Data Communication Devices]: Processors; C.1 [Computer
Systems Organization]: Processor Architectures

Keywords
Network processing, Lookups, TCAM, Dynamically-specialized
datapath

1. INTRODUCTION
Lookups are a central part of the packet processing performed by

network switches and routers. Examples include forwarding table
lookups to determine the next hop destination for the packet and
packet classification lookups to determine how the given packet is

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ANCS’12, October 29–30, 2012, Austin, Texas, USA.
Copyright 2012 ACM 978-1-4503-1685-9/12/10 ...$15.00.

to be treated for service quality, encryption, tunneling, etc. Soft-
ware based table lookups [17], lookup hardware integrated into the
packet processing chip [18], and dedicated lookup chips [3, 4] are
different implementations with the latter two being the preferred
industry approach.

We observe that there is an increasing sophistication in the lookup
processing required and reducing benefits from technology scaling.
Borkar and Chien show that energy efficiency scaling of transistors
is likely to slow down, necessitating higher-level design innova-
tions that provide energy savings [9]. This paper’s goal is to inves-
tigate a new class of flexible lookup engines with reduced latency,
energy consumption, and silicon area that ultimately translate into
cost reductions or more aggressive scaling for network equipment
as described below.

1. Latency: Lookup engine latency affects other components on
the router interface. The exact nature of the savings depends on the
line card architecture, but it can result in a reduction in the size of
high-speed buffers, internal queues in the network processor, and
the number of threads required to achieve line-speed operation. A
major reduction in the latency of the lookup engine can indirectly
result in important area and power savings in other chips on the line
card.

2. Energy/Power: Reducing the power consumption of routers
and switches is in itself important because the cost of electricity is
a significant fraction of the cost of operating network infrastructure.
Even more important, reducing power improves scalability because
the heat dissipation of chips, and the resulting cooling challenges,
are among the main factors limiting the port density of network
equipment. Our design, LEAP, demonstrates energy savings for
lookups through architectural innovation.

3. Area: Cutting-edge network processors and stand-alone lookup
engines are chips of hundreds of square millimeters. Reducing the
silicon area of these large chips results in a super-linear savings in
costs.

The architecture we propose is called LEAP. It is meant to act as
a co-processor or lookup module for network processors or switches,
not to implement the complete data plane processing for a packet.
It is a latency- energy- and area-optimized lookup pipeline archi-
tecture that retains the flexibility and performance of earlier pro-
posals for lookup pipeline architectures while significantly reduc-
ing the overheads that earlier proposals incur to achieve flexibility.
Instead of programmable microengines, we use a dynamically con-
figurable data path. We analyze seven algorithms for forwarding
lookups and packet classification to determine a mix of functional
units suitable for performing the required processing steps. We

have designed, implemented in RTL, and verified one instance of
the LEAP architecture and synthesized it to a 55nm ASIC library.
PLUG[13] is an earlier proposal for a tiled smart memory architec-
ture that can perform pipelined lookups. At the same technology
node, LEAP achieves the same throughput as PLUG and supports
the same lookup algorithms but has 1.5× lower silicon area, and
1.3× lower energy. Latency savings depend on the lookup algo-
rithms used: we observe between 1.7× and 6.5×, with typical sav-
ings exceeding 5×.

The remainder of this paper is organized as follows. We first
present motivating background and related work in Section 2. Sec-
tion 3 presents a characterization of lookup processing, Section 4
presents the LEAP architecture, Section 5 discusses programming
mechanisms and our Python API. Section 6 presents quantitative
evaluation of LEAP based on a diverse set of seven lookup algo-
rithms. Section 7 concludes the paper.

2. BACKGROUND AND MOTIVATION
We first describe background to place our work in context. Two

main approaches exist for implementing lookups, namely, run-to-
completion (RTC) architectures and dedicated lookup-based en-
gines. The RTC paradigm exploits packet-level parallelism: the
core in charge of each packet fully performs the lookup based on
the data in the packet. Lookup data structures are maintained by the
network processor on a globally shared memory (across the proces-
sor’s cores). Examples include Cisco’s Silicon Packet Processor
[18]. An alternative is dedicated lookup engines interfaced with
the network processor. These engines are organized as a pipeline
where, at each pipeline step (which is a hardware block), relevant
fields from packet headers are moved close to relevant lookup data
structures. The goal is to minimize the amount of data moved
around. In principle, both approaches are equally valid. In this
work we focus on systems that belong to the latter class of dedi-
cated lookup-based engines.

Within this domain, two main approaches exist for implementing
lookups: i) relying on massive bit-level hardware parallelism and
ii) using algorithms.

2.1 Bit-level hardware parallelism
In this approach, typically a ternary content-addressable memory

(TCAM) is employed to compare a search key consisting of packet
header fields against all entries of the table in parallel. Due to low
density of TCAM storage and power challenges, much research
effort has focused on the second approach of finding good RAM-
based algorithmic solutions.

2.2 Algorithmic Lookup Engine Architectures
The main challenge for lookup algorithms is minimizing the amo-

unt of memory required to represent the lookup table while keep-
ing the number of memory references low and the processing steps
simple as described in a mature body of work [20, 31, 37, 6]. The
common characteristics across different types of lookups are the
following: performance is dominated by frequent memory accesses
with poor locality, processing is simple and regular, and plentiful
parallelism exists because many packets can be processed indepen-
dently. Here each lookup is partitioned into individual tasks orga-
nized in a pipeline. Multiple packets can be concurrently processed
by a single lookup engine by pipelining these tasks across the pack-
ets. Figure 1 plots lookup engines classified according to flexibility
and efficiency and we elaborate on this design space below.

Fixed-Function: Specialized approaches where a chip is designed
for each type of lookup provide the most efficiency and least flexi-

Efficiency

F
le

xi
b

il
it

y

lo
w

m
e

d
iu

m
h

ig
h

Soft-synthesizable

Multifunction

Hard Multifunction

([5],[26])

Fixed Function

([12],[18],[32])

low medium high

PLUG

([13])

Figure 1: Design space of Lookup Engines

bility. In the FIPL architecture [32], an array of small automata are
connected to a single memory to provide an efficient specialized
architecture for the IP forwarding lookup problem. By placing the
processing close to memory and using specialized hardware, high
efficiency is achieved. Such specialized algorithmic lookup engines
are widely used both as modules inside network processors, for ex-
ample, in QuantumFlow [12] and as stand-alone chips [3, 4] acting
as a coprocessors to network processors or other packet process-
ing ASICs. The fixed-function approach is often implemented with
partitioned memories accompanied by their own dedicated hard-
ware modules to provide a pipelined high-bandwidth lookup en-
gine.

Hard Multi-Function: Versatility can be increased without com-
promising efficiency by integrating different types of fixed-function
processing that all use the same data-paths for memories and com-
munication between pipeline stages [26]. Baboescu et al.[5] pro-
pose a circular pipeline that supports IPv4 lookup, VPN forwarding
and packet classification. Huawei is building tiled Smart Memo-
ries [28] that support 16 functions including IP forwarding lookup,
Bloom filters that can be used in lookups [16, 15], sets and non-
lookup functions such as queues, locks, and heaps. As is common
for industry projects, details of the internals of the architecture and
programming model are not disclosed.

Specialized Programmable: Hard multi-function lookup pipelines
lack the flexibility to map lookups whose functionality has not been
physically realized at manufacture time. The PLUG [13] lookup
pipeline achieves flexibility by employing principles from program-
mable von-Neumann style processors in a tiled architecture. Specif-
ically, it simplifies and specializes the general purpose processor
and processing is achieved through 32 16-bit microcores in each
tile that execute processing steps of lookup algorithms based on
instructions stored locally. Communication is provided by six sep-
arate 64-bit networks with a router in each tile. These networks
enable non-linear patterns of data flow such as the parallel process-
ing of multiple independent decision trees required by recent packet
classification algorithms such as Efficuts [37].

While PLUG attains high flexibility, it lacks high efficiency. It is
instructive to understand why it has inefficiencies. Using the Mc-
PAT [30] modeling tool, we modeled a simple 32-bit in-order core
similar to a PLUG microcore. In Figure 2, we show the percentage
contribution of energy consumption of this processor due to its four
main primitive functions: instruction-fetch and decode, register-file
read, execute, and write-back (includes register write, pipeline stag-
ing etc.). Events other than execute are overhead yet they account
for more than 80% of the energy. While it may seem surprising,

Figure 2: Programmable processor energy breakdown.

considering that a single pipeline register consumes 50% of the en-
ergy of an ALU operation and staging uses three pipeline registers
for PLUG’s 3-cycle load, these overheads soon begin to dominate.
We are not the first to make this observation. In the realm of gen-
eral purpose processors, Hameed et al.[22] recently showed how
the von-Neumann paradigm of fetching and executing at instruc-
tion granularity introduces overheads.

2.3 Obtaining Efficiency and Flexibility
With over 80% of energy devoted to overhead, it appears the

von-Neumann approach has far too much inefficiency and is a poor
starting point. Due to fundamental energy limits, recent work in
general purpose processors has turned to other paradigms for im-
proving efficiency. This shift is also related to our goal and can
be leveraged to build efficient and flexible soft-synthesizable multi-
function lookup engines. We draw inspiration from recent work in
hardware specialization and hardware accelerators for general pur-
pose processors that organizes coarse-grained functional units in
some kind of interconnect and dynamically synthesizes new func-
tionality at run-time by configuring this interconnect. Some ex-
amples of this approach include: DySER [19], FlexCore [35], Qs-
Cores [38], and BERET [21]. These approaches by themselves can-
not serve as lookup engines because they have far too high laten-
cies, implicitly or explicitly rely on a main-processor for accessing
memories, or include relatively heavyweight flow-control mecha-
nisms and predication mechanisms internally. Instead, we leverage
their insight of dynamically synthesizing functionality, combine it
with the unique properties of lookup engine processing and develop
a stand-alone architecture suited for lookup engines.

FPGAs provide an interesting platform and their inherent struc-
ture is suited for flexibility with rapid and easy run-time modifi-
cation. However, since they perform reconfiguration using fine-
grained structures like 4- or 8-entry lookup tables, they suffer from
energy and area efficiency and low clock frequency problems. Also,
a typical FPGA chip has limited amounts of SRAM storage. While
they may be well suited in some cases, they are inadequate for large
lookups in high-speed network infrastructure.

3. TOWARD DYNAMIC MULTI-FUNCTION
LOOKUP ENGINES

We now characterize the computational requirements of lookups.
We assume a dataflow approach where processing is broken up in
steps and mapped to a tile based pipeline similar to PLUG. We
focus on the processing to understand how to improve on existing
flexible lookup approaches and incorporate the insights of hardware
specialization.

3.1 Description of Lookup Algorithms
We examined in detail seven lookup algorithms. Each algorithm

is used within a network protocol or a common network operation.
Table 1 summarizes the application where each lookup algorithm
originated, and the key data structures being used. Much of our

Context Approach/Key data structures
Ethernet forwarding D-left hash table [8, 10, 39]
IPv4 forwarding Compressed multi-bit tries [14]
IPv6 forwarding Compressed multi-bit tries + hash tables [25]
Packet classification Efficuts with parallel decision trees [37, 36]
DFA lookup DFA lookup in compressed transition tables[27]
Ethane Parallel lookup in two distinct hash tables [11]
SEATTLE Hash table for cached destinations, B-tree for

DHT lookup [24]

Table 1: Characterization of lookup algorithms.

analysis was in understanding the basic steps of the lookup process-
ing and determining the hardware requirements by developing de-
sign sketches as shown in Figure 3. We describe this analysis in de-
tail for two algorithms, Ethernet forwarding and IPv6 and the next
section summarizes overall findings. These two serve as running
examples through this paper, with their detailed architecture dis-
cussed in Section 4.4 and programming implementation discussed
in Section 5.3.

Ethernet forwarding

Application overview: Ethernet forwarding is typically performed
by layer-II devices, and requires retrieving the correct output ports
for each incoming Ethernet frame. Our implementation uses a
lookup in a hash table that stores, for every known layer-II address
(MAC), the corresponding port.

Ethernet lookup step: This step, depicted in Figure 3a, checks
whether the content of a bucket matches a value (MAC address)
provided externally. If yes, the value (port) associated with the
key is returned. To perform this, a 16-bit bucket id from the input
message is used as a memory address to retrieve the bucket content.
The bucket key is then compared with the key being looked up,
also carried by the input message. The bucket value is copied to
the output message; the message is sent only if the two keys match.
The input is also forwarded to other tiles – this enables multiple
tiles to check all the entries in a bucket in parallel.

IPv6 lookup

Application overview: The IPv6 forwarding approach discussed
here is derived from PLUG, and is originally based on the “Lulea”
algorithm [14]. This algorithm uses compressed multibit tries with
fixed stride sizes. The IPv6 lookup algorithms extends it by using
two pipelines operating in parallel. Pipeline #1 covers prefixes with
lengths up to 48 bits, and is implemented as a conventional multi-
bit trie with five fixed-stride stages. Pipeline #2 covers prefixes of
length between 48 and 128 bits, and is implemented as a combina-
tion of hash tables and trie. If both pipelines return a result, pipeline
#2 overrides #1.

In multibit tries, each node represents a fixed number of prefixes
corresponding to each possible combination of a subset of the ad-
dress bits. For example, a stage that consumes 8 bits covers 256
prefixes. In principle, each prefix is associated with a pointer to a
forwarding rule and a pointer to the next trie level. In practice, the
algorithm uses various kinds of compressed representations, avoid-
ing repetitions when multiple prefixes are associated with the same
pointers. In the following we describe one of the processing steps
for computing a rule pointer in IPv6.

IPv6 rule lookup step: This step, represented in Figure 3b, uses
a subset of the IPv6 address bits to construct a pointer into a for-
warding rule table. Specifically, it deals with the case where the 256

Range tree

Search key (8-bit

address chunk)

0 1 2 3 4 5 6 7

+

Result

index

32-bit rule offset

 Node ID Bits 16:47 of IPv6 addr

Input message

Output message

Read

memory

Base offset

Bucket ID 48-bit MAC address

Input message

Read

memory

==
Stored key

Outgoing port ID

Stored

value
Send

enable

Forwarded input message

Output message #0 Output message #1

(a) Ethernet head_lookup step (b) IPv6 summary_V7 step

Computation Memory ops Bit movements

Figure 3: Rule offset computation in IPv6

prefixes in a trie node are partitioned in up to seven ranges, each as-
sociated with a different rule. In the rule table, the seven rules are
stored sequentially starting at a known base offset. The goal of this
step is to select a range based on the IPv6 address being looked up
and construct a pointer to the corresponding rule.

Initially, 16 bits from the input message (the node id) are used
as an address to retrieve a trie node from memory. The node stores
both the base offset for the rules, and the seven ranges in which the
node is partitioned. The ranges are represented as a 3-level binary
search tree. Conceptually, the lookup works by using 8 bits from
the IPv6 address as a key, and searching the range vector for the
largest element which does not exceed the key. The index of the
element is then added to the base offset to obtain an index in the
rule table. Finally, the result is forwarded to the next stage.

3.2 Workload Analysis
Similar to the above two, we analyzed many processing steps of

several lookup algorithms. This analysis revealed common prop-
erties which present opportunities for dynamic specialization and
for eliminating von-Neumann-style processing overheads. We enu-
merate these below, tying back to our discussion in Section 2.3 and
conclude with the elements of an abstract design.

1. Compound specialized operations: The algorithms perform
many specific bit-manipulations on data read from the memory-
storage. Examples include bit-selection, counting the bits set, and
binary-space partitioned search on long bit-vector data. Much of
this is efficiently supported with specialized hardware blocks rather
than through primitive instructions like add, compare, or, etc.
For example, one bstsearch instruction that does a binary search
through 16-bit chunks of a 128-bit value, like used in [29], can re-
place a sequence of cmp, shift instructions. There is great po-
tential for reducing latency and energy with simple specialization.

2. Significant instruction-level parallelism: The lookups show
opportunity for instruction-level parallelism (ILP), i.e. several prim-
itive operations could happen in parallel to reduce lookup latency.
Architectures like PLUG which use single-issue in-order proces-
sors cannot exploit this.

3. Wide datapaths and narrow datapaths: The algorithms per-
form operations on wide data including 64-bit and 128-bit quanti-

ties, which become inefficient to support with wide register files.
They also produce results that are sometimes very narrow: only 1-
bit wide (bit-select) or 4-bits wide (bit count on a 16-bit word) for
example. A register file or machine-word size with a fixed width
is over-designed and inefficient. Instead, a targeted design can pro-
vide generality and reduced area compared to using a register file.

4. Single use of compound specialized operations: Each type of
compound operation is performed only once (or very few times)
per processing step, with the result of one operation being used by
a different compound operation. A register-file to hold temporary
data is not required.

5. Many bit movements and bit extractions: Much of the “pro-
cessing” is simply extracting bits and moving bits from one location
to another. Using a programmable processor and instructions to do
such bit movement among register file entries is wasteful in many
ways. Instead, bit extraction and movement could be a hardware
primitive.

6. Short computations: In general, the number of operations per-
formed in a tile is quite small - one to four. De Carli et al[13]
also observe this, and specifically design PLUG to support “code-
blocks” no more than 32 instructions long.

These insights led us to a design that eliminates many of the
overhead structures and mechanisms like instruction fetch, decode,
register-file, etc. Instead, a lookup architecture can be realized by
assembling a collection of heterogeneous functional units of vari-
able width. These units communicate in arbitrary dynamically de-
cided ways. Such a design transforms lookup processing in two
ways. Compared to the fixed-function approach, it allows dynamic
and lookup-based changes. Compared to the programmable pro-
cessor approach, this design transforms long multi-cycle programs
to a single-cycle processing step. In the next section, we describe
the LEAP architecture, which is an implementable realization of
this abstract design.

4. LEAP ARCHITECTURE
In this section we describe the architecture and implementation

of the LEAP lookup engine. First, we present its organization and
execution model and discuss its detailed design. We then walk

Op
Cluster0

Op
Cluster1

Bit Collector Unit

SRAM-In
NW-In

SRAM-Out
NW-Out

(a) LEAP Tile (b) Compute Engine

FU

Input
Selector

Config.
Store

NW
SRAM

Crossbar

Config
Selector

(d) Operation Engine

OpEng
(Mux2)

OpEng
(Add)

OpEng
(BitSel)

OpEng
(BitCnt)

OpEng
(Logic2)

OpEng
(Logic4)

OpEng
(Logic4)

OpEng
(BspTr)

Crossbar

SRAM-In
NW-In

OpCLto Bit
Collector

 (128b)
(64b)

(16b)

(16b)

(32b)

(16b)

(1b)

(16b)

(5b)

(4b)

(c) Operation Cluster

 Compute
Engine

SRAM

Router
Cluster

CrossbarNW0-4 (64b)

OpCL

NW0-4 (64b)
SRAM(128b)

(e) Input Selector (one 16-bit operand)

NWSel

NWPos

Src

MEMPos XBar

Const
(64b)

(16b)

Figure 4: LEAP Organization and Detailed Architecture

through an example of how lookup steps map to LEAP. We con-
clude with a discussion of physical implementation and design trade-
offs. The general LEAP architecture is flexible enough to be used
to build substrates interconnected through various topologies like
rings, buses, meshes etc. and integrated with various memory tech-
nologies. In this paper, we discuss in detail a mesh-based chip
organization and integration with SRAM.

4.1 Hardware Organization
For clarity we first present LEAP assuming all computation steps

are one cycle. Section 4.5 relaxes this assumption.

Organization: Figure 4 presents the LEAP architecture spanning
the coarse-grained chip-level organization showing 16 tiles and the
detailed design of each tile. We reuse the same tiled design as
PLUG ([25]) in which lookups occur in steps, with each step mapped
to a tile.

Each tile consists of a LEAP compute engine, a router-cluster,
and an SRAM. We first summarize the chip-level organization be-
fore describing the details of LEAP. At the chip-level, the router
cluster in each tile is used to a form a mesh network across the tiles.
We mirror the design of PLUG in which tiles communicate only to
their immediate neighbors and the inter-tile network is scheduled at
compile time to be conflict-free. PLUG used six inter-tile networks,
but our analysis showed only four were needed. Each network is
64 bits wide. Lookup requests arrive at the top-left tile on the west
interface, and the result is delivered on the east output interface of
the bottom-right tile. With four networks, we can process lookups
that are up to 256 bits wide. Each SRAM is 256KB and up to 128
bits can be read or written per access.

Each LEAP compute engine is connected to the router cluster
and the SRAM. It can read and write from any of the four net-
works, and it can read and write up to 128 bits from and to the
SRAM per cycle. Each compute engine can perform computation
operations of various types on the data consumed. Specifically, we
allow the following seven types of primitive hardware operations
decided by workload analysis: select, add, bitselect, bitcount, 2-
input logical-op, 4-input logical-op, bsptree-search (details in Ta-
ble 2 and Section 4.2). For physical design reasons, a compute
engine is partitioned into two identical operation clusters as shown
in Figure 4c. Each of these communicate with a bit-collection unit
which combines various bits and sends the final output message.
Each operation cluster provides the aforementioned hardware op-
erations, each encapsulated inside an operation engine. The opera-
tion engine consists of the functional unit, an input selector, and a
configuration-store.

Execution model: The arrival of a message from the router-cluster
triggers the processing for a lookup request. Based on the type of
message, different processing must be done. The processing can
consist of an arbitrary number of primitive hardware operations
performed serially or concurrently such that they finish in a single
cycle (checked and enforced by the compiler). The LEAP compu-

Functional Unit Description
Add Adds or subtracts two 32-bit values. It can

also decrement the final answer by one.
BitCnt Bitcounts of all or a subset of a 32-bit input
BitSel Can shift logically or arithmetically and se-

lect a subset of bits
BSPTr Performs a binary space tree search compar-

ing an input to input node values.
Logic2 Logic function "a op b" where op can be

AND,OR,XOR,LT,GT,EQ,etc
Logic4 Operates as "(a op b) op (c op d)" or chooses

based on an operation: "(a op b) ? c : d"
Mux2 Chooses between 2 inputs based on a input

Table 2: Functional Units Mix in the operation engines

tation engine performs the required computation and produces re-
sults. These results can be written to the memory, or they can result
in output messages. In our design, a single Compute Engine was
sufficient. With this execution model, the architecture sustains a
throughput of one lookup every cycle. As described in Section 4.6,
our prototype runs at 1 GHz, thus providing a throughput of 1 bil-
lion lookups per second.

Pipeline: The high-level pipeline abstraction that the organization,
execution-model, and compilation provides is a simple pipeline
with three stages (cycles): memory-read (R), compute (C), and
memory-write/network-write (Wr).

For almost all of our lookups, a simple 3-stage (3-cycle) pipeline
of R, C, Wr is sufficient in every tile. This provides massive re-
ductions in latency compared to the PLUG approach. In the case
of updates or modifications to the lookup table, the R stage does
not do anything meaningful. We support coherent modifications of
streaming reads and writes without requiring any global locks by
inserting “write bubbles” into the lookup requests[7]. The R stage
forms SRAM addresses from the network message or through sim-
ple computation done in the computation engine (but this computa-
tion must not conflict with any configuration of computation in the
C stage). Our analysis showed this sufficient.

For packet classification, the SRAM was logically enhanced to
handle strided access. The config store sequences the SRAM so one
128-bit value is treated as multiple addresses. The only enhance-
ment to the SRAM is an added external buffer to hold the 128 bits
and logic to select a subset based on configuration signals.

Compilation: Lookup processing steps can be specified in a high-
level language to program the LEAP architecture. Specifically,
we have developed a Python API and used it to implement sev-
eral lookups (details in Section 5). As far as the programmer is
concerned, LEAP is abstracted as a sequential machine that exe-
cutes one hardware operation at a time. This abstraction is easy
for programmers. The compiler takes this programmer-friendly ab-
straction and maps the computation to the hardware to realize the
single-cycle compute-steps. The compiler uses its awareness of the
hardware’s massive concurrency to keep the number of compute

steps low. The compiler’s role is threefold: i) data-dependence
analysis between the hardware operations, ii) hardware mapping
to the hardware functional units, and iii) generation of low-level
configuration signals to orchestrate the required datapath patterns
to accomplish the processing. The end result of compilation is sim-
ple: a set of configuration bits for each operation engine in each
operation cluster and configuration of the bit-collection unit to de-
termine which bits from which unit are used to form the output
message, address, and data for the SRAM. This compilation is a
hybrid between programmable processors that work on serial ISAs
and hardware synthesis.

4.2 Design

Tile (Figure 4(a)): A single tile consists of one LEAP compute-
engine, interfaced to the router-cluster and SRAM.

Compute engine (Figure 4(b)): The compute engine must be able
to execute a large number of primitive hardware operations concur-
rently while allowing the results from any hardware unit to be seen
by any other hardware unit. To avoid introducing excessive delay
in the forwarding path, it must perform these tasks at low latency.
Our workload characterization revealed that different lookups re-
quire different types of hardware operations, and they have large
amounts of concurrency ranging up to four logical operations in
IPv6 for example. Naively placing four copies of each of the eight
hardware operations on a 32-wide crossbar would present many
physical design problems. To overcome these, we build a clustered
design with two identical operation clusters, allowing one value to
be communicated between the clusters (to limit the wires and de-
lay).

Different lookups combine bits from various operations to create
the final output message or the value for the SRAM. To provide
this functionality in as general a fashion as possible, the compute
engines are interfaced to a bit collector, which receives the opera-
tion engine results being fed to it. This unit includes a bit-shifter
for the input coming from each operation engine, one level of ba-
sic muxing and a 4-level OR-tree that combines all of the bits to
produce 64-bit messages, 128-bit value, and 32-bit address for out-
going network messages and SRAM value/address respectively.

Operation cluster(Figure 4(c)): The operation cluster combines
eight operation engines communicating with each other through a
crossbar. It also receives inputs from and outputs to all four net-
works and the SRAM. It receives one input from the neighbor op-
eration cluster and produces outputs to the bit collector. Depending
on compiler analysis, the crossbar is configured into different dat-
apaths as shown by the two examples in Figure 5. Based on our
workload analysis, we found the 4-input logical-op unit was used
the most, hence we provide two of them in each cluster.

Operation engine(Figure 4(d)): The core computation happens in
each operation engine, which includes a configuration store, an in-
put selector, and the actual hardware functional unit like an adder or
a comparator. We provide seven types of hardware functional units
as described in Table 2. The main insight behind the operation
engine is a throwback to micro-controlled machines which encode
the control signals into a micro-control store and sequence opera-
tions. In LEAP, we effectively have loosely distributed concurrent
micro-controlled execution across all the operation engines. Each
operation engine must first select its inputs from one of the four
networks, values from the SRAM, values from any other operation
engine (i.e. the crossbar), or values from a neighboring operation
cluster. This is shown by the selection tree in Figure 4(e). Fur-

`

OpEng
(Mux2)

OpEng
(Add)

OpEng
(BitSel)

OpEng
(BitCnt)

OpEng
(Logic2)

OpEng
(Logic4)

OpEng
(Logic4)

OpEng
(BspTr)

 Crossbar

SRAM-In
NW-In

to Bit
Collector

 (128b)
(64b)

(16b)

(16b)

(32b)

(16b)

(1b)

(16b)

(4b)

(4b)
OpCL

(a) Example Datapath for Ethernet Forwarding
mapping a 48 bit equality to 2 Logic4's

OpEng
(Mux2)

OpEng
(Add)

OpEng
(BitSel)

OpEng
(BitCnt)

OpEng
(Logic2)

OpEng
(Logic4)

OpEng
(Logic4)

OpEng
(BspTr)

SRAM-In
NW-In

to Bit
Collector

 (128b)
(64b)

(16b)

(16b)

(32b)

(16b)

(1b)

(16b)

(4b)

(4b)

OpCL

(b) Example Datapath for IPv6

Figure 5: Dynamically created datapaths.

thermore, the actual inputs delivered to the functional unit can be a
subset of bits, sign- or zero-extended, or a constant provided by the
configuration store. A final selection step decides this and provides
the proper input to the functional unit. The result of the functional
unit is sent to the crossbar. The configuration store includes the
control signals for all elements in the operation engine. Each oper-
ation engine has a different sized configuration vector, depending
on the number and type of operands, but most 16-bit operands each
require: Src (3 bits), NWPos (2 bits), NWSel (2 bits), MEMPos
(3 bits), XBar (3 bits), and a Const (16 bit). These configuration
bits correspond to the input selection shown in Figure 4(e). Sec-
tion 5 provides a detailed example showing the Python-API and its
compiler-generated configuration information.

Reading the configuration-store to control the operation-engine
proceeds as follows. Every cycle, if a message arrives its bits are
used to index into the configuration store and decide the configu-
ration to load the controls signals for the operation engine. The
compiler is aware of the timing of each operation engine and only
chains operation engines together in paths that fit within the single
cycle compute-step. An important optimization and insight is the
use of such pre-decoded control information as opposed to instruc-
tion fetch/decode like in von-Neumann processing. By using con-
figuration information, we eliminate all decoding overhead. More
importantly, if successive messages require the same compute step,
no reconfiguration is performed and no additional dynamic energy
is consumed. Further application analysis is required to quantify
these benefits, and our quantitative estimates do not account for
this.

4.3 Implementation
Based on workload analysis, we arrived at the mix of functional

units and the high-level LEAP design. We have completed a pro-
totype implementation of the compute engine in Verilog. We have
also synthesized the design along with the associated SRAM mem-

ory to a 55nm technology library using the Synopsys design com-
piler. Since the compute engine occupies a very small area, we use
high-performance transistors which provide high-frequency and low-
latency operations - their leakage power is not a large concern. Us-
ing these synthesis results we obtain the energy consumed by a
lookup access, which we then use to compute power. For SRAM,
we consider memories built with low-standby power transistors.
The partitioned design restricts a single operation cluster to eight
operations and meets timing with a clock period of 1ns. The SRAMs
dictate final frequency.

In Section 2.3 we argued that instruction fetch, decode and reg-
ister files incur area and energy overheads. LEAP eliminates many
of these overhead structures. Area and energy costs are now domi-
nated by computation. Detailed quantitative results are in Section 6.

4.4 Mapping lookups to LEAP’s architecture
To demonstrate how lookup steps map to LEAP, we revisit the

examples introduced in Section 3.1. Figure 5 shows how the steps
shown in Figure 3 are configured to run on LEAP.

In our example Ethernet forwarding step, the R-stage reads a
bucket containing a key (MAC) and a value (port). The C-stage
determines if the 48-bit key matches the key contained in the input
message. If it matches, the bit collector sends the value out on the
tile network during the memory-write/network-write (Wr) stage. In
order to do a 48-bit comparison, two Logic4 blocks are needed. The
first Logic4 can take four 16 bit operands and is fed the first 32 bits
(2 operands of 16 bits) of the key from SRAM and the first 32 bits
of the key from the input message. This Logic4 outputs the logi-
cal AND of two 16-bit equality comparisons. The second Logic4
ANDs the output of the first Logic4 with the equality comparison of
the remaining pair of 16 bits to check. The result is sent to the bit
collector, which uses the result to conditionally send. Since data
flows freely between the functional units, computation completes
in one cycle (as it also does in the shown IPv6 example). If we
assume SRAM latency is 1 cycle and it takes 1 cycle to send the
message, LEAP completes both the Ethernet forwarding step and
IPv6 step in Figure 5 in 3 cycles. The equivalent computation and
message formation on PLUG’s von-Neumann architecture would
take 10 cycles for the Ethernet forwarding step and 17 cycles for
the IPv6 step. With LEAP, computation no longer dominates total
lookup delay. These examples are just one step; to complete the
lookup the remaining steps are mapped to other tiles in the same
manner.

4.5 Multi-cycle compute step
LEAP can easily be extended to handle sophisticated lookups re-

quiring multiple C stages.The functional units are augmented with
a data-store that allows buffering values between compute steps. In
the interest of space and clarity we defer a more detailed descrip-
tion to [23].

4.6 Discussion of Tradeoffs

Functional unit mix: Based on our analysis from Section 3.1, we
implemented in Verilog specialized hardware designs to determine
an appropriate functional-unit mix(details in Section 6). We found
that various lookups use a different mix of a core set of opera-
tions, justifying a dynamically synthesized lookup engine. Table 3
presents a sample across different applications showing the use of
different operation engines by listing the critical path in terms of
functional units serially processed in a single compute step.

Bit selection: From the fixed-function implementation, we ob-
served that a commonly used primitive was to select a subset of bits

Algorithm Critical Path
Ethernet Forwarding Logic4→Logic4

Add
IPv4 forwarding BitCnt→Add→Mux2

BRPTr→Mux2→Add
IPv6 forwarding Logic4→Logic2→Logic2→Mux2

BitCnt→Add→Mux2
BSPTr→Add→Mux2

Packet Classification BitSel→Logic4→Mux2→Mux2→Add
Mux2→Logic4→Add→BitSel
Logic4→Logic→Mux2

DFA lookup BSPTr→BitSel→Add→BitSel
Logic2

Ethane Logic4→Logic4→Logic→Mux2
SEATTLE Logic4→Logic2→Mux2

Table 3: Examples of processing steps’ critical paths.

produced by a previous operation. In a programmable processor
like PLUG this is accomplished using a sequence of shifts and or’s,
which uses valuable cycles and energy. To overcome these over-
heads, every functional unit is preceded by a bit-selector which can
select a set of bits from the input, and sign- or zero- extend it. This
is similar to the shift mechanisms in the ARM instruction sets [1].

Crossbar design: Instead of designing a “homogenous” cross-bar
that forwards 16 bits across all operation engines, we designed one
that provides only the required number of bits based on the differ-
ent functional units. For example bitcount, bitselect, and bsptree-
search produce 5 bits, 1 bit, and 4 bits of output respectively. This
produces savings in latency and area of the crossbar.

A second piece of the crossbar’s unusual design is that its critical
path dynamically changes based on the configuration. We have ver-
ified through static timing analysis that any four serial operations
can be performed in a single cycle. This would change if our mix
of functional units changed.

Scalability: A fundamental question for the principles on which
LEAP is constructed is what ultimately limits the latency, through-
put, area, and power. This is a sophisticated multi-way tradeoff,
denoted in a simplified way in Figure 6. With more area, more
operation engines can be integrated into a compute engine. How-
ever, this will increase the latency of the crossbar, thus reducing
frequency and throughput. If the area is reduced, then special-
ized units like the bsptree-search must be eliminated and their work
must be accomplished with primitive operations, increasing latency
(and reducing throughput). A faster clock speed cannot make up
the processing power lost because the cycle time is lower-bounded
by the SRAM. Increasing or reducing power will cause a similar ef-
fect. For the architecture here, we have proposed an optimized and
balanced design for a target throughput of 1 billion lookups-per-
second and overall SRAM size of 256KB (split across four 64KB
banks). With a different target, the type and number of elements
would be different.

5. PROGRAMMING LEAP
We now describe the programmer’s abstract machine model view

of LEAP, a specific Python API we have implemented, and outline
an example in detail showing final translation to LEAP configu-
ration bits. The API provides a familiar model to programmers
despite our unique microarchitecture.

5.1 Abstract machine model
The abstract machine model of LEAP hides the underlying con-

currency in the hardware. Specifically, the programmer assumes a

Area

T
hrou

ghpu t
(loo

kup
s/se

c)

Functional-unit
serialization

increases latency

XBar Limits
Cycle Time

Figure 6: Design scalability tradeoff

serial machine that can perform one operation at a time. The only
types of operations allowed are those implemented by the opera-
tion engines in the hardware. The source for all operators is either
a network message, a value read from memory, or the result of an-
other operator. The native data-type for all operators is bit-vector
and bit range selection is a primitive supported in the hardware. For
example, a[13:16] selects bits 13 through 16 in the variable a,
and comes at no cost in terms of latency.

This machine model, while simple, has limitations and cannot
express some constructs. There is no register file, program counter,
control-flow, stack, subroutines or recursion. While this may seem
restrictive, in practice we found these features unnecessary for ex-
pressing lookups.

Lack of control-flow may appear to be a significant limitation,
but this is a common choice in specialized architectures. For exam-
ple, GPU programming did not allow support for arbitrary control
flow until DirectX 8 in 2001. The LEAP machine model does allow
two forms of conditional execution. Operations that alter machine
state – stores and message sends – can be executed conditionally
depending on the value of one of their inputs. Also, a special select
primitive can dynamically pick a value from a set of possible ones,
and return it as output. Both capabilities are natively supported by
LEAP, and we found that they were flexible enough to implement
every processing step we considered.

5.2 Python API for LEAP
We have developed a simple Python API to make programming

LEAP practical. In our model, programmers express their com-
putational steps as Python sub-routines using this API. We chose
Python because it is simple to import our API as a module, but
we do not rely on any Python-only functionality. Alternatively we
could have chosen to implement our API in a non-interpreted lan-
guage such as C.

Given the simplicity of LEAP units and the abundance of func-
tionality (e.g. bitvectors) in Python, a software-only implementa-
tion of LEAP API calls is trivial. Developers simply run the code
on a standard Python interpreter to verify syntactic and semantic
correctness. After this debugging phase, our compiler converts this
Python code into binary code for the configuration store.

The functionality provided by every functional unit is specified
as a Python subroutine. An entire compute step is specified as a
sequential set of such calls. Recall the compiler will extract the
concurrency and map to hardware. Table 4 describes the most im-
portant calls in our API. In most cases a call is mapped directly
to a LEAP functional unit; some calls can be mapped to multiple
units, for example if the operands are larger than a word. The com-
mon case of a comparison between two long bitvectors is optimized
through the use of the LOGIC4 unit, which can perform two partial
comparisons, and AND them together.

1 # In Msg: 0:15: Previous rule
2 # 16:31: Pointer to target node
3 # 32:63: Bytes 16:47 of IPv6 address
4 # Out Msg0: 0:23: Bits 24:47 of IPv6 address
5 # 24:39: Pointer to new rule
6 # 40:55: Previous rule
7 # Out Msg1: 0:31: Pointer to child (unused)
8 def cb0(nw, nw_out):
9 data = read_mem(nw[0].body[16:31])
10 ret = bspsearch3_short(nw[0].body[32:39],
11 data[32:87],data[88:95],0x053977)
12 offset = add(data[0:31], ret)
13 nw_out[0].head[8:17] = offset[2:11]
14 nw_out[0].body[0:23] = nw[0].body[40:63]
15 nw_out[0].body[24:39] = offset[16:31]
16 nw_out[0].body[40:55] = nw[0].body[0:15]
17 send(nw_out[0], 1)
18 nw_out[1].head[8:17] = offset[2:11]
19 nw_out[1].body[0:31] = 0xFFFFFFFF
20 send(nw_out[1], 1)

(a) Python code
Unit ADD ADD BSPTr BSPTr BSPTr BSPTr RAM RAM

(a) (b) (val) (vec) (cfg) (res) RD WR
Src 001 002 000 001 001 003 00 X

(MEM) (XBar) (NW) (MEM) (MEM) (CFG) (NW)
NWPos X X 11 X X X 1
NWSel X X 00 X X X 00 X
Mask X
MemPos 00 X X 0x4 0xB X
Const X X X X X 0x53977 X
XbarPos X X
Xbar X 111 X X X X X X

(BSPTr)
OpCl X X X X X X X X

(b) LEAP configuration bits
Figure 7: IPv6 example compute step

5.3 Implementing Lookups in LEAP
To give a sense practical application development, we briefly dis-

cuss the implementation of the IPv6 processing step introduced in
Section 3.1.

As previously discussed, this compute step works by searching
a binary tree using 8 bits of the IPv6 address as the key. The result
represents the relative offset of a forwarding rule corresponding to
the address. The absolute offset is then obtained by adding the
result of the search to a base offset. Both the binary tree and the
base offset are obtained by retrieving a 96-bit word from memory,
consisting of:

1) Bits 0-31: Base rule offset
2) Bits 32-87: Binary tree, stored as 7-entry vector
3) Bits 88-95: Vector bitmask (specifies valid entries)

Figure 7(a) depicts the LEAP implementation of this step, together
with input and output messages. The node is retrieved from mem-
ory in line #9. Lines #10-11 perform the search in the range vector.
In line #12 the result of the search (index of the range where the
prefix lie) is added to the base rule offset to generate a rule index
for the next stage. The rest of the code prepares outgoing messages.

The API calls in Figure 7(a) are translated to the configuration
bits shown in Figure 7(b). The rows in Figure 7(b) correspond to
the generalized input selection shown in Figure 4(f). X’s are "don’t
cares" in the figure and a grayed box indicates those config bits are
not present for the particular operand. Each operand in the table
has different available config bits because of the different widths
and possible sources for each operand.

6. EVALUATION
We now present our evaluation. After describing the methodol-

ogy for our evaluations, we discuss characteristics of the lookups

API Call Functional unit Description
Access functions

read_mem(addr) SRAM Load value from memory
write_mem (addr) SRAM Store value to memory
send (value, enable) Network Send value on a on-chip network if enable is not 0.

Operator functions
select (v0, v1, sel, width=16|32|64) Mux2 Selects either v0 or v1 depending on the value of sel
copy_bits (val[a:b]) BitSel Extracts bits between position a and position b from val
bitwise_and(a, b) Logic2 bitwise AND
bitwise_or(a, b) Logic2 bitwise OR
bitwise_xor(a, b) Logic2 bitwise XOR
eq(a, b) Logic2 Comparison (returns 1 if a == b, 0 otherwise)
cond_select(a, b, c, d, “logic-function”) Logic4 Apply the logic-function to a and b and select c or d based on the result.
add(a, b) Add Sum a to b
add_dec(a, b) Add Sum a to b and subtracts 1 to the result
sub(a, b) Add Subtract b from a
bitcount(value, start_position) BitCnt Sum bits in value from bit start_position to the end
bsptree3_short(value, vector, cfg, res) BSP-Tree Perform a binary-space-tree search on vector. value is an 8-bit value; vector is a 64-

bit vector including 7 elements, each 8 bits; cfg is an 8-bit configuration word (1 enable
bit for each node) res is a 24-bit value consisting of 8 result fields, each 3 bits wide.

bsptree3_long(value, vector, cfg, res) BSP-Tree Perform a binary-space-tree search on 128-bit vector with 16-bit value.

Table 4: Python API for programming LEAP

Algorithm Lookup data
Ethernet forwarding Set of 100K random addresses

IPv4 forwarding 280K-prefix routing table
IPv6 forwarding Synthetic routing table [40]

Packet classification Classbench generated classifiers [33]
DFA lookup Signature set from Cisco [2]

Ethane Synthetic data based on specs [11]
SEATTLE Synthetic data based on specs [24]

Table 5: Datasets used
implemented on LEAP and a performance and sensitivity analysis.
To quantitatively evaluate LEAP, we compare it to an optimistic
model we construct for a fixed-function lookup engine for each
lookup. We also compare LEAP to PLUG which is a state-of-art
programmable lookup engine.

6.1 Methodology
We have implemented the seven algorithms mentioned in Table 1

using our Python API including the multiple algorithmic stages and
the associated processing. For this work, we manually translated
the code from the Python API into LEAP configuration bits, since
our compiler work is on-going and describing it also is beyond the
scope of one paper. For each lookup, we also need additional data
like a network traffic trace or lookup trace and other dataset infor-
mation to populate the lookup data structures. These vary for each
lookup and Table 5 describes the data sets we use. In the interest
of space, omitted details can be found in [23]. To be consistent
with our quantitative comparison to PLUG, we picked similar or
equivalent traces and datasets. For performance of the hardware
we consider parameters from our RTL prototype implementation:
clock frequency is 1 GHz and we used the 55nm Synopsys synthe-
sis results to determine how many compute steps lookup processing
took for each processing step at each algorithmic stage.

Modeling of other architectures: To determine how close LEAP
comes to a specialized fixed-function lookup engine (referred to as
FxFu henceforth), we would like to consider performance of a FxFu
hardware RTL implementation. Recall that the FxFu is also com-
bined with an SRAM like in PLUG and LEAP. We implemented
them for three lookups to first determine whether such a detailed
implementation was necessary. After implementing FxFu’s for Eth-
ernet forwarding, IPv4, and Ethane, we found that the they easily
operated within 1 ns, consumed less than 2% of the tile’s area, and
the contribution of processing to power consumption was always

less than 30%. Since such a level of RTL implementation is tedious
and ultimately the FxFu’s contribution compared to the memory is
small, we did not pursue detailed fixed-function implementations
for other lookups and adopted a simple optimistic model: we as-
sume that processing area is fixed at 3% of SRAM area, power is
fixed at 30% of total power, and latency is always 2 cycles per-tile
(1 for memory-read, 1 for processing) plus 1 cycle between tiles.

We also compare our results to the PLUG design by considering
their reported results in [25] which includes simulation- and RTL-
based results for area, power, and latency. For all three designs we
consider a tile with four 64KB memory banks. With 16 total tiles,
we can get 4MB of storage thus providing sufficient storage for all
of the lookups.

Metrics: We evaluate latency per lookup, worst-case total power
(dynamic + static), and area of a single tile. Chip area is tile area
multiplied by the number of tiles available on the chip plus addi-
tional wiring overheads, area of IO pads, etc. The fixed-function
engines may be able to exploit another source of specialization in
that the SRAM in tiles can be sized to exactly match the appli-
cation. This requires careful tuning of the physical SRAM sub-
banking architecture when algorithmic stage sizes are large along
with a design library that supports arbitrary memory sizes. We
avoid this issue by assuming FxFu’s also have fixed SRAM size of
256 KBs in every tile. Finally, when SRAM sizes are smaller than
64KB, modeling tools like CACTI [34] overestimate. Our estimate
of the FxFu area could be conservative since it does not account for
this memory specialization.

6.2 Implementing Lookups
First, we demonstrate that LEAP is able to flexibly support vari-

ous different lookups. Table 6 summarizes code statistics to demon-
strate the effectiveness of the Python API and ease of develop-
ment for the LEAP architecture. As shown in the second and third
columns, these applications are relatively sophisticated, require ac-
cesses to multiple memories and perform many different types of
processing tasks. The fourth column shows that all these algorith-
mic stages can be succinctly expressed in a few lines of code using
our Python API. This shows our API provides a simple and high-
level abstraction for high-productive programming. All algorithmic
stages in all applications except Packet classification are ultimately
transformed into single-cycle compute steps.

Algorithm Total Total Avg. Lines
Algorithmic Compute per Compute

Stages Steps Step
Ethernet forwarding 2 6 9.5
IPv4 8 42 10.8
IPv6 26 111 12.1
Packet classification 3 3 98
DFA matching 3 7 9.5
Ethane 5 22 11.5
SEATTLE 4 19 9.3

Table 6: Application Code Statistics

Algorithm FxFu PLUG LEAP
Ethernet forwarding 6 18 6

IPv4 forwarding 24 90 24
IPv6 forwarding 42 219 42

Packet classification 23 130 75
DFA matching 6 37 6

Ethane 6 39 6
SEATTLE 9 57 9

Table 7: Latency Estimates (ns)

Result-1: LEAP and its programming API and abstraction are ca-
pable of effectively implementing various lookups.

6.3 Performance Analysis
Tables 7-9 compare the fixed-function optimistic engine (FxFu),

PLUG and LEAP along the three metrics. All three designs execute
at a 1 GHz clock frequency and hence have a throughput of 1 billion
lookups per second on all applications except Packet-classification.

Latency: Table 7 shows latency estimates. For FxFu, latency in
every tile is the number of SRAM accesses plus one cycle of com-
pute plus one cycle to send. Total latency is always equal to the
tile latency multiplied by number of tiles accessed. For LEAP, all
lookup steps except Packet classification map to one 1ns compute
stage. The latencies for PLUG are from reported results. For FxFu
and LEAP the latencies are identical for all cases except Packet-
classification since compute-steps are single cycle in both architec-
tures. The large difference in packet classification is because our
FxFu estimate is quite optimistic - we assume all sophisticated pro-
cessing (over 400 lines of C++ code) can be done in one cycle, with
little area or energy. For PLUG, the latencies are universally much
larger, typically on the order of 5× larger, for two reasons. First,
due to its register-file based von-Neumann design, PLUG spends
many instructions simply assembling bits read-from/written-to the
network. It also uses many instructions to perform operations like
bit-selection which are embedded into each operation engine in
LEAP. A second and less important factor is that LEAP includes
the bsptree-search unit that is absent in PLUG.
Result-2: LEAP matches the latency of fixed-function lookups and
outperforms PLUG by typically 5×.

Energy/Power: Since all architectures operate at the same through-
put, energy and power are linearly related; we present our results in
terms of power. For FxFu and LEAP, we estimate power based on
the results from RTL synthesis and the power report from Synopsys
Power Compiler, assuming its default activity factors. For PLUG,
we consider previously reported results also at 55nm technology.
Peak power of a single tile and the contribution from memory and
processing are shown in Table 8.
Result-3: LEAP is 1.3× better than PLUG in overall energy effi-
ciency. In terms of processing alone, LEAP is 1.6× better.
Result-4: Fixed-function designs are a further 1.3× better than
LEAP, suggesting there is still room for improvements.

FxFu PLUG LEAP
Total 37 mWatts 63 mWatts 49 mWatts

Memory % 70 42 54
Compute % 30 58 46

Table 8: Power Estimates

FxFu PLUG LEAP
Total 2.0 mm2 3.2 mm2 2.1 mm2

Memory % 97 64 95
Compute % 3 36 5

Small Memory Tile 64 KB
Total 0.3 mm2 0.88 mm2 0.36 mm2

Memory % 98 35 83
Compute % 2 65 17

Table 9: Area Estimates

Area: We determined tile area for FxFu and LEAP from our syn-
thesis results and use previously reported results for PLUG. These
are shown in Table 9. The network and router area is small and is
folded into the memory percentage.
Result-5: LEAP is 1.5× more area efficient than PLUG overall. In
terms of processing area alone, it is 9.4× better.
Result-6: LEAP is within 5% of the area-efficiency of fixed-function
engines, overall.

7. CONCLUSION
Data plane processing in high-speed routers and switches has

come to rely on specialized lookup engines for packet classifica-
tion and various forwarding lookups. In the future, flexibility and
high performance are required from the networking perspective and
improvements in architectural energy efficiency are required from
the technology perspective.

LEAP presents an architecture for efficient soft-synthesiz-able
multifunction lookup engines that can be deployed as co-processors
or lookup modules complementing the packet processing functions
of network processors or switches. By using a dynamically config-
urable data path relying on coarse-grained functional units, LEAP
avoids the inherent overheads of von-Neumann-style programmable
modules. Through our analysis of several lookup algorithms, we
arrived at a design based on 16 instances of seven different func-
tional units together with the required interconnection network and
ports connecting to the memory and on-chip network. Comparing
to PLUG, a state-of-art flexible lookup engine, the LEAP architec-
ture offers the same throughput, supports all the algorithms imple-
mented on PLUG, and reduces the overall area of the lookup engine
by 1.5×, power and energy consumption by 1.3×, and latency typ-
ically by 5×. A simple programming API enables the development
and deployment of new lookup algorithms. These results are com-
prehensive, promising, and show the approach has merit.

A complete prototype implementation with an ASIC chip or FPGA
that runs protocols on real live-traffic is on-going, and future work
will focus on demonstrating LEAP’s quantitative impact in prod-
uct and deployment scenarios. By providing a cost-efficient way
of building programmable lookup pipelines, LEAP may speed up
scaling and innovation in high-speed wireline networks enabling
yet-to-be-invented network features to move faster from the lab to
the real network.

Acknowledgments
We thank the anonymous reviewers for their comments. Support
for this research was provided by NSF under the following grants:
CNS-0917213. Any opinions, findings, and conclusions or recom-
mendations expressed in this material are those of the authors and
do not necessarily reflect the views of NSF or other institutions.

8. REFERENCES
[1] Arm instruction set reference

https://silver.arm.com/download/download.tm?pv=1199137.
[2] Cisco intrusion prevention system.

http://www.cisco.com/en/US/products/ps5729/
Products_Sub_Category_Home.html.

[3] Cypress delivers industry’s first single-chip algorithmic
search engine. http://www.cypress.com/?rID=179, Feb. 2005.

[4] Neuron and neuronmax search processor families.
http://www.cavium.com/processor_NEURON_NEURONMAX.html,
Aug. 2011.

[5] F. Baboescu, D. Tullsen, G. Rosu, and S. Singh. A tree based
router search engine architecture with single port memories.
In ISCA ’05.

[6] F. Baboescu and G. Varghese. Scalable packet classification.
In SIGCOMM ’01.

[7] A. Basu and G. Narlikar. Fast incremental updates for
pipelined forwarding engines. In IEEE INFOCOM ’03.

[8] F. Bonomi, M. Mitzenmacher, R. Panigraphy, S. Singh, and
G. Varghese. Beyond Bloom filters: From approximate
membership checks to approximate state machines. In
SIGCOMM ’06.

[9] S. Borkar and A. A. Chien. The future of microprocessors.
Commun. ACM, 54(5):67–77, 2011.

[10] A. Broder and M. Mitzenmacher. Using multiple hash
functions to improve IP lookups. In INFOCOM ’01.

[11] M. Casado, M. J. Freedman, J. Pettit, J. anying Luo,
N. McKeown, and S. Shenker. Ethane: taking control of the
enterprise. In SIGCOMM ’07.

[12] Cisco Public Information. The cisco quantumflow processor:
Cisco’s next generation network processor.
http://www.cisco.com/en/US/prod/collateral/routers/
ps9343/solution_overview_c22-448936.html, 2008.

[13] L. De Carli, Y. Pan, A. Kumar, C. Estan, and
K. Sankaralingam. Plug: Flexible lookup modules for rapid
deployment of new protocols in high-speed routers. In
SIGCOMM ’09.

[14] M. Degermark, A. Brodnik, S. Carlsson, and S. Pink. Small
forwarding tables for fast routing lookups. In SIGCOMM
’97.

[15] S. Dharmapurikar, P. Krishnamurthy, T. Sproull, and
J. Lockwood. Deep packet inspection using parallel bloom
filters. In IEEE Micro, pages 44–51, 2003.

[16] S. Dharmapurikar, P. Krishnamurthy, and D. E. Taylor.
Longest prefix matching using bloom filters. In SIGCOMM
’03.

[17] M. Dobrescu, N. Egi, K. Argyraki, B.-G. Chun, K. Fall,
G. Iannaccone, A. Knies, M. Manesh, and S. Ratnasamy.
Routebricks: exploiting parallelism to scale software routers.
In SOSP ’09.

[18] W. Eatherton. The push of network processing to the top of
the pyramid. Keynote, ANCS ’05.

[19] V. Govindaraju, C.-H. Ho, and K. Sankaralingam.
Dynamically specialized datapaths for energy efficient
computing. In HPCA ’11.

[20] P. Gupta, S. Lin, and N. Mckeown. Routing lookups in
hardware at memory access speeds. In INFOCOM ’98.

[21] S. Gupta, S. Feng, A. Ansari, S. Mahlke, and D. August.
Bundled execution of recurring traces for energy-efficient
general purpose processing. In MICRO ’1.

[22] R. Hameed, W. Qadeer, M. Wachs, O. Azizi,

A. Solomatnikov, B. C. Lee, S. Richardson, C. Kozyrakis,
and M. Horowitz. Understanding sources of inefficiency in
general-purpose chips. In ISCA ’10.

[23] E. Harris. Leap: Latency- energy- and area-optimized lookup
pipeline. Master’s thesis, The University of
Wisconsin-Madison, 2012.

[24] C. Kim, M. Caesar, and J. Rexford. Floodless in SEATTLE:
A scalable ethernet architecture for large enterprises. In
SIGCOMM ’08.

[25] A. Kumar, L. De Carli, S. J. Kim, M. de Kruijf,
K. Sankaralingam, C. Estan, and S. Jha. Design and
implementation of the plug architecture for programmable
and efficient network lookups. In PACT ’10.

[26] S. Kumar, M. Becchi, P. Crowley, and J. Turner. CAMP: fast
and efficient IP lookup architecture. In ANCS ’06.

[27] S. Kumar, S. Dharmapurikar, F. Yu, P. Crowley, and
J. Turner. Algorithms to accelerate multiple regular
expressions matching for deep packet inspection. In
SIGCOMM ’06.

[28] S. Kumar and B. Lynch. Smart memory for high performance
network packet forwarding. In HotChips, Aug. 2010.

[29] H. Le and V. Prasanna. Scalable tree-based architectures for
ipv4/v6 lookup using prefix partitioning. IEEE Trans. Comp.,
PP(99):1, ’11.

[30] S. Li, J. H. Ahn, R. D. Strong, J. B. Brockman, D. M.
Tullsen, and N. P. Jouppi. McPAT: an integrated power, area,
and timing modeling framework for multicore and manycore
architectures. In MICRO 42.

[31] S. Singh, F. Baboescu, G. Varghese, and J. Wang. Packet
classification using multidimensional cutting. In SIGCOMM
’03.

[32] D. Taylor, J. Turner, J. Lockwood, T. Sproull, and D. Parlour.
Scalable ip lookup for internet routers. Selected Areas in
Communications, IEEE Journal on, 21(4):522 – 534, may
2003.

[33] D. E. Taylor and J. S. Turner. Classbench: A packet
classification benchmark. In IEEE INFOCOM ’05.

[34] S. Thoziyoor, N. Muralimanohar, J. H. Ahn, and N. P.
Jouppi. Cacti 5.1. Technical Report HPL-2008-20, HP Labs.

[35] M. Thuresson, M. Sjalander, M. Bjork, L. Svensson,
P. Larsson-Edefors, and P. Stenstrom. Flexcore: Utilizing
exposed datapath control for efficient computing. In
IC-SAMOS ’07.

[36] N. Vaish, T. Kooburat, L. De Carli, K. Sankaralingam, and
C. Estan. Experiences in co-designing a packet classification
algorithm and a flexible hardware platform. In ANCS ’11.

[37] B. Vamanan, G. Voskuilen, and T. N. Vijaykumar. Efficuts:
optimizing packet classification for memory and throughput.
In SIGCOMM ’10.

[38] G. Venkatesh, J. Sampson, N. Goulding, S. K. V,
S. Swanson, and M. Taylor. Qscores: Configurable
co-processors to trade dark silicon for energy efficiency in a
scalable manner. In MICRO ’11.

[39] B. Vöcking. How asymmetry helps load balancing. In
IEEE-FOCS ’99.

[40] K. Zheng and B. Liu. V6gene: A scalable IPv6 prefix
generator for route lookup algorithm benchmark. In AINA
’06.

