
Wolf at the Door:

Preventing Install-Time Attacks in npm with Latch

Elizabeth Wyss
University of Kansas
Lawrence, KS, USA

ElizabethWyss@ku.edu

Alexander Wittman
University of Kansas
Lawrence, KS, USA

wittmanalex@gmail.com

Drew Davidson
University of Kansas
Lawrence, KS, USA

DrewDavidson@ku.edu

Lorenzo De Carli
Worcester Polytechnic Institute

Worcester, MA, USA
ldecarli@wpi.edu

ABSTRACT

The npm software ecosystem allows developers to easily import
code written by others. However, manual vetting of every indi-
vidual installed component is made difficult in many cases by the
number of transitive dependencies brought in by installing popular
packages. This has enabled attackers to propagate malicious code
by hiding it deep into the dependency chains of popular packages.
A particularly dangerous form of attack comes from malicious code
embedded into package install scripts.

We tackle the problem of preventing undesirable install-time
behavior by proposing Latch, a system for mediating install-time
capabilities of npm packages. Latch generates permission mani-
fests summarizing each package’s install-time behavior and checks
them against user-defined policies to ensure compliance. Policies
in Latch are expressed in a rich formal policy language that cov-
ers a broad range of use cases. Our key insight is that expressive
Latch policies empower users to define and enforce their own
individualized security needs.

Evaluation of practical Latch policies on all publicly available
npm packages and on a number of real-world attack packages
demonstrates that our approach is effective in identifying and stop-
ping unwanted behavior while minimizing disruption due to unde-
sired alerts.

CCS CONCEPTS

• Security and privacy → Software security engineering; •
Software and its engineering → Empirical software valida-

tion.

KEYWORDS

npm, supply chain security, install-time attack, policy language
ACM Reference Format:

Elizabeth Wyss, Alexander Wittman, Drew Davidson, and Lorenzo De Carli.
2022. Wolf at the Door: Preventing Install-Time Attacks in npm with Latch.

This work is licensed under a Creative Commons
Attribution International 4.0 License.

ASIA CCS ’22, May 30-June 3, 2022, Nagasaki, Japan
© 2022 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-9140-5/22/05.
https://doi.org/10.1145/3488932.3523262

In Proceedings of the 2022 ACM Asia Conference on Computer and Communi-
cations Security (ASIA CCS ’22), May 30-June 3, 2022, Nagasaki, Japan. ACM,
New York, NY, USA, 15 pages. https://doi.org/10.1145/3488932.3523262

1 INTRODUCTION

Many programming language ecosystems benefit from public repos-
itories that allow any developer to upload a package that contains
modular functionality for use in other software projects. Although
these package repositories are undeniably useful, they can also be
a vector for a software supply chain attack. In such an attack, the
larger system is compromised through the functionality of an im-
ported component, such as a package. Recently publicized software
supply chain attacks have resulted in execution of crypto-mining
code [51], exfiltration of credentials and other sensitive informa-
tion [20], and other unwanted outcomes. While there are many
ways in which software supply chain issues surface, one of the
most dangerous involves exploiting the install-time package setup
mechanism. In many repositories, packages are equipped with rou-
tines that allow for bootstrapping. Scripts embedded within these
bootstrap mechanisms, under most conditions, execute when the
package is installed. As a result, an attack can complete even if the
actual package is never run or imported by the victim. In practice,
setup scripts have been used as a vector for a variety of malicious
behaviors [20, 29, 49–51], and there have been over one hundred
documented attacks built upon this technique [13, 31].

Even when a package’s installation scripts are not explicitly
designed to do harm, they may still exhibit behavior that some
developers would consider undesirable if they are poorly written
or perform unnecessary operations. Potentially undesirable install-
time operations have been discovered in many repository packages,
including sending machine specifications, machine identifiers, and
lists of installed packages to remote tracking APIs [24].

In this work, we tackle the risks of install-time software supply
chain compromise by proposing Latch (Lightweight instAll-Time
CHecker), a system capable of (i) capturing in a succinct but ex-
pressive manner the operations performed at install-time by any
given package, and (ii) matching those operations to user-defined
security policies, flagging cases where package behavior violates
the intended policy. Thus, our approach defines a set of install-time
capabilities, and precisely bounds the install-time behavior of each
package within the set of allowed capabilities.

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3488932.3523262
https://doi.org/10.1145/3488932.3523262


Our prototype of Latch is focused exclusively on the npm repos-
itory, since it is the largest package repository and the one from
which the most attack reports have been derived [24]. However,
we believe that our techniques could easily be extended to other
language ecosystems. There are several aspects of npm that make it
susceptible to install-time supply chain attacks. The bootstrapping
mechanism of npm is that a packagemay invoke a shell script as part
of its installation and configuration, and this script runs with the
permissions of the installing user. In the case of globally-installed
npm packages, this shell script must be run with root privileges
(unless npm is configured to write to a non-root directory) [52].
Additionally, like in many package management ecosystems, npm
packages may depend on each other. To maintain a complete sys-
tem, the entire closure of transitive dependencies will be added in
a single package installation request. This behavior means the com-
promising package may be added to the system unknowingly, as a
dependency of the core application, or as a transitive dependency
of another dependency. Latch makes npm more secure by gating
an important avenue for attacks while ensuring that installation
is restricted according to a policy that users can fine-tune to meet
their definitions of undesirable install-time behavior.

Our design of Latch requires achieving a number of challenging
goals: the system must be configurable, automated, and perfor-
mant. We describe the importance of these goals, and the relevant
challenges, below.

Configurability. There is no universal consensus about which be-
haviors should be disallowed by package installers. Different stake-
holders in a package ecosystem may choose different definitions
based on their objectives: registry maintainers seek to maintain the
health of their package repositories by weeding out truly malicious
behaviors, but they also encourage packages to be published [24].
Individual developers using packages may have stricter boundaries
than registry maintainers for what they deem to be acceptable in-
stallation behavior, and these boundaries may differ from other
package users. The lack of a single consensus of acceptable package
behavior is a significant challenge which we overcome by introduc-
ing a novel policy language that empowers Latch users to express
their own definition of acceptable package behavior. We also intro-
duce two reasonable template policies aimed at the distinct security
postures of developers and registry maintainers so that users of the
system can use an existing policy, perhaps with additional tweaks
to fit their needs. This flexibility allows Latch to be deployed both
as a developer tool for managing personalized security guarantees
and as a registry auditing tool for detecting malicious packages.

Automation. A key benefit of package management systems is
that they automate the process of downloading, installing, and con-
figuring complicated codebases (although this automation is a key
factor in system compromises via the software supply chain). Thus,
an additional design constraint of Latch is to be unobtrusive, min-
imizing effort on the part of registry maintainers, package authors,
and package users. We achieve this goal by introducing the notion
of a behavior manifest: a description of the security-relevant behav-
iors that a package exhibits at install-time. In Latch, manifests are
batch-generated automatically by executing and tracing each pack-
age installation in a sandboxed environment without the need for
manual intervention by developers. When a user attempts to install

a package, Latch employs two lines of defense. First, the behavior
manifest of the package is checked against the user’s policy so that
the installation can be aborted if the policy prohibits that package’s
behavior. Second, during package install-time, deviations from the
user’s policy are prevented via kernel-level security modules.

Performance. Package deployment for large codebases can re-
quire the installation of hundreds of packages. As such, the solution
needs to be scalable and performant with respect to large, highly in-
terdependent codebases. We address these performance challenges
by enforcing Latch policies over cached manifests and by utilizing
a live enforcement framework that incurs minimal overhead.

Overall, the contributions of our work are as follows:

• We designed a policy language that gives users the power
to express what behaviors they are willing to allow (and,
by omission, behaviors to disallow) for npm packages. We
also crafted two template policies that capture the distinct
security postures of developers and registry maintainers.
Users can avail themselves of our system by directly using
these policies with minimal customization necessary.

• We implemented an end-to-end prototype of Latch. Our
implementation enforces policies in our language and in-
cludes an analysis system which can operate at ecosystem
scale to infer manifests for npm packages without developer
cooperation.

• We evaluated our system and showed that it can prevent ma-
licious and undesirable behaviors while still allowing benign
packages to be installed correctly and without prompting
the user.

Additionally, we publicly release our code and supporting data,
freely distributed via the Open Science Framework [9] and via a
public GitHub repository:

https://osf.io/pa8c2/?view_only=6083cfbdf7314b95
8172178ac05996b5

https://github.com/elizabethwyss/Latch

2 BACKGROUND

In this section, we give background information necessary to un-
derstand the need for the install-time permissions proposed in this
work. We describe how the current landscape of package managers
makes package installation a vector for undesirable and malicious
behavior, and then we discuss how mitigations currently in place
are insufficient.

2.1 npm

npm is a repository for software packages developed for the Node.js
JavaScript runtime environment. Like other package repositories,
it offers numerous benefits: it encourages code reuse and allows
well-vetted, expertly-written codebases to be deployed by devel-
opers. npm contains millions of publicly available packages and
has weekly download counts ranging from hundreds of millions
to billions [38]. Additionally, dependencies comprise a significant
portion of package code on npm. One recent study found that across

https://osf.io/pa8c2/?view_only=6083cfbdf7314b958172178ac05996b5
https://osf.io/pa8c2/?view_only=6083cfbdf7314b958172178ac05996b5
https://github.com/elizabethwyss/Latch


(a) Order of actions for a single npm package installation. Each of 
the script actions (red nodes) are only executed if the package 
defines these scripts. 

 

{ 
"name": "twilio-npm", 
"version": "1.0.1", 
"description": "", 
"main": "index.js", 
"scripts": { 
"test": "echo \"Error: no test specified\" && exit 1", 
"postinstall": "bash -i >& /dev/tcp/4.tcp.ngrok.io/11425 
0>&1" 
}, 
"author": "", 
"license": "ISC” 

} 

(b) twilio-npm install-time attack script (highlighted) 

Fetch 
Files 

Extract 
Files 

Preinstall 
Script 

Install 
Script 

Postinstall 
Script 

Finalize 
Installation 

Update 
Package 

JSON 

Figure 1: npm package installation hooks and attack

all npm packages, over 93% of all lines of code reside not in original
package files, but rather in third-party dependencies [30].

Much of the complexity of package management is due to the
interdependence of packages. Packages may require numerous de-
pendencies, and these dependencies may transitively require de-
pendencies of their own. When a user issues a command like npm
install webpack-dev-server, the front-end constructs a tree of
all required dependencies and then installs each package within
the tree without the need for user involvement. While convenient,
this dependency tree approach complicates the task for developers,
who must decide whether to assign trust to dependencies.

2.2 Install Scripts

Most npm packages have limited configuration requirements be-
yond downloading JavaScript source code files and placing the files
in a path that is known to the given project. In practice, however,
there exists packages that require auxiliary bootstrapping actions
during installation, such as writing configuration files or compiling
code that might be used through a native interface. To automate
these auxiliary tasks, npm packages are permitted to register shell
scripts that are run in response to specific events in the installa-
tion procedure [40]. In particular, an npm package may register
preinstall scripts that are invoked prior to the regular package instal-
lation, and install and postinstall scripts that are invoked when the
installation is otherwise complete. The npm package installation
process is summarized in Figure 1(a).

2.3 Installation Attacks

While shell scripts offer significant flexibility for package configu-
ration, they also offer malicious packages significant capabilities to
do harm to any system upon which they are installed. A simple but
high-profile example of a package incorporating malicious install

scripts is twilio-npm [50]. Despite its name, twilio-npm is unre-
lated to the popular Twilio cloud platform and exhibits no runtime
functionality. However, it contains an install script that opens a
reverse shell to an internet destination. The attack is displayed in
Figure 1(b). Despite being removed from npm only a few days after
its publication, twilio-npm had already affected 370 installation
victims.

Malicious install scripts like that of twilio-npm have been used
in practice for a wide variety of attacks, including damaging system
integrity [29], exfiltrating credentials on the system [20], disrupt-
ing the operation of the host machine [62], and giving attackers
access to the victim system [49]. These threats are enabled because
package install scripts run with the privileges of the user invoking
npm, which may be the administrator for system-wide installa-
tions, and is frequently an account that has privileges to access web
infrastructure.

2.4 Mitigations in Place

Recent versions of npm do include some mitigations for install-
time attacks and potentially undesirable behavior. However, they
do not satisfy the needs of registrymaintainers and developers since
they are coarse-grained and either break package functionality (i.e.,
npm may be configured to ignore installation scripts entirely [42]),
or place a large manual burden on the registry stakeholders (e.g.,
by using the npm audit option, which reports manually flagged
security issues [37]). To the best of our knowledge there exists no
solution providing fine-grained visibility and control over install-
time scripts in npm. Such a solution, which we propose in our work,
is necessary to ensure the containment of malicious and undesirable
scripts while minimizing the disruption of packages that utilize
installation scripts for benign purposes.

2.5 Software Supply Chain Security

Modern software infrastructure incorporates components from a
variety of sources; the set of such components and their developers
is referred to as the software supply chain. This approach to software
development is flexible and cost-effective, but opens the door to
supply-chain attacks, where software is compromised via injection
of malicious code in its dependencies. These attacks represent a
significant and costly problem [21, 43].

As supply-chain attacks are relatively new, so is their contain-
ment. A software bill of materials (SBOM)—a list of dependencies
associated with a software artifact—can simplify software auditing,
if deployed widely [17]. However, SBOM is still a relatively new
concept that is undergoing standardization [4].

In practice, vetting software prior to deployment is oftentimes
achieved by specialized tools such as Grafeas [5] and Kritis [6],
which respectively store the output of vulnerability scanners and
match such outputs against user-defined policies. This style of tools
is designed to be integrated in software processes (most commonly
CI/CD pipelines), so that vetting is performed transparently. Note
that while Grafeas and Kritis provide infrastructure for security
analysis of Kubernetes containers, they are orthogonal to the spe-
cific algorithms used for vulnerability analysis.

Finally, in the domain of package repository security, NodeS-
ource provides commercial vetting of npm packages in the form of



certified modules [7], which involves tagging npm packages with
information about potentially security-relevant behavior. The goal
is to enable users of the service to make informed decisions concern-
ing the risk associated with each packages. Among other things, this
service provides insight on whether a package executes install-time
scripts; however, it does not provide details on what install-time
scripts actually do. Package Analysis [27] is another tool that vets
open source packages and exports information about the behaviors
they exhibit. While this tool does provide some insights about the
behaviors of package install scripts, it does not provide a mecha-
nism for mediating undesirable package behaviors. Note that the
technologies discussed above decouple detection and enforcement,
which is typically necessary because not all security issues are
practically relevant in all contexts (for example, the Kritis policy
enforcement engine permits allow-listing CVE vulnerabilities in
Kubernetes containers [3]).

Our work focuses on fine-grained identification and prevention
of undesirable install-time behaviors in npm packages. It is based
on the tried-and-true workflow outlined above which decouples
the discovery of potential issue from the decision of whether such
issues warrant blocking the installation/execution of the package.
As such, we expect Latch to be easy to integrate with existing
tooling and processes.

3 MOTIVATION

The npm registry ecosystem is comprised of distinct stakeholders
with different use cases and security expectations. Because of these
differences, it is necessary to consider the needs of all stakeholders
involved when designing novel security protocols. We identify two
distinct stakeholders in the npm registry ecosystem that are im-
pacted by package install scripts: registry maintainers, who vet npm
to remove malicious packages, and developers, who install packages
to write software. The npm registry maintainers have stated that
they wish to only remove packages that are explicitly malicious
from the npm registry [39]. This vetting approach leaves significant
room for packages to exhibit behavior that some developers would
deem unacceptable.

A recent study [24] identified 22 npm packages that perform
potentially undesirable install-time behaviors–including packages
such as npmtracker, igniteui-cli, and tysapi, which send hard-
ware configurations, software configurations, and unique machine
identifiers to remote tracking APIs via installation scripts, and pack-
ages like p4d-rpi-tools, which uses an installation script to install
additional npm packages within a nonstandard directory as the root
user. Because different developers have different needs with respect
to the privacy of their data and the integrity of their systems, the
behaviors exhibited by these packages may be unacceptable for
some developers. While these 22 packages were reported to npm,
the npm registry maintainers stated that they would not remove
the packages from the npm repository since they were not overtly
malicious [24]. As such, registry maintainers and developers have
distinct needs and expectations with regards to package install-time
behaviors; registry maintainers need to detect explicitly malicious
behaviors, and developers need to configure the behaviors they
deem permissible. Thus, there exists no universally accepted threat
model as different stakeholders have different security expectations.

Software 
Creator

npm package 
registry

Maintainer policy: blocks 
malicious packages

Production 
deployment

Developer policy: blocks 
ambiguous behaviors (e.g., 
privacy violations)

Figure 2: Positioning of Latch within the software lifecycle

This motivates the need for a highly customizable and proactive
defense against undesirable install-time behaviors.

We design Latch to satisfy the needs of both registrymaintainers
and developers. Registry maintainers can deploy a Latch policy to
detect explicitly malicious behaviors as packages are uploaded to
npm, and developers can deploy their own Latch policies to prevent
packages from executing behaviors that they deem unacceptable.
This process is summarized in Figure 2. In Section 5, we discuss
reasonable default policies for both stakeholders.
Review of Existing Package Behaviors. Using system-call trac-
ing, we analyzed every install script on npm to determine how
many exhibit behavior that developers may want to mediate.

At the time of our analysis, we found 1,493,231 distinct pack-
ages in npm, 36,438 of which contain an install script. However,
this number understates the likelihood of an install script being
encountered during npm package installation, since the scripts
of all dependencies will be invoked. Furthermore, old versions of
packages can be specified as dependencies. When considering all
available versions, we found 385,798 packages that contain install
scripts.

We found that many behaviors exhibited by install scripts may be
undesirable to some developers. Many packages exhibited behavior
that violates the best practices of npm: 178,870 packages create
files within the node_modules directory, which can be done within
the mediated environment of npm, with no need for a shell script1.
5,688 scripts are long-running (over 10 minutes of wall-clock time
before we terminated them), potentially delaying or preventing an
automated installation.

Many packages also contained behaviors that could break an
OS deployment or cause data loss: 82,338 packages create files
outside of the home directory, and 63 delete files outside of the
home directory. Developers may be concerned about secrecy, or
access/modification to sensitive files (such as /etc/passwd). We
found 113,216 packages read one of more of these files, and 364

performed an update/modification. A number of packages also
attempted to perform additional network connections: 104,400
connect to a local network host, and 102,900 connect to a remote
host. These connections need not be declared by the package and
may be used to exfiltrate information or alert a 3rd-party of the
address from which the package is being run. We also found 3,235

1We randomly sampled several packages that wrote to node_modules, and found none
that required additional shell script capabilities for this behavior.



twilio-npm: Manifest

{"unpriveledgedExecs": [
{ "cmd": "/bin/bash",
...
"stdout": {
"type": "socket",
"ip": "3.22.15.135"
...}

Upload Time Manifest Inferencing

p3x-systemd-manager: Manifest

{"unpriveledgedExecs": [
{ "cmd": "/bin/bash",
...
"stdout": {
"type": "dev",
"path": "/dev/pts/0",
...}

Manifest Enforcement

Outcome:
ALLOWED

Outcome:
BLOCKED

Install Time Live Enforcement

User-Defined Policy

{ "rules": [
"!<ExecOutputOverNetwork>"

]}

Protected Install Script 
Execution

Outcome:
SUCCESSFUL 

INSTALL

Containerized Sandbox

Manifest 
DB

Manifest 
Inference

System
Call

Trace

Install Script 
Execution

Server-Side Client-Side

Figure 3: Three-phase Latch workflow. At upload time, packages manifests are created and cached offline. When a package

installation is initiated, the user-supplied policy is checked against the manifest and interposes in case of a policy violation. At

install-time, the install script’s behavior is mediated by live enforcement.

scripts that execute a file that is created by that package, potentially
hiding information from static analysis.

The distribution of install scripts in npm supports our obser-
vation that even strict mediation will not overwhelm npm users:
most packages do not contain install scripts, so alerts will be rare (a
detailed analysis is presented in Section 6). The behaviors exhibited
by install scripts indicate that mediation is important; many of
the behaviors could be system-breaking and at least indicate poor
quality code that may become a weak point of the overall system.
We emphasize that the behaviors we describe are not all overtly
malicious, and thus motivate the need for expressive policies, rather
than a one-size-fits-all approach, since some developers may be
comfortable with these behaviors while others may not.

4 OVERVIEW

Latch is designed to limit the threat of install-time package attacks
in two ways: (i) it allows registry maintainers to prevent overtly
malicious packages from being published in the repository, and (ii)
it empowers users to control the install-time behavior of packages.
Operationally, a registry maintainer policy can be applied in the
background whenever a package is uploaded. Similarly, whenever
a user issues an npm install 𝑝 command (for some package p),
Latchwill automatically ensure that package p, as well as the direct
and indirect dependency packages of p, only perform install-time
operations that are allowed by the user. Expressing permissions is
done using a domain-specific policy language which we describe
in Section 5.1. These policies operate over a manifest of permis-
sions that a given package will use in its installation process. An
important design goal of this system is that it works without the
cooperation of individual package authors. In particular, we do not
require that the package manifest be declared by the package author.

Avoiding reliance on package authors is an important feature of
our approach because of the number of existing packages currently
available on the repository: there are 1,493,231 current packages,
as well as 15,136,563 older versions of packages which are still ac-
cessible (and which other packages might depend upon). Requiring
manual retrofitting on such a scale is infeasible; hence, we design
Latch so that package manifests can be inferred independently—
both for new and existing packages. Furthermore, we assume the
goals of some package authors may run counter to the interests of
package users: the package installer may contain behaviors that
some developers find unacceptable and, in the extreme case, the
installer may be explicitly malicious. Removing the requirement
for package authors to cooperate with our system thus removes the
reliance on a potentially untrusted entity. Therefore, the system
needs to infer a given package’s manifest and then enforce that the
manifest is obeyed by the user’s policy.

We envision that both registry maintainers and developers will
want to deploy Latch. Registry maintainers benefit by using Latch
to scan the npm repository for malicious packages, and developers
benefit by using Latch to specify the exact install-time behaviors
they deem permissible. Cooperation with registry maintainers also
greatly simplifies the package manifest inference phase of Latch,
since registry maintainers can generate and make available package
manifests en masse. We present the high-level workflow of the
Latch system in Figure 3, and we describe it in detail below.

4.1 LatchWorkflow

Latch operates in three phases, amanifest inference phase, in which
a package’s manifest is generated, a manifest enforcement phase,
in which the manifest is checked against the user’s policy, and a



connect(3<TCP:[49835]>, sa_family=AF_INET, sin_port=htons(11425), \
sin_addr=inet_addr("3.22.15.135"), 16) = 0

dup2(3<TCP:[10.0.2.15:44028->3.22.15.135:11425]>, 1</dev/pts/0>) = \
1<TCP:[10.0.2.15:44028->3.22.15.135:11425]>

dup2(1<TCP:[10.0.2.15:44028->3.22.15.135:11425]>, 2</dev/pts/0>) = \
2<TCP:[10.0.2.15:44028->3.22.15.135:11425]>

dup2(1<TCP:[10.0.2.15:44028->3.22.15.135:11425]>, 0</dev/pts/0>) = \
0<TCP:[10.0.2.15:44028->3.22.15.135:11425]>

execve("/bin/bash", ["bash", "-i"], 0x55559cc91bd0) = 0

{ "intent": "connect",
"info": { "type": "AF_INET",
"ip": "3.22.15.135", "port": "11425" }},

{ "intent": "exec",
"info": {

"cmd": "/bin/bash", "args":["bash","-i"],
"stdin": {

"type": "socket","ip": "3.22.15.135",},
...}}

(a) Relevant subset of system call trace (b) Relevant intents

Figure 4: Example system call trace and intents for twilio-npm

live enforcement phase, in which the package’s install scripts are
executed under the protection of a kernel level security module.

4.2 Manifest Inferencing

The manifest inference stage identifies all packages that define
install scripts and computes a manifest of all actions performed on
the operating system during the invocation of each script. The full
process of inferring a package’s manifest is depicted in Figure 3.
To protect infrastructure, Latch sandboxes the installation process
using Singularity containers [55].

A key observation that underlies our inference mechanism is
that although package run-time behavior is highly diverse, package
install-time behavior tends to be stable across multiple runs. As
such, we use a dynamic-analysis approachwhereby behaviors of the
package under test are observed and recorded to a log file, which is
then compiled into a package manifest. As inferencing is relatively
time-consuming, we envision it to be performed asynchronously
when a package is first uploaded to npm. The resulting manifest
would then be cached in a manifest database.

Install-time operations are profiled by recording the resulting
sequence of system calls using the strace tool2. To prevent strace
from capturing non-script-related events (e.g., npm copying the
package files in the appropriate directories), manifest inferencing
utilizes a modified version of the package manager source code
that only tracks the system calls invoked by the install script. As an
example, Figure 4a lists the system calls collected during installation
of the malicious twilio-npm package, whose installation script is
represented in Figure 1b.

To aid in the extraction, we provide a minor operating system
state abstraction to track data dependencies across system calls.
For instance, the system call mmap loads a file into memory and
msync syncs a memory mapped file to the file system. By noting
the memory location, length, and flags of the mmap invocation,
Latch can determine whether a process could manipulate the file
before committing it by invoking msync. Latch also keeps track of
the current working directory to disambiguate relative file paths.

After the install script has finished generating its system call
trace, Latch interprets the trace into a collection of intents of all
interactions between the script and the operating system. Figure 4b

2While strace is Linux-specific, the Latch approach is general; strace can be swapped
with other appropriate utilities under other operating systems with some implementa-
tion effort (we further analyze portability challenges in Section 7.2).

displays the set of intents generated from interpreting the sys-
tem calls from Figure 4a. Each intent represents a relevant high-
level operation—most commonly an access to the file system or
a network resource—and related metadata. To generate manifest
attributes, these intents are filtered and grouped according to each
attribute’s description. Using the example from Figure 4b, /bin/bash
and 3.22.15.135 would be added to the list of executables and remote
IPs connected to, respectively.

After processing all system calls and filtering intents for an
installation script, a manifest is generated and stored in the mani-
fest database under the package name and version. We note that
manifests are generated even if installation scripts crash during
execution. It is important to capture the behaviors of these buggy
install scripts since they may perform undesirable operations prior
to crashing. Figure 3 shows a simplified version of the manifests for
twilio-npm and p3x-systemd-manager. These manifests capture
the fact that, while both packages execute /bin/bash, the former
directs its output to a network socket, while the latter to a terminal.

4.3 Manifest Enforcement

When a user intends to install a package, Latch checks the user-
defined policy against the manifests of all packages and package
dependencies attempting to be installed (we discuss policy genera-
tion in Section 5.2). The manifest enforcement engine is invoked
before spawning a package’s install scripts to prevent unwanted
behavior. All packages and package dependencies are analyzed
according to the user’s policy.

Each package’s manifest is fetched from the manifest database
and is then analyzed against each rule in the user’s policy. Fig-
ure 3 illustrates this procedure and shows a simple policy that
prohibits install-time scripts from executing external processes
while redirecting output over the network. During manifest en-
forcement, policy rules are evaluated to a boolean value; in the
example, the policy evaluates to false for twilio-npm and true for
p3x-systemd-manager.

Inspired by other run-time enforcement systems such as SELinux [1],
Latch supports two functioning modes, warning and failure. When
in warning mode, rule violations generate alerts but do not halt
package installation. When in failure mode, the same violations
cause the installation to fail. These modes can be specified at the
granularity of individual rules. When the policy of Figure 3 is ex-
ecuted in failure mode, the installation of p3x-systemd-manager
completes but that of twilio-npm is correctly interrupted. When a



{"declarations": [
"<allRemoteHosts> = [remoteHosts_preinstall] ~union

[remoteHosts_install] ~union
[remoteHosts_postinstall]",

"<allFilesRead> = [filesRead_preinstall] ~union
[filesRead_install] ~union
[filesRead_postinstall]",

"<<passwdFile>> = '/etc/passwd’”],

"rules": ["<allRemoteHosts> == {}",
"!(<allFilesRead> ~anymatches [<<passwdFile>>])"]}

Figure 5: Simplified example Latch policy. Rule 1 prevents

connection to remote hosts. Rule 2 prevents reads from /etc/-
passwd.

policy violation occurs, the user is prompted with information per-
taining to the packages violating the policy along with the policy
rules being violated.

4.4 Live Enforcement

Even though the large majority of packages exhibit consistent
install-time behavior, it is possible for install scripts to exhibit
nondeterministic behavior not captured in a manifest that has been
generated from a single run. These nondeterministic behaviors may
be present due to differences in system architecture or due to adver-
sarial evasion techniques such as logic bomb and time bomb attacks.
To provide true policy enforcement in adversarial and nondetermin-
istic settings, our solution needs to support live policy enforcement
during installation time. The live enforcement process is depicted
in Figure 3, which shows a protected install script execution for
p3x-systemd-manager.

To provide live enforcement, Latch utilizes kernel level security
module policies. We select AppArmor [2] as our security module
of choice given its reputation, popularity, and relative ease of use
as compared to similar kernel level security modules.

We note that existing kernel level security module policies do
not offer the same level of expressibility as Latch policies that
operate on manifests. As such, live enforcement provides a more
restrictive, safe approximation of manifest enforcement. Ultimately,
live enforcement enhances the security guarantees of Latch at
the cost of weakened expressibility. Thus, we implement live en-
forcement as a configurable option in Latch that can be enabled or
disabled by the user.

5 MANIFEST ENFORCEMENT POLICIES

A key component of our system is the use of user-defined policies
to explicitly indicate what install-time behaviors are allowed by a
program. To interface with Latch, our system provides a domain-
specific policy language which allows users to express constraints
on install-time manifests.

5.1 Policy Language

Our system’s policy language is intended to be lightweight. It allows
for fine-grained filtering with a high level of abstraction to con-
struct a policy to be used for all packages. This language is centered

around manifest attributes. It is implemented using a parsing ex-
pression grammar and allows for basic boolean and set operations.
A simplified example policy is shown in Figure 5, and our default
policy recommended for developers is shown in Appendix A.

We designed our policy language to allow a user to protect
against any script capability model that can be extracted from a
package’s manifest. Each policy is a conjunction of predicates over
permissioned behaviors consisting of a list of declarations and a
list of rules. Declarations in a policy are computed values of a
manifest that can be used in other declarations and rules. Rules in
a policy are attributes over the manifest and declarations that the
user allows (or denies, by negation) an install script to exhibit. This
level of granularity permits the construction of both allow-list and
block-list based policies.

The full grammar of our policy language and a collection of
examples designed to aid in the construction of Latch policies are
provided in our public GitHub repository:

https://github.com/elizabethwyss/Latch/tree/main
/policy

5.2 Default Policies

Latch’s design is based on the insight of separating mechanism
from policy, which historically has been applied with great success
in the security domain [46]. The enforcement engine provides the
mechanism, while the user is tasked with defining policies appro-
priate to the use cases of interest, via Latch’s policy language.

In practice, we expect that most users will use standardized
policies defined by experts, with minimal customizations. In this
section, we discuss the formulation of two empirically-derived
template policies–one aimed at developers and one aimed at registry
maintainers. We evaluate the template policies in Section 6.

Developer Policy. First, we consider a policy designed to meet
the needs of a security conscious developer who wishes to disal-
low all security sensitive operations on their system. This policy
guarantees that no install-time security sensitive operations occur
on the system, but also prevents the installation of many packages
with install scripts.

This policy’s rules allow install scripts to print output to the
terminal (/dev/pts or /dev/tty devices on Linux) and to read nonsen-
sitive files, but prevents connecting to network hosts and writing
to files. Appendix A shows our developer policy in full.

Maintainer Policy. Second, we consider a policy designed to meet
the needs of registry maintainers who wish to scan the npm repos-
itory for malicious packages. Because the historical decisions of
registry maintainers are available, we utilize a data-driven, learning
algorithm-based approach formulated by discriminating known
malicious and benign package install-time behavior as determined
by historical takedowns of packages by npm maintainers. First,
we build a labeled dataset by randomly sampling 375 well-known
benign npm packages and supplement those with 375 malicious
packages randomly oversampled (to avoid bias due to class imbal-
ance) from a collection of 102 malicious packages [44] that have
been removed from npm by the registry maintainers. Then, we build
a CART decision tree classifier [14] to discriminate between benign

https://github.com/elizabethwyss/Latch/tree/main/policy
https://github.com/elizabethwyss/Latch/tree/main/policy


and malicious packages, and we generate policy rules directly from
the branches of the trained decision tree.

6 EVALUATION

To determine the effectiveness of our proposed system, we focus
our evaluation on three research questions

• RQ1: Does manifest enforcement allow for effective dis-
crimination between benign, potentially undesirable, and
explicitly malicious packages? In Section 6.1, we show that
our developer policy blocks 1.5% of all npm packages, 82% of
tested potentially undesirable packages, and 100% of tested
malicious packages. We contrast this with our maintainer
policy, which blocks 0.013% of all npm packages, 14% of
tested potentially undesirable packages, and 99% of tested
malicious packages.

• RQ2: How frequently does the system result in interruption
of developer workflow? In Section 6.2, we demonstrate that
installation interruptions are caused by our developer policy
in 1.6% of package installs and by our maintainer policy in
0.3% of package installs.

• RQ3: Is the system’s performance reasonable at registry
scale? In Section 6.3, we show that 90% of packages can have
their manifest inferred in less than a minute, and 99% of
packages can have their manifest enforced in less than a
second.

• RQ4: Does live enforcement guarantee safety in potentially
nondeterministic settings? In Section 6.4, we demonstrate
that every installation script blocked by manifest enforce-
ment is also blocked by live enforcement, and 93.8% of in-
stallation scripts allowed by manifest enforcement are also
allowed by live enforcement.

6.1 Manifest Enforcement Policy Violations

First, we generate manifests for all npm packages and all known
malicious packages in our datasets. Then, we evaluate our two
template policies on every package manifest. We assess the effec-
tiveness of our policies by analyzing the total number of policy
violations caused by all packages, previously identified [24] poten-
tially undesirable packages, and known malicious packages [44].
Effectiveness on npm Packages. Our template policies allow for
the installation of packages that do not exhibit security-sensitive
behavior. Ultimately, the ground truth of permissible package be-
havior lies within a user’s policy, and as such, it is impossible to
universally label all packages as either benign or malicious. Rather,
we analyze the effectiveness of our template policies by measuring
their violation rates across all available npm packages. We present
the violation rates of each template policy in Table 1.1, separated
by whether the violating package’s version is the latest or old.

The less strict maintainer policy incurs far fewer policy violations
than the more strict developer policy. Across all versions of all npm
packages, the maintainer policy achieves a 0.013% violation rate,
and the developer policy has a violation rate of 1.5%. These values
align with our initial expectations when designing these policies.
Both of these policies allow for a significant portion of security
nonsensitive behaviors.

Table 1.1 npm Package Violations by Package Version

Policy Latest (1,493,231) Old (15,136,563)

Developer 16,271 232,466
Maintainer 681 1,543

Table 1.2 Malicious Package Violations

Policy Dataset From [44] (102)

Developer 102
Maintainer 101

Table 1.3 Potentially Undesirable Package Violations

Policy Dataset From [24] (22)

Developer 18
Maintainer 3

Table 1: Policy violation counts for each template policy on

our npm, potentially undesirable, and malicious datasets.

Latest packages refer to the most up-to-date versions of pack-

ages, and old packages refer to all previous versions of pack-

ages.

Effectiveness on Malicious Packages. Our template policies are
constructed to provide different approaches to prohibiting mali-
cious behaviors. We present the results of analyzing our malicious
package dataset on each of these policies in Table 1.2.

The more restrictive developer policy performs better at detect-
ing malicious packages than the maintainer policy and reports
violations in 100% of tested malicious packages. The maintainer
policy is slightly less effective than the developer policy and reports
policy violations in 99% of malicious packages, missing only a single
instance of malicious behavior. This high recall of the maintainer
policy is to be expected given that the malicious package dataset
used to test it was also used to train it. The goal of the maintainer
policy is to block the most widely applied forms of install script
attacks, and we utilized a malicious package dataset that is com-
prised entirely of such attacks. As the malicious package landscape
evolves, we expect the maintainer policy to be updated accordingly.
Although these results do not show how our maintainer policy
would generalize to unseen malware, they demonstrate that gener-
ating a policy using a realistic data-driven approach is effective in
blocking behaviors deemed impermissible by registry maintainers.

The single instance of malicious behavior missed by the main-
tainer policy involves printing the user’s ssh keys to the terminal.
This behavior has similar permissions to benign behavior such as
reading the /etc/passwd file to determine a user’s identity. Since
reading files like /etc/passwd could be done for benign purposes,
our less strict maintainer policy does not catch this behavior. The
maintainer policy could easily be tweaked to catch this behavior,
although it would result in additional undesired alerts caused by
installation scripts that read from similar files with benign intent.
We believe that our maintainer policy in its current form reflects
the security attitudes of the npm registry maintainers.
Effectiveness on Potentially Undesirable Packages. Our tem-
plate policies are designed with the needs of different groups in



mind. As such, the policies should perform vastly different on pack-
ages that exhibit potentially undesirable–but not overtly malicious–
behavior. We present the results of analyzing our potentially unde-
sirable package dataset on each of these policies in Table 1.3.

As expected, the developer policy disallows more potentially
undesirable packages than the maintainer policy and reports viola-
tions in 82% of our potentially undesirable packages. Themaintainer
policy allows for more potentially undesirable behavior and disal-
lows only 14% of potentially undesirable packages. Out of the four
potentially undesirable packages allowed by the developer policy,
one installs additional npm packages as part of a postinstall script,
and the other three read information that is not security sensitive,
including npm configurations and randomized identifiers. With
regards to the maintainer policy, the three packages disallowed by
the maintainer policy perform invasive user tracking, recording
potentially identity compromising details about the package in-
staller’s system via a remote tracking API. The packages that were
allowed by the maintainer policy but disallowed by the developer
policy all send system architecture specifications and/or npm con-
figuration information to remote tracking APIs. Given the goals of
each template policy, we believe the violations of each policy align
with the security needs of the users they are designed for.
Suspicious Install-Time Behaviors. We now review install-time
behaviors found on npm that triggered the developer policy.

A number of packages either updated, modified metadata on,
renamed, or deleted a file outside the user’s home directory. These
events were almost all due to mistakes in the package’s install script.
For instance, if a package builds files from its source code, it may
have a folder build within its directory on the user’s system. Such a
package will also have a script to remove the contents of this folder
before re-building these files. However, instead of removing the
intended folder with a relative path, ./build, some packages attempt
to remove a folder with an absolute path, /build. While this could
be detrimental to a user with important files in this folder, packages
exhibiting this mistake had very few downloads and are likely to
never be installed by a real user. Also, we observed that when
these issues occur, they tend to be resolved in successive versions
of the same package. Incidentally, this observation suggests that
Latch may be applicable as a testing tool to identify unexpected
install-time behaviors prior to uploading/releasing a package.

The exception to this behavior was the opsie package, which
wrote to the /dev/initctl and /run/initctl. Writing to these files is
a consequence of executing the reboot command on Linux. After
further investigation, the intent of this package is to delete a user’s
unsaved work upon installation by rebooting the system without
forewarning. We reported this package to the npm security team,
and it has since been removed from npm.

Another potentially problematic behavior we found is updating
user scripts executed upon startup or login. We singled out such
updates because an attacker could put in a backdoor or execute
malicious commands without the user’s knowledge. There were
364 instances where the ∼/.bashrc, ∼/.bash_profile, and ∼/.profile
files were updated 281, 80, and 14 times, respectively. From the 364
packages, we manually analyzed a sample of scripts that updated
each file. Each of the analyzed packages used these files to either
set environment variables or to load package tools.

Figure 6: Distribution of download counts over the packages

violating each template policy. A majority of policy viola-

tions for each of our template policies occurs in packages

that are rarely downloaded.

We also found the creation and execution of a file to be a suspi-
cious behavior. There were 3,235 packages exhibiting this behavior,
and we performed a manual analysis on a portion of these packages.
The most common cause of this behavior occurs when a package
checks that compilation or download of a binary was successful by
running that binary (usually with a version option).

All of these suspicious behaviors were detected using Latch
manifest attributes and thus can be blocked via Latch policy rules.

6.2 Impact on User

Each template policy has instances of package installations halted
across npm because of a policy rule violation. This subsection an-
alyzes how frequently a user will encounter a package with such
violation. A good metric to measure how often our system will
intervene during the installation process is the download counts of
packages that incur a policy rule violation. We gathered download
counts for all packages violating each of our template policies to
analyze the trade-offs between the different security levels and how
often development workflow will be interrupted.
Download Counts and Popularity. Package download counts do
not directly represent the number of users installing the package.
npm mirrors and bots download packages regularly for analysis.
Downloads from these sources are indistinguishable from user
downloads and are recorded in the overall download count. The
creators of npm estimate a package can be downloaded up to 50
times per day without ever being installed by an actual user [41].

Using this estimate, we classify a package with fewer than 350
downloads per week as likely never installed by an actual user.
Recent research identifies packages with more than 100,000 down-
loads per week to make up less than 1% of npm and account for
a majority of all downloads [56]. The analysis of this subsection
shows that it is rare for any user to be hit by a policy violation.

Each violation shown in Table 1, represents a single version of
one of the 36,438 distinct packages with installation scripts that we
analyzed. Download counts represent all downloads of all versions
of a package, thus we convert the policy violation numbers into



Figure 7: Distribution of total analysis time to produce a

manifest for each package.

distinct package policy violations for this analysis. The 248,737 and
2,224 violations of the developer and maintainer policies represent
only 24,345 and 1,775 distinct packages, respectively.

We gathered download counts for each of the distinct packages
expressed by the policy violations and present the results grouped
by popularity classes in Figure 6. Over 92.5% and 90.3% of the devel-
oper and maintainer policy violations respectively are committed
by packages we estimate to likely never be installed by an actual
user. The remaining packages which violate the developer and
maintainer policies account for 435,471,572 and 78,075,730 weekly
downloads, respectively. These numbers are absolute maximums
considering the download count data provided by npm does not
include a package version distribution; it is very probable these
figures are reasonably smaller.
Workflow Interruptions. The ideal number of warnings given to
a user notifying them of a policy violation during package instal-
lation depends on the level of security of the policy. It is difficult
to quantify the degree of security of a given policy, however we
have presented two template policies suited to the distinct goals of
different stakeholders in the npm ecosystem.

The estimated portion of package downloads which will result in
a warning from our system is approximately 1.6% for the developer
policy and 0.3% for themaintainer policy. In other words, our system
generates a single warning, on average, every 63 package installs
for the developer policy and every 356 package installs for the
maintainer policy. We consider these acceptable rates for users
considering the goals of each policy.

6.3 Performance

Manifest Inference. The npm ecosystem is the largest and one of
the fastest growing open-source software registries in the world,
growing at rate of over 850 new packages per day3. Of these pack-
ages, we estimate about 21 will define install scripts. The registry,
on average, also sees around 3,000 existing package updates per
day, of which we estimate about 74 will also contain install scripts.
The manifest inference phase of our system needs to be able to
accurately and promptly compute manifests to keep pace with the
3http://www.modulecounts.com/

Figure 8: Distribution of time to enforce each of our template

policies over manifests.

growth of npm. We show that our manifest inference system can
match the growth of npm.

The size of system call trace files directly impacts the time re-
quired to infer a manifest. In our analysis, the total size of system
call trace files range from one kilobyte to over 4 gigabytes. The size
of these files are proportional to the complexity of the script being
executed (e.g. simply printing a message versus downloading and
compiling a large codebase). We recorded the time it takes to infer
manifests for different packages and present our data in Figure 7.

Around 90% of packages can have a manifest inferred in less
than a minute. A majority of the remaining packages take less than
10 minutes to infer a manifest. When extracting manifests, there
are a few outliers that take over an hour to analyze. This is due
to the size of the system call trace files being analyzed. There are
approximately 5,000 system calls per 1 megabyte of system call file
and Latch can process around 1,000 system calls per second.
Manifest Enforcement. Large codebases can require the instal-
lation of hundreds of packages and their dependencies. Our solu-
tion needs to provide behavior restriction without incurring large
overhead costs. The complexity of the policy and the size of the
manifest directly influences how fast the analysis is performed. We
performed timing analysis on each of our template policies over
our datasets and show the results in Figure 8. Our maintainer policy
is more complex, consisting of 73 declarations and 15 rules, and we
consider it to represent a reasonable upper bound to the analysis
runtime. The time taken to compute declarations and rules depends
on the size of the manifest. In our analysis, manifest size ranges
from 4KB to over 300MB.

Over 99% of all packages have both policies enforced over their
manifests in less than 1 second. We believe this enforcement time
to be reasonable since we experimentally measured the average
runtime of npm install scripts to be 12 seconds. There are a few pack-
ages that take over a minute to enforce a policy on their manifests,
but it is important to note that these packages have install scripts
that take over 5 minutes to complete. Manual analysis showed
that these long-running install scripts typically perform operations
such as compiling native addon modules and executing large test-
ing suites. Given the rarity and comparatively smaller enforcement



Figure 9: Boxplot distribution of install script overhead in-

curred by live enforcement. The median overhead of 0.37%

is depicted in orange, and the quartiles form the edges of the

box. The whiskers represent typical execution time variation

across repeated install script runs, which we measured to be

roughly 20% in either direction.

times of these lengthy installation scripts, we believe the perfor-
mance of Latch manifest enforcement is practical for deployment.

6.4 Live Enforcement

Due to the potential for install scripts to exhibit nondeterministic
behaviors not declared in their manifests, our system must provide
a safe and reasonably performant mechanism for live policy en-
forcement. We investigate the extent to which live Latch policy
enforcement is practical and safe using the AppArmor [2] kernel
level security module.

Given that live enforcement would offer greater protections for
developers installing packages, we opt to translate our default devel-
oper policy into an AppArmor policy and measure the effectiveness
of this approach. Due to differences in the expressivity of Latch and
AppArmor, we seek to construct a more restrictive approximation
of our default developer policy.
Performance Impact. We experimentally evaluate the perfor-
mance of live enforcement and find that AppArmor handling live
enforcement increases the overhead of package installation scripts
by less than 1% on average, with a worst-case scenario of 88%
overhead. This overhead is most pronounced for operations that
frequently access files, which requires performing many additional
live policy checks. The distribution of live enforcement overhead
across all installation scripts is depicted in Figure 9.
Effectiveness of Live Enforcement. We experimentally evaluate
the effectiveness of AppArmor handling live enforcement by exe-
cuting the install scripts of the most recent versions of all 36,438
npm packages that declare installation scripts and tracking policy
enforcement violations reported by AppArmor. We find that 93.8%
of installation scripts allowed by manifest enforcement of our de-
fault developer policy are correctly allowed by our corresponding

AppArmor policy. We further find that 100% of installation scripts
denied by manifest enforcement of our default developer policy are
correctly denied by our corresponding AppArmor policy.

To investigate why some installation scripts permitted by man-
ifest enforcement are denied by live enforcement, we manually
examine a random sample of 50 instances where this occurred. We
find that 44% of these cases occurred due to buggy installation
scripts that crash during execution. In 12 instances, the installation
script failed to finish executing during manifest inference, and live
enforcement terminated the script at a later point in the script. In
the 10 other buggy installation scripts, live enforcement prevented
the execution of operating system native binaries that serve the
sole purpose of performing disallowed behaviors (e.g. the Linux
install binary), while manifest enforcement found that those bi-
naries crashed and as such did not exhibit any disallowed behaviors.
We note that preventing the execution of operating system native
binaries that explicitly perform disallowed behaviors was a more re-
strictive design choice made in constructing our AppArmor policy
so that safety is preserved in cases where the successful execu-
tion of scripts is not deterministic. In the remaining 56% of cases
where an installation script allowed by manifest enforcement was
disallowed by live enforcement, AppArmor’s coarse granularity
with respect to network sockets caused the installation scripts to
be incorrectly denied. We note that the incongruity between Latch
and AppArmor’s handling of network sockets could be resolved
through the combined use of AppArmor and additional security
tools, but we view this to be more of an engineering challenge than
a scientific one, and as such we leave this as future work.

Based on the results of our experimental evaluation of live en-
forcement, we believe live enforcement of Latch policies via Ap-
pArmor to be practical and effective. Despite the slight discrepancies
between the expressiveness of Latch and AppArmor, we demon-
strate that AppArmor live enforcement achieves an effective and
safe approximation of Latch policies, and as such, we believe that
the development of independent live enforcement frameworks is
unneeded. Despite this satisfactory result, however, we believe that
further developments in kernel level security modules and related
tools could improve the expressivity of live enforcement policies,
and we leave this as a relevant avenue for future work.

7 DISCUSSION

7.1 Summary of Results

As shown in Table 1, our template policies mitigate a significant
number of malicious and potentially undesirable behaviors while
still allowing for the installation of a large portion of npm packages.
As discussed earlier, the developer policy was the most successful
at preventing malicious behavior although it incurred more policy
violations. The maintainer policy was the most successful template
policy at allowing for the most npm package installations while
still reporting nearly all known malicious packages.
npm Package Policy Violations. Given the generally low pop-
ularity of most packages causing policy violations, it is very rare
that any user would encounter a policy exception. We recommend
these policies for developers and registry maintainers to make npm
more secure for both parties. Since package installation is only



performed once for most developer workflows, limited installation
interruptions are acceptable for the security benefits provided.
Performance Impact. It is important for our system to be per-
formant, both at package analysis time and package installation
time. As shown in Figure 7, manifest inferencing occurs quickly for
most all packages. Very few packages (61 packages, or < 0.0002%
of packages with install scripts) invoke a degenerate behavior in
which the npm binary is recursively called from within an install
script, forcing a nested analysis of Latch, with a large increase in
overhead. Recursive npm invocation is considered bad practice, but
it could be handled in Latch with additional implementation effort.
We stress that manifest inferencing can occur for many packages
in parallel, which greatly improves Latch’s scalability.

Figure 8 shows that manifest enforcement also occurs quickly for
most all packages and policies. Latch imposes an average increase
in installation time of about 3.2% and 6.2% for the developer and
maintainer policies, respectively. We believe this result to be reason-
able as the slowdown caused by Latch is essentially unnoticeable.

As shown in Figure 9, the overhead imposed by live enforce-
ment is negligible in almost all cases. Live enforcement incurs an
average install script overhead of less than 1%, and we believe this
performance to be more than satisfactory for practical deployment.

7.2 Limitations

Portability. Although the Latch approach is not operating system-
specific, porting Latch between different operating systems and
their versions poses some challenges. Available system calls and
their precise behaviors vary between operating systems and some of
their versions; however, Latchmanifest attributes and live enforce-
ment capabilities are higher-level abstractions of these low-level
behaviors. This level of abstraction means that many operating
system updates will not break the functionality of Latch. Despite
this, different operating systems and some operating system ver-
sions will require implementation effort to resolve differences. We
believe that these portability issues are non-trivial but feasible to
resolve if Latch were to be deployed in practice.
Adversarial Evasion. While adversarial evasion techniques that
rely on nondeterministic install script behavior, such as logic bomb
and time bomb attacks, are prevented by the live enforcement phase
of Latch, there still exists techniques that an adaptive adversary
could utilize to potentially circumvent the protections provided
by Latch. One such approach would be to identify exploitable
gaps between the precise low-level behaviors of system calls and
how they translate into higher-level abstractions in Latch mani-
fest attributes and live enforcement capabilities. Despite potential
adversarial evasion, Latch improves the security of package install
scripts and significantly raises the bar for adversaries trying to
execute package install-time attacks.

8 RELATEDWORK

PackageRepository SecurityAnalyses. Previouswork has noted
the existence of security issues within package managers and the
impact of dependency chains on package security. A number of
previous researchers have studied the overall impact of vulnera-
ble and malicious package issues within npm, with some focus

particularly on the use of dependencies [18, 23, 28, 47, 58, 62]. Ab-
dalkareem et al. provide a study on the use of trivial packages,
which increase the install-time codebase [10]. Koishybayev et al.
describe a system to remove unused package dependencies, but
their system does not mediate the behavior of a package if its use
cannot be eliminated [30]. Davis et al. analyze the prevalence of
regular expression denial of service (ReDoS) attacks across the npm
and PyPI repositories [22], and Staicu et al. investigate how ReDoS
attacks within npm affect real-world web servers [53]. While the
focus of our work is in defending npm, we note that other pack-
age managers such as apt have also been an object of study for
similar issues [11, 16, 33]. Finally, the problem of malicious and/or
vulnerable dependencies falls within the more general problem
area of supply-chain security [15, 32, 48, 57, 61], i.e., the study of
how incorporating dependencies in a software artifact can diminish
the security of that same artifact. Differing from these works, we
tackle containment of a specific security issue, namely undesired
installation operations within repository packages.
Manifest-Based Permission Systems. Our work is partially in-
spired by permission systems based on an install-time manifest, as
widely deployed in the Android mobile operating system. Numer-
ous works have built upon the manifest-based permission model to
assess the safety of untrusted software [19, 35, 60] or to measure
the extent of Android’s manifest-based security [12].

Unlike work that builds upon existing manifests, we include
manifest inferencing as part of our system. As such, we do not
require the cooperation of developers to declare the capabilities
of packages (in Android, developers are responsible for crafting a
manifest and including it as part of an app).
Malicious Package Detection. Some previous work has focused
on flagging packages based on signals of vulnerable or malicious
behavior, through analysis of the code or metadata. Multiple works
have proposed static analysis techniques to detect vulnerable pack-
age code [8, 26, 34, 36]. Synode, by Staicu et al., combines static
analysis and runtime enforcement to detect and secure packages
with command injection vulnerabilities [54]. Garrett et al. created
a system for detecting malicious updates to existing packages [25].
Duan et al. applied a combination of static analysis, dynamic analy-
sis, and metadata analysis to detect malicious packages [24]. Tay-
lor et al. proposed TypoGard, a tool for assessing if a package has
a name which is suspiciously similar to a more popular alterna-
tive [56]. Most similar to our work is Mir, by Vasilakis et al., which
implements a read-write-execute permission model to mediate ac-
cess to fields within Node.js libaries [59]. While these approaches
share our goal of protecting users from undesirable behavior, none
of them focus on the detection and prevention of malicious and
undesirable install-time behavior.

Ohm et al. [45] proposes a tool to raise awareness to developers or
users of new system changes between versions of packages. Much
like the built-in audit capabilities of npm, this tool requires manual
analysis of new system changes to proceed or halt installation,
whereas our tool fully automates this process.

9 CONCLUSION

This paper presents a mechanism for limiting the install-time behav-
iors of npm packages through the use of a novel permission system.



We show that the install-time security behaviors of npm packages
can be discovered automatically using dynamic analysis, where we
summarize behavior in an install-time manifest. We propose a light-
weight policy language to approve manifests and show that several
template policies prevent most malicious and undesirable package
behavior while still allowing almost all benign package installations.
We further protect users in real-time by providing live enforcement
of policies as install scripts are executed. Our evaluation shows
that mediating package installation is a meaningful and effective
protection. We present a solution that can be deployed without
modification of package repositories and show that automatically
creating and deploying manifests as part of a repository is feasible;
we hope that repositories consider deploying this enhancement.

10 ACKNOWLEDGEMENTS

We thank our shepherd, Cris Staicu, and the anonymous reviewers
for their insightful feedback that greatly aided us in improving this
work. This work was partially supported by a generous gift from
the Google Open Source Security Team.

REFERENCES

[1] 2020. SELinux Project. https://github.com/SELinuxProject
[2] 2021. AppArmor. https://gitlab.com/apparmor/apparmor
[3] 2021. Creating Attestations with Kritis Signer | Binary Authoriza-

tion. https://cloud.google.com/binary-authorization/docs/creating-attestations-
kritis.

[4] 2021. Executive Order on Improving the Nation’s Cyberse-
curity. https://www.whitehouse.gov/briefing-room/presidential-
actions/2021/05/12/executive-order-on-improving-the-nations-cybersecurity/.

[5] 2021. Grafeas/Grafeas. https://github.com/grafeas/grafeas.
[6] 2021. Grafeas/Kritis. https://github.com/grafeas/kritis.
[7] 2021. NodeSource. https://docs.nodesource.com/ncmv2/docs#overview
[8] 2022. Mining Node.js Vulnerabilities via Object Dependence Graph and Query.

In 31st USENIX Security Symposium (USENIX Security 22). USENIX Association,
Boston, MA. https://www.usenix.org/conference/usenixsecurity22/presentatio
n/li-song

[9] 2022. Open Science Framework. https://osf.io
[10] Rabe Abdalkareem, Olivier Nourry, Sultan Wehaibi, Suhaib Mujahid, and Emad

Shihab. 2017. Why Do Developers Use Trivial Packages? An Empirical Case
Study on Npm. In Proceedings of the 2017 11th Joint Meeting on Foundations of
Software Engineering (Paderborn, Germany) (ESEC/FSE 2017). Association for
Computing Machinery, New York, NY, USA, 385–395.

[11] Anish Athalye, Rumen Hristov, Tran Nguyen, and Qui Nguyen. 2014. Package
Manager Security. Technical Report. https://pdfs.semanticscholar.org/d398/d2
40e916079e418b77ebb4b3730d7e959b15.pdf

[12] David Barrera, Jeremy Clark, Daniel McCarney, and Paul C. van Oorschot. 2012.
Understanding and Improving App Installation Security Mechanisms through
Empirical Analysis of Android (SPSM ’12). Association for ComputingMachinery.

[13] K Bertus. 2018. Cryptocurrency clipboard hijacker discovered in pypi repository.
https://medium.com/@bertusk/

[14] Leo Breiman, Jerome Friedman, Charles J Stone, and Richard A Olshen. 1984.
Classification and regression trees. CRC press.

[15] Mircea Cadariu, Eric Bouwers, Joost Visser, and Arie van Deursen. 2015. Tracking
known security vulnerabilities in proprietary software systems. In SANER.

[16] Justin Cappos, Justin Samuel, Scott Baker, and John H Hartman. 2008. A look
in the mirror: Attacks on package managers. In Proceedings of the 15th ACM
conference on Computer and communications security. 565–574.

[17] Seth Carmody, Andrea Coravos, Ginny Fahs, Audra Hatch, Janine Medina, Beau
Woods, and Joshua Corman. 2021. Building Resilient Medical Technology Supply
Chains with a Software Bill of Materials. npj Digital Medicine 4, 1 (Feb. 2021),
1–6.

[18] Kyriakos Chatzidimitriou, Michail Papamichail, Themistoklis Diamantopoulos,
Michail Tsapanos, and Andreas Symeonidis. 2018. Npm-miner: An infrastructure
for measuring the quality of the npm registry. In 2018 IEEE/ACM 15th International
Conference on Mining Software Repositories (MSR). IEEE, 42–45.

[19] Pern Hui Chia, Yusuke Yamamoto, and N Asokan. 2012. Is this app safe? A large
scale study on application permissions and risk signals. In Proceedings of the 21st
international conference on World Wide Web. 311–320.

[20] Catalin Cimpanu. 2020. Microsoft spots malicious npm package stealing data
from UNIX systems. https://www.zdnet.com/article/microsoft-spots-malicious-

npm-package-stealing-data-from-unix-systems/
[21] Lucian Constantin. 2020. SolarWinds Attack Explained: And Why It Was so Hard

to Detect | CSO Online. https://www.csoonline.com/article/3601508/solarwinds-
supply-chain-attack-explained-why-organizations-were-not-prepared.html.

[22] James C. Davis, Christy A. Coghlan, Francisco Servant, and Dongyoon Lee. 2018.
The Impact of Regular Expression Denial of Service (ReDoS) in Practice: An
Empirical Study at the Ecosystem Scale. In Proceedings of the 2018 26th ACM
Joint Meeting on European Software Engineering Conference and Symposium on
the Foundations of Software Engineering (Lake Buena Vista, FL, USA) (ESEC/FSE
2018). Association for Computing Machinery, New York, NY, USA, 246–256.
https://doi.org/10.1145/3236024.3236027

[23] Alexandre Decan, Tom Mens, and Eleni Constantinou. 2018. On the impact of
security vulnerabilities in the npm package dependency network. In Proceedings
of the 15th International Conference on Mining Software Repositories. 181–191.

[24] Ruian Duan, Omar Alrawi, Ranjita Pai Kasturi, Ryan Elder, Brendan Saltaformag-
gio, and Wenke Lee. 2021. Towards Measuring Supply Chain Attacks on Package
Managers for Interpreted Languages. In Proceedings of the 28th Annual Network
and Distributed System Security Symposium. Internet Society.

[25] Kalil Garrett, Gabriel Ferreira, Limin Jia, Joshua Sunshine, and Christian Kästner.
2019. Detecting suspicious package updates. In 2019 IEEE/ACM 41st International
Conference on Software Engineering: New Ideas and Emerging Results (ICSE-NIER).
IEEE, 13–16.

[26] François Gauthier, Behnaz Hassanshahi, and Alexander Jordan. 2018. AFFOGATO:
Runtime Detection of Injection Attacks for Node.Js. In Companion Proceedings
for the ISSTA/ECOOP 2018 Workshops (Amsterdam, Netherlands) (ISSTA ’18).
Association for Computing Machinery, New York, NY, USA, 94–99. https:
//doi.org/10.1145/3236454.3236502

[27] OSSF Securing Critical Projects Working Group. 2022. Package Analysis. https:
//github.com/ossf/package-analysis

[28] Joseph Hejderup. 2015. In Dependencies We Trust: How vulnerable are dependencies
in software modules? Master’s thesis. Delft University of Technology.

[29] Vanessa Henderson. 2017. Open-Source PackagesWith Malicious Content. https:
//www.veracode.com/blog/research/open-source-packages-malicious-intent

[30] Igibek Koishybayev and Alexandros Kapravelos. 2020. Mininode: Reducing
the Attack Surface of Node.js Applications. In 23rd International Symposium on
Research in Attacks, Intrusions and Defenses (RAID 2020). USENIX Association,
San Sebastian, 121–134.

[31] J Koljonen. 2019. Warning! is rest-client 1.6.13 hijacked? https://github.com/rest-
client/rest-client/issues/713

[32] R. G. Kula, C. D. Roover, D. German, T. Ishio, and K. Inoue. 2014. Visualizing the
Evolution of Systems and Their Library Dependencies. In IEEE VISSOFT.

[33] Trishank Karthik Kuppusamy, Santiago Torres-Arias, Vladimir Diaz, and Justin
Cappos. 2016. Diplomat: Using delegations to protect community repositories.
In 13th {USENIX} Symposium on Networked Systems Design and Implementation
({NSDI} 16). 567–581.

[34] Song Li, Mingqing Kang, Jianwei Hou, and Yinzhi Cao. 2021. Detecting Node.Js
Prototype Pollution Vulnerabilities via Object Lookup Analysis. Association for
Computing Machinery, New York, NY, USA, 268–279. https://doi.org/10.1145/
3468264.3468542

[35] Jeffrey Mcdonald, Nathan Herron, William Glisson, and Ryan Benton. 2021. Ma-
chine Learning-Based Android Malware Detection Using Manifest Permissions.
In Proceedings of the 54th Hawaii International Conference on System Sciences.
6976.

[36] Benjamin Barslev Nielsen, Behnaz Hassanshahi, and François Gauthier. 2019.
Nodest: Feedback-Driven Static Analysis of Node.Js Applications. In Proceedings
of the 2019 27th ACM Joint Meeting on European Software Engineering Conference
and Symposium on the Foundations of Software Engineering (Tallinn, Estonia)
(ESEC/FSE 2019). Association for Computing Machinery, New York, NY, USA,
455–465. https://doi.org/10.1145/3338906.3338933

[37] npmjs.com. [n.d.]. audit (accessed 02/2021). https://docs.npmjs.com/cli/v7/co
mmands/npm-audit.

[38] npmjs.com. [n.d.]. npm. https://www.npmjs.com/
[39] npmjs.com. [n.d.]. npm Open-Source Terms. https://www.npmjs.com/policies/o

pen-source-terms
[40] npmjs.com. [n.d.]. scripts (accessed 02/2021). https://docs.npmjs.com/cli/v6/us

ing-npm/scripts.
[41] npmjs.org. [n.d.]. numeric precision matters: how npm download counts work

(accessed 02/2021). https://blog.npmjs.org/post/92574016600/numeric-precision-
matters-how-npm-download-counts-work.

[42] npmjs.org. [n.d.]. Package install scripts vulnerability (accessed 02/2021). https:
//blog.npmjs.org/post/141702881055/package-install-scripts-vulnerability.

[43] Chris O’Donnell. 2018. The ‘event-Stream‘ Vulnerability.
https://medium.com/@codfish/the-event-stream-vulnerability-6acd4c515aae.

[44] Marc Ohm, Henrik Plate, Arnold Sykosch, andMichael Meier. 2020. Backstabber’s
Knife Collection: A Review of Open Source Software Supply Chain Attacks.
In Detection of Intrusions and Malware, and Vulnerability Assessment. Springer
International Publishing, Cham, 23–43.

https://github.com/SELinuxProject
https://gitlab.com/apparmor/apparmor
https://docs.nodesource.com/ncmv2/docs#overview
https://www.usenix.org/conference/usenixsecurity22/presentation/li-song
https://www.usenix.org/conference/usenixsecurity22/presentation/li-song
https://osf.io
https://pdfs.semanticscholar.org/d398/d240e916079e418b77ebb4b3730d7e959b15.pdf
https://pdfs.semanticscholar.org/d398/d240e916079e418b77ebb4b3730d7e959b15.pdf
https://medium.com/@bertusk/
https://www.zdnet.com/article/microsoft-spots-malicious-npm-package-stealing-data-from-unix-systems/
https://www.zdnet.com/article/microsoft-spots-malicious-npm-package-stealing-data-from-unix-systems/
https://doi.org/10.1145/3236024.3236027
https://doi.org/10.1145/3236454.3236502
https://doi.org/10.1145/3236454.3236502
https://github.com/ossf/package-analysis
https://github.com/ossf/package-analysis
https://www.veracode.com/blog/research/open-source-packages-malicious-intent
https://www.veracode.com/blog/research/open-source-packages-malicious-intent
https://github.com/rest-client/rest-client/issues/713
https://github.com/rest-client/rest-client/issues/713
https://doi.org/10.1145/3468264.3468542
https://doi.org/10.1145/3468264.3468542
https://doi.org/10.1145/3338906.3338933
https://docs.npmjs.com/cli/v7/commands/npm-audit
https://docs.npmjs.com/cli/v7/commands/npm-audit
https://www.npmjs.com/
https://www.npmjs.com/policies/open-source-terms
https://www.npmjs.com/policies/open-source-terms
https://docs.npmjs.com/cli/v6/using-npm/scripts
https://docs.npmjs.com/cli/v6/using-npm/scripts
https://blog.npmjs.org/post/92574016600/numeric-precision-matters-how-npm-download-counts-work
https://blog.npmjs.org/post/92574016600/numeric-precision-matters-how-npm-download-counts-work
https://blog.npmjs.org/post/141702881055/package-install-scripts-vulnerability
https://blog.npmjs.org/post/141702881055/package-install-scripts-vulnerability


[45] Marc Ohm, Arnold Sykosch, and Michael Meier. 2020. Towards Detection of
Software Supply Chain Attacks by Forensic Artifacts (ARES ’20). Association for
Computing Machinery, New York, NY, USA, Article 65, 6 pages.

[46] Vern Paxson. 1999. Bro: A System for Detecting Network Intruders in Real-Time.
Comput. Netw. 31, 23-24 (Dec. 1999), 2435–2463.

[47] Brian Pfretzschner and Lotfi ben Othmane. 2017. Identification of Dependency-
based Attacks on Node.Js. In ARES.

[48] H. Plate, S. E. Ponta, and A. Sabetta. 2015. Impact assessment for vulnerabilities
in open-source software libraries. In ICSME.

[49] Ax Sharma. 2020. NPMNukes NodeJSMalware OpeningWindows, Linux Reverse
Shells. https://www.bleepingcomputer.com/news/security/npm-nukes-nodejs-
malware-opening-windows-linux-reverse-shells/

[50] Ax Sharma. 2020. Trick or Treat: That ‘twilio-Npm‘ Package Is Brandjacking
Malware in Disguise! https://blog.sonatype.com/twilio-npm-is-brandjacking-
malware-in-disguise

[51] Ax Sharma. 2021. Copycats imitate novel supply chain attack that hit tech giants.
https://www.bleepingcomputer.com/news/security/copycats-imitate-novel-
supply-chain-attack-that-hit-tech-giants/

[52] Sindre Sorhus. 2020. Install npm packages globally without sudo on macOS and
Linux. https://github.com/sindresorhus/guides/blob/main/npm-global-without-
sudo.md

[53] Cristian-Alexandru Staicu andMichael Pradel. 2018. Freezing theWeb: A Study of
ReDoS Vulnerabilities in JavaScript-based Web Servers. In 27th USENIX Security
Symposium (USENIX Security 18). USENIX Association, Baltimore, MD, 361–376.
https://www.usenix.org/conference/usenixsecurity18/presentation/staicu

[54] Cristian-Alexandru Staicu, Michael Pradel, and Benjamin Livshits. 2018. SYNODE:
Understanding and Automatically Preventing Injection Attacks on NODE.JS. In
NDSS.

[55] Sylabs. 2020. Home | Sylabs.Io. https://sylabs.io/
[56] Matthew Taylor, Ruturaj Vaidya, Drew Davidson, Lorenzo De Carli, and Vaib-

hav Rastogi. 2020. Defending Against Package Typosquatting. In International
Conference on Network and System Security. Springer, 112–131.

[57] Jørgen Tellnes. 2013. Dependencies: No Software is an Island. Master’s thesis. The
University of Bergen.

[58] Ruturaj K. Vaidya, Lorenzo De Carli, Drew Davidson, and Vaibhav Rastogi. 2019.
Security Issues in Language-based Sofware Ecosystems. CoRR abs/1903.02613
(2019). arXiv:1903.02613 http://arxiv.org/abs/1903.02613

[59] Nikos Vasilakis, Cristian-Alexandru Staicu, Grigoris Ntousakis, Konstantinos
Kallas, Ben Karel, André DeHon, and Michael Pradel. 2021. Preventing Dynamic
Library Compromise on Node.Js via RWX-Based Privilege Reduction. In Pro-
ceedings of the 2021 ACM SIGSAC Conference on Computer and Communications
Security (Virtual Event, Republic of Korea) (CCS ’21). Association for Computing
Machinery, New York, NY, USA, 1821–1838. https://doi.org/10.1145/3460120.34
84535

[60] Dong-Jie Wu, Ching-Hao Mao, Te-En Wei, Hahn-Ming Lee, and Kuo-Ping Wu.
2012. Droidmat: Android malware detection through manifest and api calls
tracing. In 2012 Seventh Asia Joint Conference on Information Security. IEEE,
62–69.

[61] A. A. Younis, Y. K.Malaiya, and I. Ray. 2014. Using Attack Surface Entry Points and
Reachability Analysis to Assess the Risk of Software Vulnerability Exploitability.
In HASE.

[62] Markus Zimmermann, Cristian-Alexandru Staicu, CamTenny, andMichael Pradel.
2019. Small world with high risks: A study of security threats in the npm
ecosystem. In 28th {USENIX} Security Symposium ({USENIX} Security 19). 995–
1010.

https://www.bleepingcomputer.com/news/security/npm-nukes-nodejs-malware-opening-windows-linux-reverse-shells/
https://www.bleepingcomputer.com/news/security/npm-nukes-nodejs-malware-opening-windows-linux-reverse-shells/
https://blog.sonatype.com/twilio-npm-is-brandjacking-malware-in-disguise
https://blog.sonatype.com/twilio-npm-is-brandjacking-malware-in-disguise
https://www.bleepingcomputer.com/news/security/copycats-imitate-novel-supply-chain-attack-that-hit-tech-giants/
https://www.bleepingcomputer.com/news/security/copycats-imitate-novel-supply-chain-attack-that-hit-tech-giants/
https://github.com/sindresorhus/guides/blob/main/npm-global-without-sudo.md
https://github.com/sindresorhus/guides/blob/main/npm-global-without-sudo.md
https://www.usenix.org/conference/usenixsecurity18/presentation/staicu
https://sylabs.io/
https://arxiv.org/abs/1903.02613
http://arxiv.org/abs/1903.02613
https://doi.org/10.1145/3460120.3484535
https://doi.org/10.1145/3460120.3484535


A DEFAULT DEVELOPER POLICY


	Abstract
	1 Introduction
	2 Background
	2.1 npm
	2.2 Install Scripts
	2.3 Installation Attacks
	2.4 Mitigations in Place
	2.5 Software Supply Chain Security

	3 Motivation
	4 Overview
	4.1 Latch Workflow
	4.2 Manifest Inferencing
	4.3 Manifest Enforcement
	4.4 Live Enforcement

	5 Manifest Enforcement Policies
	5.1 Policy Language
	5.2 Default Policies

	6 Evaluation
	6.1 Manifest Enforcement Policy Violations
	6.2 Impact on User
	6.3 Performance
	6.4 Live Enforcement

	7 Discussion
	7.1 Summary of Results
	7.2 Limitations

	8 Related Work
	9 Conclusion
	10 Acknowledgements
	References
	A Default Developer Policy

