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ABSTRACT
Ransomware attacks have caused billions of dollars in damages in

recent years, and are expected to cause billions more in the future.

Consequently, significant effort has been devoted to ransomware

detection and mitigation. Behavioral-based ransomware detection

approaches have garnered considerable attention recently. These

behavioral detectors typically rely on process-based behavioral pro-

files to identify malicious behaviors. However, with an increasing

body of literature highlighting the vulnerability of such approaches

to evasion attacks, a comprehensive solution to the ransomware

problem remains elusive.

This paper presents Minerva, a novel robust approach to ran-

somware detection. Minerva is engineered to be robust by design

against evasion attacks, with architectural and feature selection

choices informed by their resilience to adversarial manipulation.

We conduct a comprehensive analysis of Minerva across a diverse

spectrum of ransomware types, encompassing unseen ransomware

as well as variants designed specifically to evade Minerva. Our

evaluation showcases the ability of Minerva to accurately identify

ransomware, generalize to unseen threats, and withstand evasion

attacks. Furthermore, over 99% of detected ransomware are identi-

fied within 0.52𝑠𝑒𝑐 of activity, enabling the adoption of data loss

prevention techniques with near-zero overhead.

CCS CONCEPTS
• Security and privacy → Malware and its mitigation; • Com-
puting methodologies→Machine learning.
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1 INTRODUCTION
Despite intense research [32], ransomware attacks continue to

pose significant challenges. In ransomware attacks, a malicious

actor infiltrates the systems of a victim organization (such as an

enterprise [10] or a city government [2]) and installs specialized

malware—ransomware—that encrypts sensitive organization data.

Subsequently, a ransom demand is made in exchange for decryption

keys. Ransomware attacks can result in substantial financial losses

for victims and disrupt critical systems, as evidenced by the recent

Colonial Pipeline incident [30, 44].

The detection of ransomware on servers and user machines is

a crucial last line of defense. Several detection algorithms can be

employed to identify ransomware activity, terminate unwanted pro-

cesses, and restore encrypted files to their original content [1, 42, 46].

Many existing approaches [4, 11, 23, 28] leverage process-level fea-

tures to differentiate ransomware processes performing file encryp-

tion from other benign processes executing on the machine. The

most effective process-based detectors typically utilize behavioral

detection: they construct behavioral profiles of running processes

based on their system activity, and compare these profiles against

a learned behavioral model of benign and ransomware processes.

This approach is reasonable: ransomware operations involve in-

tense disk I/O and encryption, typically resulting in distinct be-

havioral profiles compared to benign applications. Generally, these

behavioral-based detectors rely on Machine Learning (ML) tech-

niques to construct and compare behavioral profiles. ML techniques

have proven to be valuable tools across various cybersecurity do-

mains [27, 37, 45], yielding substantial improvements over prior

art [16, 17, 33]. However, recent research [7, 47] has revealed a

series of evasive techniques that can readily bypass both academic

and commercial process-based behavioral detectors. These evasive

ransomware attacks entail distributing the ransomware workload

across several cooperating processes, each emulating, feature-wise,

the behavior of a benign process. Effectively, the behavioral profile

of each ransomware process is indistinguishable from that of benign

processes, but their coordinated action still results in the expected

ransomware behavior. This evasive ransomware approach exploits

inherent weaknesses of process-level features and, as such, cannot

be identified at the process level. These attacks fall under a broader

category of adversarial attacks againstML systems [3, 19, 39], which

highlight the risks associated with such approaches.

This paper introduces Minerva, a novel defense against ran-

somware. Unlike prior methods that primarily rely on process-level
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Figure 1: Overview of Minerva’s ransomware detection mod-
ule. For each individual file, Minerva maintains a record of
operations performed by various processes P across different
temporal resolutions (windows). At the conclusion of each
window, file operations are aggregated and submitted to the
relevant ML classifier trained for that temporal resolution.

behavioral analysis, Minerva classifies system activity by construct-

ing file-level behavioral profiles for each file, based on the opera-

tions they undergo within a defined time window. Ransomware

processes are identified based on their interaction with a file during

a time window in which malicious activity is detected. We also

engineer Minerva to be robust by design against complex evasion

attacks by basing its architecture on a contrastive design, where
altering one aspect of the behavioral profile triggers detectable

changes to other aspects. Minerva’s architecture is based on two

key insights. (1) The first insight is that while evasive ransomware

attacks may mimic benign applications at the level of individual

ransomware processes, the ultimate objective of ransomware is to

encrypt user files. Therefore, regardless of how tasks are distributed

among these individual processes, the ransomware’s activity be-

comes evident from a file-based perspective. (2) The second insight

recognizes that different aspects of file-based behavioral profiles

are interconnected and, due to constraints in the ransomware goals,

changes to one aspect directly influence others. For instance, ran-

somware can manipulate the file-based behavioral profile of a file

by altering the average entropy of file operations. However, to fully

encrypt the file, it must eventually overwrite it with high-entropy

data. To satisfy this constraint, ransomware must increase the num-

ber of operations on the file, introducing low-entropy operations

to decrease average entropy, thereby modifying another aspect of

the behavioral profile. Figure 1 provides a high-level overview of

Minerva’s detection module.

Summarizing, this paper makes the following contributions:

(1) We propose Minerva, a robust ransomware detector based

on the novel concepts of file-based behavioral profiles and

contrastive design. Minerva overcomes critical limitations

of existing behavioral detection techniques.

(2) We perform a comprehensive analysis of the features gen-

erated by ransomware activity, identifying a robust set of

features intrinsically related to core ransomware operations.

(3) We assess Minerva’s performance against traditional, evasive

multiprocess, and unseen ransomware. Our findings demon-

strate that Minerva effectively detects ransomware activity

on average within 0.52 seconds of the onset of malicious

activity.

(4) We analyze the resilience of Minerva to adaptive, unseen
ransomware: ransomware specifically engineered to evade

Minerva’s detection. We introduce three distinct families

of adaptive ransomware and validate Minerva’s robustness

against each, emphasizing its capacity for generalization and

underscoring the significance of our contrastive design.

(5) We study the explainability of Minerva and provide key

insights on its effectiveness.

2 RELATEDWORK
Ransomware detection approaches rely on the insight that ran-

somware processes behave very differently from benign processes.

Such approaches commonly consist of three main components.

A monitoring component monitors the dynamic behavior of run-

ning processes, which is used to compute a set of features based
on program execution. Feature computation typically considers a

sequence of recent process system calls whose characteristics are

aggregated over a window of operations. Typical features used for

this purpose are frequency and characteristics of file read/write

operations, changes to file types (such as file type and file content

entropy), and others. All these features are computed per process

and then fed to a machine learning classifier, which uses them

to label processes as benign or ransomware. Several techniques

proposed in recent years follow the approach above: UNVEIL [22]

and Redemption [23] generate a suspicious activity score based on

characteristics of file write operations, entropy changes, and others.

CryptoDrop [41] generates a reputation score computed similarly.

ShieldFS [4] uses relative frequencies of various disk operations,

such as read, write, folder listings, and others, as features fed to a

random forest process classifier. A similar approach is also used

by RWGuard [28]. While detection techniques used in commer-

cial detectors are not disclosed, De Gaspari et al. [6] show that

Malwarebytes’s [25] ransomware detector is vulnerable to evasion

attacks designed against process-based detectors and thus likely to

leverage similar techniques.

Recently, the same authors proposed a novel family of evasion

attacks against process-based ransomware detectors [7]. These at-

tacks fall under a broader category of adversarial attacks against

ML systems [5, 18, 39], highlighting the risks associated with such

approaches. The authors suggested three attacks: process splitting,
functional splitting, and mimicry attack. All these attacks aim to

keep behavioral features’ values below the detection threshold

through various mechanisms, but the core principle is to split the

ransomware operations over multiple independent processes. The

process splitting attack evenly distributes the malicious activity

across several processes. This approach tends to be impractical in

practice, requiring the creation of many processes. The functional
splitting attack spawns fewer processes, each performing a subset
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of ransomware operations. While this attack is practical, it can

be mitigated with adversarial training [7]. Finally, the mimicry at-
tack works by splitting ransomware into multiple processes, each

mimicking the behavioral profile of benign applications from the

point of view of disk operations. Mimicry attacks are fundamen-

tally hard to detect as they are designed to resemble, feature-wise,

the behavior of a benign process. G, enc et al. [14] provides a high-

level discussion of similar evasive approaches. MalWASH [21], D-

TIME [36], and ROPE [9] are generic malware obfuscators that also

leverage the distribution of malware workload across processes,

similarly to [7]. Rather than distributing malware workload, other

approaches attempt to perturb the sequence of system calls gener-

ated by ransomware [20, 38].

Other approaches focus on using high entropy as a proxy to

detect ransomware encryption activity. These approaches use var-

ious techniques, including 𝜒2-test [34] and the Kullback-Liebler

divergence [26]. However, when used in isolation, entropy is a weak

distinguisher of ransomware activity and can be easily evaded [8].

Another line of work utilizes decoy files [13, 29, 31]. A decoy

file is a dummy file, typically hidden from the user and created

for ransomware detection. As no application is expected to use a

decoy file, accesses to it are a strong signal of ransomware activity.

Recently, Ganfure et al. [12] presented RTrap, an advanced ver-

sion of traditional decoy files. Rtrap is a machine learning-based

approach to decoy files to provide early detection against crypto-

graphic ransomware. In particular, RTrap selects a set of legitimate

user files from the system, duplicates and deploys them throughout

the system. The user files to be used as decoys are selected in such a

way that they are representative of the user content on the machine.

The insight behind the approach is that modern ransomware does

not simply encrypt all files indiscriminately, but rather prioritizes

certain types of file contents over others in order to be more effec-

tive. Panzade et al [35] showed that RTrap can be evaded by not

trying to encrypt the user files in a particular directory at the very

beginning but rather, stealthily, find out which files can potentially

be a decoy and then build an encryption plan that skips them.

In contrast to prior work on ransomware detection, Minerva

was designed with the goal of being resilient to evasion attacks.

This goal led to a detailed investigation of ransomware activity,

from which we decided to monitor and model the behavior of the

system activity from a file point-of-view. On top of that, the features

selected for monitoring were chosen following a contrastive design

paradigm, meaning that alternating one or more features would

inevitably alter the rest of the remaining features, thus leaving

little to no room for evasive ransomware to try to evade detection.

The following section thoroughly introduces our approach and

evaluates its ransomware detection capabilities. To the best of our

knowledge, we are the first to fully evaluate a ransomware detection

approach from an adaptive adversary’s point-of-view, a feat not

done in prior ransomware detection approaches.

3 THREAT MODEL
We position ourselves in a threat model similar to those considered

by prior work in the domain [4, 11, 23, 28]: the adversary is a

ransomware that has infected a target machine with the goal of

encrypting users files and demanding a ransom to recover the data.

We consider different types of ransomware, categorized into three

groups according to their capabilities and behaviors:

• Traditional Ransomware, corresponding to the typical

ransomware families found in the wild.

• Evasive Multiprocess Ransomware, corresponding to

complex ransomware that mimics the behavior of benign

processes to avoid detection [6, 47].

• Adaptive Ransomware, corresponding to a sophisticated

ransomware engineered specifically to evade Minerva’s file-

based detection through manipulation of features utilized

by Minerva for detection.

Trusted Components. We assume Minerva’s Disk Activity

Monitor (DAM) and File-Based Behavioral Detector (FBD) compo-

nents to be trusted, meaning that ransomware processes cannot

tamper with their functionality. The DAM module is a driver run-

ning in kernel space, which is protected by the operating system.

The FBD is a user-space component that communicates with the

DAM through a protected, read-only communication port. The

communication’s security context is set up so that only the sys-

tem group associated with the FBD can access it, and the FBD

runs with elevated (administrator) privileges to prevent tampering

by other processes. We do not consider kernel-space ransomware,

as malware with kernel-level access can effectively bypass any

system-level countermeasure. These assumptions are in line with

prior work in the field [4, 11, 23, 28].

4 MINERVA: A FILE-BASED RANSOMWARE
DETECTOR

This section presents Minerva, a novel ransomware detector built

upon the concepts of file-based behavioral profiling and contrastive

design. Minerva effectively guards against traditional ransomware,

evasive multiprocess ransomware, and adaptive ransomware en-

gineered specifically to evade Minerva’s detection. Minerva’s ar-

chitecture is based on two key insights. (1) The first insight is that,

although individual ransomware processes may modulate their be-

havior to imitate benign applications [7, 47], they must ultimately

encrypt large portions of users files to achieve their objective. Con-

sequently, it is possible to monitor the behavioral profiles of the files

themselves and detect any deviation from expected behaviors. From

a file-based standpoint, the ransomware activity becomes apparent

regardless of the number of processes performing encryption, or

how tasks are distributed among individual ransomware processes.

Minerva leverages this insight by creating file-based behavioral

profiles for each opened user file in the system, based on the I/O

operations they receive in a given time window. Ransomware de-

tection is performed per file and per time window based on the

constructed profiles. (2) The second insight is that different aspects

of file-based behavioral profiles are interconnected. Therefore, any

attempt to alter some aspects of the behavioral profile to evade

detection inevitably leads to detectable changes in others. Minerva

capitalizes on this insight through its contrastive design: Minerva’s

features and architecture are selected so that any manipulation

by ransomware to evade detection inevitably causes changes to

other features that still expose the malicious activity, or that are

captured by the tiered architecture of Minerva (see Section 4.1). We
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provide an in-depth discussion on Minerva’s contrastive design in

Section 4.2.

4.1 Minerva Architecture
From a high-level view, Minerva is comprised of two separate mod-

ules: (1) Disk Activity Monitor (DAM), and (2) File-Based Behavioral
Detector (FBD). In what follows, we explain how these two modules

work.

4.1.1 Disk Activity Monitor. The DAM module is a shim that pro-

vides system-wide, real-time information on all file system opera-

tions performed. We implemented the module as a driver that uses

the I/O Request Packet (IRP) data structure provided by Windows

systems to transparently log filesystem operations system-wide.

Each filesystem-related system call performed by a process can re-

sult in many lower-level operations. The DAM captures and filters

all these low-level operations before processing them into feature

vectors, which are then forwarded to the FBD module of Minerva.

To minimize overhead, we logically divide files into critical and

non-critical: critical files encompass all user files that are high-

priority targets for ransomware, while non-critical files comprise

system and configuration files that can easily be recovered after

an attack. Minerva automatically identifies as critical files all files

located in non-system directories such as Documents, Downloads,

and Desktop on Windows systems. System, program, temporary,

and configuration files are excluded from monitoring. This includes

all files in system directories (e.g., Windows) and in directories used

by programs to store configuration and logging data (e.g., Program

Files, ProgramData in Windows systems). Minerva’s critical files

criteria can be further customized by system administrators to in-

clude or exclude additional directories and files. The DAM excludes

any operation performed on non-critical files and computes per-file

feature vectors for all other opened files.

4.1.2 File-Based Behavioral Detector. Figure 1 illustrates the archi-
tecture of the FBD module of Minerva. This module comprises an

ensemble of machine-learning classifiers trained to identify ran-

somware activity by analyzing the behavioral profile of files. For

each critical file in the system, Minerva computes several features

based on the operations received by the file within a predefined time

window. These features define that file’s behavioral profile for that

time window, which the Detector uses to determine whether the

file has undergone malicious activity within the window. To with-

stand variations in ransomware behavior, such as adaptive attacks

aimed at slowing ransomware activity to span multiple windows,

Minerva employs a multi-tier architecture. Each tier implements a

distinct fully-connected Deep Neural Network classifier trained on

feature vectors computed over progressively longer time windows:

low-tier classifiers utilize feature vectors computed over short time

windows (e.g., 0.25 sec), while high-tier classifiers utilize feature

vectors calculated over longer windows (e.g., 4 sec). At the end of

each time window, Minerva queries the classifier of the correspond-

ing tier to detect malicious behavioral profiles. In order to confirm

malicious activity on a file, Minerva requires that at least one of its

classifiers reports 𝐾 consecutive windows with detected malicious

activity. If a classifier reports malicious activity for 𝐾 consecutive

windows, all processes that were active on the specific file during

those windows are flagged as ransomware processes. This proce-

dure is carried out for each active critical file in the system that is

receiving read or write operations.

The architecture of Minerva’s file-based detector is designed to

accomplish two primary objectives. The first is to provide resilience

to ransomware behavioral mutations aimed at slowing down en-

cryption activity, which is achieved through Minerva’s tiered archi-

tecture. The second is to provide a configurable balance between

detection time and false positive rates, which is accomplished by

requiring 𝐾 consecutive windows with detected malicious activity.

Section 6.2 elaborates on this trade-off.

4.2 Feature Analysis
Minerva leverages seven distinctive file-level features that accu-

rately describe the behavioral profile of files: read entropy, write

entropy, write ratio, read ratio, number of processes, number of

operations, and read/write ratio. We carefully selected these fea-

tures following an analysis of a dataset containing both benign

and ransomware processes to validate our initial intuition behind

the choice. Our experimental evaluation demonstrates the signif-

icant challenge ransomware faces in modifying its behavior to

successfully evade all of these features, given the contrastive nature

between different features.

4.2.1 Read - Write Data Mismatch. The type of data read and writ-

ten to a file is an important indicator of whether the file is seeing

benign or malicious activity. For benign processes, the distribution

of data read from a file and the distribution of data written to it are

typically consistent. Conversely, ransomware tends to read non-

encrypted data from files and write back encrypted data, exhibiting

entirely distinct distributions. A sufficient approximation to cap-

ture this discrepancy can be obtained using entropy as a proxy for

the distribution of data, as illustrated in Figures 2a and 2e. These

figures respectively plot the distribution and the CDF of the ratio

between read and write entropy of operations performed by benign

and ransomware. As we can see, benign file activity results in a

Gaussian-like distribution centered around 1.0, indicating that the

read and write distributions roughly match. Ransomware, on the

other hand, display a distribution that concentrates in the interval

[0, 1], indicating higher entropy distribution for write operations

compared to read operations. Similarly, the CDF highlights this

same behavioral difference. While average operation entropy in

isolation is not a robust metric [8], we demonstrate that, by in-

corporating it in our contrastive design, it provides sufficient and

reliable information to aid in classification. We further discuss this

in Section 4.3.

4.2.2 File Write Ratio. Typically, benign processes write (or over-

write) small chunks of files over time, rarely rewriting an entire

file. From the standpoint of file behavioral profiles, this implies that

within a short time window, the number of distinct bytes written by

all processes acting on the file should be significantly smaller than

the file size. Conversely, to increase the probability of receiving a

ransom, ransomware needs to completely overwrite as many files

as possible, as swiftly as possible. Consequently, in a time window

where ransomware activity is present, most or all of the file con-

tent will be overwritten. This behavioral asymmetry also holds for
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(a) R/W ent. ratio. (b) Num. of operations. (c) Num. of processes. (d) R/W ratio.

(e) R/W ent. ratio CDF. (f) Num. of ops. CDF. (g) Num of Proc. CDF. (h) R/W ratio CDF.

Figure 2: Comparison of distribution and Cumulative Distribution Function (CDF) of different Minerva features for benign and
ransomware processes. Computed on 1 second window.

multiprocess ransomware that distributes write operations among

multiple processes [7]. Although each individual ransomware pro-

cess writes only a fraction of the overall file, from the standpoint

of file-level behavioral profiles, the combined activity of all ran-

somware processes results in a high write ratio. The percentage of a

file written in a time window is, therefore, a defining, robust feature

that helps characterize operations performed by both traditional

and evasive multiprocess ransomware.

4.2.3 File Read Ratio. While it is uncommon for a benign process

to entirely overwrite a file, it frequently occurs that a benign pro-

cess reads a file in its entirety. This behavior is prevalent for various

user files, such as text documents, spreadsheets, and many others.

Indeed, both ransomware and benign processes exhibit similar be-

haviors concerning the percentage of a file read, making it appear

a weak feature for classification. However, its significance becomes

evident when paired with the percentage of a file written. The pri-

mary techniques employed by evasive multiprocess ransomware

to reduce feature expression are load splitting and function split-

ting: an individual ransomware process is divided into multiple

processes, and both the number of operations and their type (i.e.,

read, write), are distributed among the processes. Splitting function-

ality among processes implies that, in certain cases, ransomware

processes perform solely read operations on files, while sharing the

read data with multiple writer processes through some stealth com-

munication channel [7, 47]. The writer processes then encrypt the

data and overwrite the file at some later time. From the perspective

of the file-based behavioral profile, this implies that there may be

instances in which write operations of encrypted data occur within

a time window, with no corresponding read operation.

Figures 2d and 2h highlight the fundamental difference between

ransomware and benign processes behavior concerning file read/write

ratio mismatch. We observe a substantial distinction between ran-

somware activity and benign process behavior both in the read/write

ratio of files, thereby supporting our hypothesis that this feature

offers valuable information for distinguishing between benign and

ransomware activity in the system.

4.2.4 Number of Processes Reading orWriting the File. Generally, in
a time window with no ransomware activity, user files are accessed

by a limited number of processes, often just one. This behavior

also applies to certain traditional ransomware, where a single pro-

cess reads and writes a file entirely. However, some traditional

ransomware and all evasive multiprocess ransomware rely on the

coordinated action of multiple processes targeting the same file,

either to accelerate encryption or to evade detection. To imitate the

behavior of benign processes, evasive multiprocess ransomware

impose strict limits on the number of operations that each individ-

ual process is allowed to perform, as well as on the size of such

operations [7, 47]. This is achieved by spawning multiple distinct

processes to read and write the file in rapid succession, thereby

fully encrypting user files while satisfying these constraints. Con-

sequently, the number of processes performing read or write oper-

ations on a file within a time window serves as a crucial feature for

detecting both traditional and multiprocess ransomware.

Figures 2c and 2g illustrate the distribution and CDF of the num-

ber of processes acting on a file in a 1-second time window. We

observe the inherent difference between ransomware and benign

process behavior. The plots indicate that, in nearly all cases, only a

single benign process accesses a file within a time window. While

this behavior is also observed for some types of traditional ran-

somware, a clear distinction emerges for the remainder and for

multiprocess ransomware.

4.2.5 Number of File Operations. The number of read and write

operations that a file undergoes within a given time window offers
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essential context to weigh the significance of the other features.

Benign processes commonly execute occasional file operations of

relatively small size over their lifetime, leading to file-based behav-

ioral profiles characterized by a low number of operations within

each timewindow. This is apparent from Figures 2b and 2f, which de-

pict the distribution and CDF of the number of operations received

by a file over 1-second intervals. Certain traditional ransomware

favor using a limited number of large read and write operations

during the encryption process, likely aiming to maximize I/O perfor-

mance. Conversely, the majority of traditional ransomware utilize

numerous small operations on the file, presumably to minimize the

likelihood of detection. Similarly, in an effort to closely imitate the

behavior of benign processes, evasive multiprocess ransomware

imposes restrictions on the number of operations performed by

each individual ransomware process and on the size of each op-

eration [7, 47]. The restriction imposed on individual operation

size forces evasive multiprocess ransomware to use a greater over-

all number of read/write operations, distributing them across the

various ransomware processes. In terms of file-based behavioral

profiles, this behavior leads to an elevated number of file opera-

tions within a time window characterized by malicious activity,

in contrast to one with only benign activity. These observations

are validated by Figures 2b and 2f, which highlight the propensity

of ransomware to execute a substantially higher number of oper-

ations on a file within a given time window. Lastly, the number

of operations on the file complements the number of processes

feature, introducing another valuable dimension for the classifier

to consider.

4.3 Adaptive Attack Resilience
When machine learning approaches are deployed in adversarial

contexts, it is important to account for an adaptive adversary in the

threat model, who alters their attack to evade the specific detector

encountered. This section elaborates on the various types of adap-

tive attacks that may be crafted against Minerva, and outlines why

our detector is resilient against them.

4.3.1 Evading the Read - Write Data Mismatch. Minerva uses aver-

age operation entropy to identify mismatches between the distribu-

tion of data read from and written to a file. However, adversaries

can easily manipulate the average entropy of operations, as demon-

strated in literature [6]. Considering that the average entropy is

computed across all operations within a time window, an adaptive

ransomware attack simply requires injecting dummy low-entropy

operations among the high-entropy encryption operations to evade

this feature. These low-entropy operations can be executed by a

single process for traditional ransomware or distributed across

multiple processes for evasive multiprocess ransomware.

As we demonstrate in Section 6.4, Minerva is inherently resilient

to this family of adaptive attacks. Indeed, arbitrary manipulation

of the average entropy requires executing additional operations on

the file within the same time window. While these extra operations

achieve the intended goal of reducing average entropy, they also

inadvertently increase the number of operations feature due to

Minerva’s contrastive design, ultimately leading to detection.

4.3.2 Evading File Read and Write Ratios Features. The file read
and file write ratio features are directly correlated to the encryption

speed of ransomware. The only method adaptive ransomware can

adopt to alter these features is slowing down its encryption activity,

leading to only a small portion of the file being read/written within

a time window. However, this poses a significant challenge for

ransomware, as its primary objective is to encrypt as many files

as swiftly as possible before detection. If the ransomware were

to slow down the encryption process excessively, it would render

itself ineffective [22, 23].

We demonstrate in Section 6.4 that, due to its tiered architecture,

Minerva effectively detects this family of adaptive ransomware,

even when it employs substantial slowdowns of up to 80%.

4.3.3 Evading Number of Processes Reading or Writing the File Fea-
ture. The number of processes feature is primarily addressed at

detecting evasive multiprocess ransomware, which uses multiple in-

dependent processes to encrypt files. To evade this feature, adaptive

ransomware would be required to reduce the number of processes

operating on a file within a time window, thereby compromising

its ability to distribute tasks across processes and imitate benign

behavior. In turn, this leads the file-based profile of evasive multi-

process ransomware to resemble that of traditional ransomware. As

shown in the experimental evaluation, Minerva excels at detecting

this type of ransomware.

4.3.4 Evading Number of Operations Feature. The number of op-

erations feature primarily facilitates the detection of ransomware

that attempts to minimize the size of its read/write operations. Both

traditional and evasive multiprocess ransomware commonly adopt

this strategy to make it more challenging for traditional detectors to

identify their activity. Decreasing the number of operations within

a time window requires a proportional increase in the size of in-

dividual reads/writes, thereby simplifying the detection task for

traditional detectors such as antivirus.

Nonetheless, we demonstrate in Section 6.4 that Minerva is ro-

bust against this family of adaptive ransomware.

5 EXPERIMENTAL SETUP
5.1 Dataset
5.1.1 Low-Level File Operations Data. We utilize low-level file op-

eration data (IRP logs) from three distinct types of ransomware:

traditional, evasive multiprocess, and adaptive. Traditional ran-

somware includes operation data from 383 samples gathered in

previous works [4, 28] — called Traditional Classic — along with

data from 43 additional samples we collected from recent families

(2023-2025) — called Traditional Current. Details on the collection

process are provided in Appendix A.3. For evasive multiprocess

ransomware, we incorporate operation data from [6], covering all

proposed evasive configurations. Adaptive ransomware operation

data was generated by modifying the behavior of the evasive multi-

process ransomware to manipulate the features used by Minerva

for detection, as detailed in Sections 5.2. Finally, for benign pro-

cesses, we use operation data from [4], which includes extensive

user activity recorded on 11 different machines across a diverse set

of applications, including office suites, development tools such as

Visual Studio, and archiving programs like WinRar. In total, the
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dataset comprises 476 ransomware samples and over 2000 benign

applications. Full details are provided in Appendix A.2.

5.1.2 Train and Test Datasets. Minerva uses an ensemble multi-

tier architecture, where each tier’s classifier monitors file activity

occurring within a specific time window. Our implementation uses

the following time windows for each tier: [0.25, 0.5, 1, 2, 4] seconds.
From the low-level file operations data, we compute Minerva fea-

tures for each file and time window, deriving four separate datasets:

(1) benign, (2) traditional ransomware, (3) evasive multiprocess

ransomware, and (4) adaptive ransomware. We split the first three

datasets in train and test based on a 70% − 30% split and train

Minerva on the three combined training datasets. The adaptive ran-

somware dataset is only used as a test set to assess the resilience of

Minerva to adaptive attacks and not for training, with the exception

of two R/W variants that are used to train Minerva on the relation

between entropy and number of files operations, as detailed in Sec-

tion 5.2. Unless explicitly stated otherwise, all reported results are

based on this train-test split.

5.2 Adaptive Ransomware
We devise three new families of adaptive ransomware specifically
engineered to evade Minerva: (1) adaptive R/W entropy, (2) adap-

tive operation number, and (3) adaptive R/W ratio. These adaptive

ransomware are enhanced versions of the mimicry evasive multi-

process ransomware [7], refined to adversarially manipulate one

or more of Minerva’s detection features. (1) The adaptive R/W en-

tropy ransomware adjusts the read and write entropy features by

injecting artificial, low-entropy read and write operations, thereby

modulating the average entropy of operations within a given time

window. We generate six variants of this adaptive family, with en-

tropy reductions ranging from 2x up to 8x. We train Minerva on

the first two variants to help the classifiers learn the relationship

between entropy and the number of operations. The remaining four

variants, which remain unseen during training, are used to evalu-

ate Minerva’s ability to generalize and detect previously unseen

evasive strategies. (2) The adaptive operation number ransomware

alters the number of operations executed within a time window

by increasing the size of each individual operation. We developed

nine variants of this family, reaching up to 90% reduction in the

number of operations. All variants are excluded from training. (3)

The adaptive R/W ratio ransomware modifies the file read and write

ratios within a specific window by slowing down the ransomware

encryption activity. We generate six variants for this family, with up

to 80% slowdown in the encryption speed. All variants are unseen

by the classifier during training.

6 EVALUATION
This section evaluates the performance of Minerva. We show that

Minerva consistently detects different types of ransomware with

low false positive rates, i.e., without impacting benign activity in the

system. Moreover, we demonstrate that the fast detection time of

our approach minimizes file loss rate, preventing widespread dam-

age to the system.We evaluate Minerva on both unseen ransomware

and unseen adaptive ransomware, which is crafted specifically to

evade our detector. In both cases, we prove the generalization ability

of Minerva and the robustness of our design. Lastly, we analyze the

explainability of our classifier and provide insights on howMinerva

distinguishes between benign and ransomware classes.

6.1 Metrics
As Minerva is a file-based detector, utilizing performance metrics

based on the ratio of detected ransomware processes would be

misleading. In each time window, Minerva constructs a behavioral

profile for every opened user file in the system, and classification

is conducted on a per-file basis within the window. Consequently,

when evaluating Minerva’s performance, our focus lies on the ratio

of detected files exhibitingmalicious activity, rather than the ratio of

detected ransomware instances. Evaluating Minerva based on ran-

somware detection rate would trivialize the detection task: as long

as malicious ransomware activity on even a single file is detected,

the detection performance would register as 100%. This metric not

only lacks significance but also misrepresents the effectiveness of

the defense. For instance, a ransomware that successfully encrypts

most of the file system but is only detected during the encryption

of the last few files would still be counted as a successful detection.

To better represent the effectiveness of our approach, we assess

Minerva detection rate based on the number of files targeted by

the ransomware that are successfully identified. We define True

Positives (TP), True Negatives (TN), False Positives (FP), and False

Negatives (FN) as follows.

• TP: number of individual files exhibiting ransomware activity

classified as malicious by Minerva.

• TN: number of individual files without ransomware activity

classified as benign by Minerva.

• FP: number of individual files without ransomware activity

classified as malicious by Minerva.

• FN: number of individual files exhibiting ransomware activ-

ity classified as benign by Minerva.

Given the above definitions, we use the following standard per-

formance metrics in our evaluation: True Positive Rate (TPR), True

Negative Rate (TNR), accuracy, precision, recall, and F1 Score (F1).

When discussing our results, we denote the overall performance

of the ensemble of Minerva models as stacked, while the perfor-
mance of each individual Minerva classifier is referred to by the

duration of its corresponding window (e.g., 0.25sec classifier is the

classifier using 0.25sec of activity on a file to make a prediction).

6.2 Detection Time
In Figure 3, we report TPR, TNR, and the time to detect the ran-

somware activity in the system by Minerva for varying numbers

of 𝐾 . As mentioned in Section 4, 𝐾 indicates the number of con-

secutive windows where malicious activity is detected needed for

Minerva to classify the operations as malicious. Different values of

𝐾 provide a trade-off to balance between detection time and false

positive rates. Figure 3 shows that increasing the value of 𝐾 leads

to a corresponding increase in 𝑇𝑁𝑅, indicating better end-user

experience due to the decreased occurrence of benign processes

flagged as ransomware. This is expected, as the likelihood of 𝐾

consecutive misclassifications is inversely proportional to the value

of𝐾 . Conversely, the average detection time is directly proportional

to 𝐾 . Figure 3 shows the proportionality relation is linear, with the

average detection time being almost exactly equal to the minimum
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Figure 3: True positive rate, true negative rate, and average
detection time with standard deviation for varying K.

window size times 𝐾 . This is due to the high TPR achieved by the

0.25sec window classifier, as we discuss later in Section 6.3. Finally,

the overall TPR is nearly unaffected by 𝐾 , decreasing by ∼0.4 per-
centage points between 𝐾 = 1 and 𝐾 = 5. The motivation behind

this behavior is twofold. First, the TPR of Minerva is consistently

high across all windows with malicious activity, meaning that typi-

cally every window with ransomware activity is correctly flagged

by Minerva. Therefore, given 𝐾 windows with malicious activity,

the probability that at least one is flagged as benign is low. Second,

as illustrated in Figure 4, the total duration of ransomware activity

on a single file lasts less than 1 second for ∼95% of all files. This be-

havior effectively puts an upper bound on the number of maximum

windows 𝑘 used for detection. When there are 𝑛 < 𝐾 consecutive

windows of activity on a given file, Minerva will attempt classifi-

cation using the 𝑛 available windows, regardless of 𝐾 . Therefore,

increasing 𝐾 beyond a certain value impacts the classification only

on a very small percentage of files.

Based on this empirical evaluation, we found that𝐾 = 2 provides

the best trade-off between detection time, TNR, and TPR. For 𝐾 =

2, Minerva detects over 99% of the ransomware activity within

0.52(±0.25)𝑠𝑒𝑐 with low FPR, reducing the probability of significant

data loss. Furthermore, as we discuss in Section 7, the fast detection

rate of Minerva enables the adoption of near-zero overhead data

recovery approaches, effectively nullifying data loss. Henceforth,

unless explicitly stated otherwise, all subsequent experiments are

presented for 𝐾 = 2.

6.3 Ransomware Detection Performance
6.3.1 Traditional Ransomware. Traditional ransomware comprises

ransomware families that are used in real-world attacks and can be

found in the wild. These families of ransomware typically exhibit

low degrees of parallelism and spawn few processes to encrypt

the target system and perform other malware-related activities [6].

Traditional ransomware sometimes employ multiple processes to

speed up the encryption of the target system, but do not perform

complex balancing of operations between the various processes to

avoid detection [7].

Table 1 reports the performance of Minerva on the traditional

ransomware test set, which includes Traditional Classic (𝑇𝑃𝑅𝑇 ) and

Current (𝑇𝑃𝑅𝐶 ). The true positive rates value for all the considered

Figure 4: Cumulative Distribution Function of total ran-
somware activity duration on each file.

time windows is ≥ 98%, reaching over 99% on the 4𝑠𝑒𝑐 window. This

means that all individualMinerva classifiers can accurately pinpoint

traditional ransomware activity with less than 2% of false negatives.

Similarly, the TNR ranges between 98% and 99% across all windows,

highlighting the ability of Minerva to effectively detect ransomware

without compromising user experience. Finally, the overall stacked

performance of Minerva, which aggregates the predictions of each

individual classifier to take a decision, reaches over 99% TPR. The

improved TPR of stacked Minerva compared to the 4𝑠𝑒𝑐 window

classifier derives from the independent nature of the errors made by

each individual classifier, which results in higher overall detection

rate. The performance analysis in Table 1 emphasizes the ability of

Minerva to generalize well across ransomware families, including

very recent (2022-25) samples. This characteristic of Minerva is

fundamental in ensuring rapid detection of ransomware activity,

discussed in Section 6.2, which ensures low data loss rate and the

compatibility of Minerva with near-zero overhead data protection

techniques.

6.3.2 Evasive Multiprocess Ransomware. Evasive multiprocess ran-

somware families are characterized by their extensive use of paral-

lelism, relying on multiple processes to encrypt the target system.

These processes collaborate in a stealthy manner in order to per-

form complex balancing of the ransomware operations between

multiple processes to avoid detection [7, 47]. Some of these families

leverage this covert inter-process collaboration to closely mimic be-

nign process behavior [6], entirely evading detection by traditional

process-based behavioral detectors [4, 22, 23, 28].

Table 1 reports the performance of Minerva on the evasive mul-

tiprocess ransomware test set. The true positive rate (𝑇𝑃𝑅𝑀 ) is

largely above 99% for all of the time windows, which confirms

our hypothesis that Minerva’s file-based behavioral profiling is

resilient to this type of evasive multiprocess ransomware, contrary

to prior works. We also note that there is essentially no perfor-

mance variation between the different Minerva classifiers. While

initially perplexing, this phenomenon can be explained upon closer

analysis of the behavior of the multiprocess ransomware. By dis-

tributing the workload across multiple processes, the activity of the

ransomware on each individual file typically lasts less than 0.5𝑠𝑒𝑐

— the minimum time required for detection by Minerva with 𝐾 = 2.
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Table 1: Performance analysis of Minerva against traditional and multiprocess ransomware attacks.

Benign Trad. Classic Trad. Current Multiproc. Overall

Window 𝑇𝑁𝑅 𝑇𝑃𝑅𝑇 𝑇𝑃𝑅𝐶 𝑇𝑃𝑅𝑀 Acc. Prec. Recall F1

0.25sec 98.34 97.99 99.65 99.93 98.76 99.17 98.97 99.07

0.5sec 98.38 98.50 99.66 99.95 98.95 99.19 99.24 99.21

1sec 98.33 98.57 99.66 99.96 98.96 99.17 99.27 99.22

2sec 98.46 98.97 99.66 99.95 99.13 99.23 99.46 99.35

4sec 98.91 99.09 99.67 99.95 99.31 99.45 99.52 99.49

stacked 97.25 99.23 99.70 99.98 98.82 98.63 99.61 99.12

Table 2: Average stacked detection rate of Minerva for differ-
ent adaptive ransomware families.

Adaptive Type 𝑇𝑃𝑅
Mean Det. Time

(sec)

Det. Time

Std. Dev.

R/W Entropy 99.93 0.50 0.02

R/W Ratio 99.94 1.82 1.07

Op. Num. 98.16 0.56 0.45

Consequently, all Minerva classifiers see the full ransomware activ-

ity on the file, which explains the negligible performance variations

between different windows. Furthermore, as elaborated later in

Section 6.5, the variability in behavior among the various processes

of multiprocess ransomware is minimal compared to traditional

ransomware, which aids in clarifying the near-perfect detection

performance.

6.4 Adaptive Detection Performance
We assess the effectiveness of Minerva’s contrastive design by eval-

uating its performance against three adaptive ransomware families

specifically engineered to evade detection (see Section 5.2). Table 2

illustrates the stacked detection rate for these adaptive families.

Notably, the TPR remains largely unaffected by the behavioral mod-

ifications of the different adaptive families. Specifically, adaptive

ransomware targeting the read-write entropy features are promptly

detected by Minerva within 0.5𝑠𝑒𝑐 , which is the minimum detection

time when 𝐾 = 2. Similarly, adaptive ransomware altering read-

and write-ratio behaviors are also consistently detected. However,

the mean detection time for this adaptive family is significantly

larger at 1.82 ± 1.07sec. These findings are expected, as the reduc-

tion in the R/W ratio feature is achieved by aggressively slowing

down encryption activity (up to 80% slowdown, as outlined in Sec-

tion 5.2). Nevertheless, detection performance remains excellent,

as the classifiers leveraging long-term windows effectively identify

the slow encryption activity. The sole adaptive family achieving

limited success in evading Minerva are the adaptive operation num-

ber ransomware. These ransomware reduce the number of read and

write operations by increasing the size of each individual operation.

However, as highlighted in Table 2, Minerva continues to deliver

excellent detection performance against this adaptive family. Fur-

thermore, since this evasion strategy entails reducing the number

of operations while increasing their size, attempting to evade Min-

erva using this method renders the attack easily detectable through

process-based detection [7]. Finally, we also evaluated Minerva

against compatible combinations of evasive strategies (r/w entropy

+ r/w ratio, r/w ratio + op. num.), obtaining similar detection results.

In Figure 5, we further study the detection rate distribution

across Minerva’s classifiers for the different adaptive families. We

exclude from this analysis r/w entropy adaptive family, as it is al-

ways detected by the short-term 0.25𝑠𝑒𝑐 classifier. Figure 5a plots

the detection rate against adaptive ransomware that manipulates

the number of operations feature. From the figure, we notice that the

vast majority of variants (> 90%) are detected within 0.5𝑠𝑒𝑐 by the

short-term 0.25𝑠𝑒𝑐 window when 𝐾 = 2. These results are expected,

as this adaptive family does not attempt to slow down encryption

activity, and therefore we expect a detection time in line with the

overall mean detection time. Figures 5b and 5c depict the detection

rate distribution for the adaptive R/W ratio family of ransomware

for 𝐾 = 1 and 𝐾 = 2 respectively. The detection distribution among

the Minerva classifiers skews towards longer-term classifiers as the

slowdown ratio increases, as expected. Furthermore, interesting

insights can be derived by comparing the detection distribution for

𝐾 = 1 and 𝐾 = 2. Initially, one might expect the detection distribu-

tion for 𝐾 = 2 to closely resemble that of 𝐾 = 1, albeit with double

the detection time. However, we observe that this expectation is

incorrect. In reality, the minimum detection time for adaptive R/W

ransomware increases fourfold between the two settings, while the

maximum detection time increases twofold, as initially anticipated.

This behavior is explained by the weaker detection performance

of Minerva’s short-term classifiers on individual windows of ran-

somware activity for this adaptive family. While the short-term

term classifiers effectively detect at least one window of malicious

activity (sufficient for detection when 𝐾 = 1), they fail to detect two

consecutive windows when the ransomware activity slows down.

This ultimately leads to a bias in the detection distribution towards

long-term classifiers, and, therefore, longer detection times.

6.5 Feature contribution to decision-making
This section assesses the explainability of Minerva and the contri-

butions of each of feature to the final classification outcome. We

leverage the SHapley Additive exPlanations (SHAP) [24] technique,

a widely adopted method to interpret model predictions. Features

with positive SHAP values influence the prediction towards the

positive class (and vice-versa), while the magnitude of each indi-

vidual feature indicates the strength of its contribution to the final

prediction. As a reminder, Minerva is a file-based behavioral clas-

sifier. Therefore, it is understood that the ensuing discussion on
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(a) Detection rate of adaptive ransomware re-
lying on reducing the number of operations
for different reduction factors, K=2.

(b) Detection rate of adaptive ransomware re-
lying on reducing the read/write frequency
for different slowdown factors, K=1.

(c) Detection rate of adaptive ransomware re-
lying on reducing the read/write frequency
for different slowdown factors, K=2.

Figure 5: Adaptive ransomware detection rate, for different adaptive approaches and different configurations.

feature importance and behavioral profiles is conducted from the

perspective of activity on individual files.

Figure 6 presents the SHAP plots for the 1𝑠𝑒𝑐 window Minerva

classifier, highlighting the importance of each selected feature to

the final classification and how feature importance changes for

different types of ransomware. Each plot presents the SHAP values

of Minerva’s features for 100 randomly sampled data points. Fig-

ures 6a, 6b, and 6c display the individual contributions of the Min-

erva features to the prediction of benign, traditional ransomware

and multiprocess ransomware classes for the one-second window

model. An immediate observation is the significance of the write

ratio feature as a distinguisher between benign and ransomware.

This finding is expected, as benign applications typically perform

partial writes to files, while ransomware aims to fully rewrite user

files as part of its malicious activity. A similar pattern emerges

with the read ratio feature, where benign applications often read

only portions of files, while ransomware tend to read files fully to

encrypt them. Figure 6b, however, reveals exceptions to this trend,

indicating that some traditional ransomware variants also exhibit

partial file read and write behaviors. We hypothesize that these ran-

somware variants prioritize speed over completeness of encryption,

sacrificing full file encryption to achieve higher overall encryp-

tion speed. Other important features are operation number and

process number, with ransomware typically exhibiting a notably

higher number of operations and processes acting on files during

the encryption activity. This characteristic is especially prominent

for multiprocess ransomware. Finally, the read and write entropy

features play a crucial role in detection, with the write entropy

feature having a particularly strong influence on the model’s classi-

fication for ransomware. Conversely, the impact of these features

on benign activity is ambiguous. This outcome is expected, as cer-

tain benign applications display read/write entropy profiles akin to

ransomware, as previously outlined in Section 4.2.

Figures 6e and 6f illustrate the SHAP plots for adaptive R/W

ratio and adaptive operation number, respectively. We observe that

these plots exhibit minimal variation when compared to the non-

adaptive multiprocess ransomware depicted in Figure 6c. These

findings are expected, as the behavioral changes introduced by these

adaptive ransomware families have limited impact on individual

features of Minerva. For adaptive R/W ransomware, the behavioral

changes typically affect only short-term classifiers, while long-term

classifiers still capture the complete malicious activity. Adaptive

operation number ransomware primarily alter the number of oper-

ations executed during encryption activities, which is evident in

Figure 6f, where the contribution of the operation number feature

on the final classification is negligible. However, the remaining

features still lead to detection. Lastly, Figure 6d clearly illustrates

the influence of contrastive features such as entropy and number of

operations on classification outcome. We observe that while the en-

tropy features exhibit a minimal to negative impact on ransomware

classification, the contribution of the operation number features

shows a considerable increase. This behavior is expected, as adap-

tive entropy ransomware relies on dummy, low entropy operations

to decrease the average read/write entropy and evade detection.

6.6 Overhead Analysis
6.6.1 Disk ActivityMonitor overhead. Minerva’s DiskActivityMon-

itor module leverages an I/O Request Packets Logger driver (IR-

PLogger) to capture relevant file system activity [4]. To evaluate

the overhead introduced by the Disk Activity Monitor, we perform

continuous read and write operations of different sizes ranging

from 1KB to 100MB, simulating workloads on both small and large

files, and measure the corresponding completion times. Each op-

eration was repeated 1, 000 times for reading and 1, 000 times for

writing for each considered operation size, resulting in a total of

28, 000 file system operations. To avoid caching-related side effects,

all operations were conducted on separate individual files. The tests

were performed on a Windows 11 virtual machine equipped with

an NVMe solid-state drive, 16 CPU cores, and 16GB of RAM. As

shown in Figures 7a and 7b, Minerva’s overhead during continuous

I/O operations remains low, ranging from 0 − 20% for all read and

write operations, with an outlier reaching ∼ 35%. On average, the

overhead recorded across all operations was 6.76%(±11.49).
To further characterize the resource requirements of Minerva,

we analyze its main memory and CPU usage under varying I/O

loads. Figure 7c presents Minerva’s main memory usage in KB as

processes perform operations at random intervals, ranging from

a few seconds for low I/O to continuous operations at full I/O.
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(a) SHAP values on 1 second window, benign
process features.
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(b) SHAP values on 1 second window, tradi-
tional ransomware.

0.0

0.0

0.2

0.2

0.4

0.4

0.6

0.6

0.8

0.8

1.0

1.0

Model output value

write_ratio

read_ratio

ent_read

op_num

rw_ratio

proc_num

ent_write

(c) SHAP values on 1 second window, multi-
process ransomware.
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(d) SHAP values on 1 second window, adaptive
entropy ransomware.
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(e) SHAP values on 1 second window, R/W ra-
tio adaptive ransomware.
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(f) SHAP values on 1 second window, Opera-
tion Number adaptive ransomware.

Figure 6: SHAP-based analysis of the Minerva features on the detection of benign and different ransomware types considered
(i.e., traditional, multiprocess and adaptive).

Memory usage exhibits a consistent pattern across all I/O loads,

with rapid increases in the first few seconds of activity followed

by fluctuations based on the number of requests and the size of

the operations. The running average, represented by the dashed

lines in the figure, stabilizes early in the execution and remains

relatively constant throughout. This behavior aligns with Minerva’s

design, as it only stores file system operations within a maximum

time window of 4 seconds, ensuring efficient memory usage and

scalability even under high-intensity I/O workloads. Across our

tests, we observe a negligible increase of 2.31(±1.09) percentage
points in CPU usage when Minerva is active in the system.

Finally, we ran a small scale user study to assess whether there

is any perceived usability degradation when using Minerva in day-

to-day tasks. We asked 5 users to interact with two systems VMs:

one running Minerva and one without. The users were allowed to

freely use the system, but were asked to include browsing, docu-

ment editing, software installation, and file transfers operations.

After they completed their activity, we asked them to evaluate their

experience on a scale from 1 to 5 with each system, where 1 cor-

responded to “unusable system” and 5 corresponded to “perfectly

usable”. Users reported an average of 4.8 and 4.6 for the system

with and without Minerva, respectively. We attribute the perceived

usability degradation on the system without Minerva to the use of

virtualization.

6.6.2 Sample prediction time. Minerva’s detectors leverage fully-

connected DNN classifiers to identify ransomware activity. We

evaluate the overhead of Minerva’s Behavioral Detector module

in predicting file activity by calling the predict function on 1, 000

individual samples sequentially. The prediction function invokes

the individual prediction functions of each tier’s classifier, char-

acterizing the overall time required to make a prediction across

the full multi-tier architecture of Minerva. Our tests indicate that

Minerva’s classification requires on average 0.0138(±0.0016)𝑠𝑒𝑐 to
predict a sample, introducing negligible impact on the system and

Minerva’s decision-making pipeline. Furthermore, while we tested

sequential classification to evaluate the worst-case scenario, we

stress that, in practice, classification operations can be parallelized

in large batches thanks to the small size of Minerva’s feature vectors

(seven float32 features, or 224 bits each).

7 DISCUSSION AND LIMITATIONS
We identify three main limitations of Minerva: (1) potential data

loss before detection, (2) coarse-grained detection granularity, and

(3) potential susceptibility to advanced evasive ransomware.

Data Loss. While Minerva demonstrates significant effective-

ness in promptly identifying ransomware activity, there remains a

potential risk of data loss before detection occurs. A detection time

of 0.52(±0.25) seconds, as achieved by Minerva, translates to an av-

erage of 19 files being encrypted before detection by contemporary

high-speed ransomware [43]. Advanced ransomware families such

as LockBit and Babuk are capable of encrypting up to ∼130 files
within the same time frame [43], and future ransomware families

will certainly keep improving. While currently Minerva does not

implement file recovery techniques, these can be implemented in

the future to prevent any data loss. Given Minerva’s rapid detection

rate, transparent, near-zero overhead data recovery methods such

as cache-based backups can be utilized [11]. Modern operating sys-

tems heavily rely on I/O buffering, which utilizes a page cache to

temporarily store data in the main memory before transferring it to
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(a) Overhead on file read operations under con-
tinuous I/O load.

(b) Overhead on file write operations under
continuous I/O load.

(c) Memory overhead under different I/O con-
ditions. Rolling averages as dashed lines.

Figure 7: Overall system overhead introduced by Minerva.

I/O devices. Portions of the page cache are periodically flushed at

different intervals depending on the operating system: 1/8𝑡ℎ of the

cache every second for Windows [40], while Linux retains pages for

up to 30 seconds by default. Since Minerva’s detection rate is signif-

icantly faster than the cache flushing rate, it can be integrated with

techniques that adjust cache flushing policies to prevent flagged

malicious content from being written to disk. This approach would

enable a near-zero overhead data recovery process [11].

Detection Granularity.Minerva detects ransomware activity

on a per-file, per-window basis. This behavior inherently limits the

detection granularity to the file level rather than the process level.

When Minerva detects ransomware activity on a file in a time win-

dow, all processes that interacted with the file during that window

are classified as ransomware and suspended. This approach may

include benign processes that wrote data to the file within the same

window as the ransomware. We argue, however, that this is a minor

limitation. First, operating systems prevent concurrent writes on

the same file. Therefore, while the ransomware is encrypting a file,

no benign write activity can happen. Second, since Minerva detec-

tion time is very low, even if benign activity happened in the same

window as ransomware, on average, only 0.5𝑠𝑒𝑐 of benign activity

would be lost. While this might be acceptable for many types of

usage, it might not be suitable in high-frequency I/O environments.

A partial solution to this problem is to integrate process control and

process analysis tools into Minerva. When ransomware activity

is detected on a file, Minerva would freeze all processes interact-

ing with it. Simultaneously, the user would receive a notification

about the malicious activity and be prompted to confirm whether

each identified process is legitimately accessing the file. Unverified

processes would be terminated, and their file operations could be

rolled back using the previously discussed cache-based recovery

method. Such an approach would require the implementation of

tools to help users identify processes and cannot be fully automated

reliably. However, we argue that the benefits of promptly stopping

ransomware activity outweigh the potential disadvantages.

Advanced Evasive Ransomware. As ransomware evolves, fu-

ture variants may adopt increasingly sophisticated evasion tech-

niques. While Minerva is robust to several types of evasion attacks,

a dedicated adversary may be able to still evade detection. For

instance, ransomware could be designed to generate separate en-

cryption processes for each file in the system, which would lead

to high data loss. While creating so many new processes would

be quickly detectable, sophisticated ransomware could employ a

simplified version of this encryption method to maximize data loss.

Advanced ransomware could coordinate its file activity with that

of benign processes, reducing the effectiveness of some of Min-

erva’s features such as read/write entropy, and potentially leading

to evasion. Finally, given the reliance of Minerva on DNNs, future

ransomware could utilize adversarial attacks leveraging carefully

crafted noise to achieve evasion, such as adversarial examples [15].

While such attacks are complex and require advanced knowledge,

they are not impossible and could lead to failed detection. Extend-

ing Minerva to consider further complex, coordinated adversarial

attacks remains an open research direction.

8 CONCLUSIONS
We presented Minerva, a novel approach to ransomware detec-

tion and mitigation. In contrast to existing detection methods,

Minerva constructs behavioral profiles of files based on all the

operations they receive within a specific time window. Thanks

to its contrastive design approach, Minerva’s detection remains

robust against complex multiprocess ransomware and adaptive

ransomware specifically engineered to evade detection. Through a

comprehensive evaluation, we demonstrated that Minerva is highly

effective against all types of known ransomware attacks, unseen

ransomware attacks, as well as evasive variants designed to bypass

Minerva, underscoring the efficacy of our approach. Lastly, Min-

erva exhibits rapid ransomware activity detection, enabling the

adoption of near-zero overhead data loss prevention techniques.

We believe that these findings represent a significant advancement

in the development of robust and resilient countermeasures against

the escalating ransomware threat landscape.
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A ADDITIONAL SETUP DETAILS
A.1 Dataset Analysis
Data presented in Figure 2 is computed over benign, traditional ran-

somware, and evasive ransomware process operations performed

over a one-second time window. To improve the presentation, we

filtered the dataset by removing null read and write operations

(which are also ignored by Minerva).

A.2 Dataset description
The dataset used in our experiments comprises data from multiple

sources [4, 7, 28, 47] and additional data gathered as part of this

study. Table 3 lists the types of ransomware, ransomware families,

and the number of samples for each family. The dataset includes five

Traditional Classic ransomware families for a total of 383 samples,

which are gathered from previous works [4]. We additionally gath-

ered 43 samples from five different ransomware families released

between 2023 and 2025, referred to as Traditional Current in the

table. We use 30 evasive multiprocess ransomware samples [7], and

three adaptive ransomware families designed specifically to evade

Minerva totaling 20 samples (see Section 5.2 for details on adap-

tive families). Traditional Classic ransomware samples from [4]

were gathered in 2016, however, no details are available on when

each sample was first seen in the wild. Evasive multiprocess ran-

somware are research prototypes and have no ransomware families.

We use data from all proposed evasive configurations: process split-

ting, functional splitting, and mimicry [6, 7]. Adaptive multiprocess

ransomware are derived from the mimicry evasive multiprocess

ransomware [7] and are designed specifically to evade Minerva. We

divide them into families based on the group of Minerva features

that are manipulated to attempt evasion, as presented in Section 6.4.

Table 4 provides information on the benign dataset. The dataset

of benign operations used in this study was provided by [4]. The

dataset was collected from 11 desktop computers over multiple

weeks. It comprises computers dedicated to three different types

of use: development (dev), office, and home. The dataset includes a

wide variety of applications, including office suite applications (.doc,

.ppt, .xls), development tools such as Visual Studio, and compression

utilities such as WinRar [4], providing a varied and challenging

setting for behavioral modeling.

A.3 Ransomware Data Collection
We collected ransomware data on a Windows 11 virtual machine

populated with ∼ 33, 000 files distributed over various subdirec-

tories within the User Windows directory. We included over 80

different types of files, including different image formats (.jpg, .jpeg,

Ransomware Year No. Samples
Traditional Classic 383

Crypto Wall 2016 157

Crowti 2016 125

Crypto Defense 2016 77

CTB Locker 2016 14

TeslaCrypt 2016 10

Traditional Current 43

Akira 2023-25 10

LockBit 2023-25 10

Conti 2023-25 10

AvosLocker 2023-25 10

WannaCry 2023-25 3

Evasive Multiprocess / 30

Adaptive 20

Adaptive Entropy / 5

Adaptive Op. Num. / 9

Adaptive R/W Ratio / 6

Total 476

Table 3: Ransomware families used in the evaluation.

Machine Win. Ver. Type Data (GB) IRPs (Mln) Proc. (Mln) Apps Duration (h)
1 10 dev 3.4 230.8 16.6 317 34

2 8.1 home 2.4 132.1 9.67 132 87

3 10 office 0.9 54.2 5.56 225 17

4 7 home 4.7 279.9 18.70 255 122

5 7 home 2.2 138.1 5.04 141 47

6 10 dev 1.8 100.4 10.30 225 35

7 8.1 dev 0.8 49.0 3.28 166 8

8 8.1 home 0.8 43.9 6.33 148 32

9 8.1 home 7.7 501.8 24.20 314 215

10 7 home 0.9 57.6 2.63 151 18

11 7 office 2.6 175.2 4.69 171 28

Total 28.2 1,763.0 107.00 2245 643

Table 4: Benign dataset details.

Table 5: Detection rate of ShieldFS, RWGuard, and Minerva
against traditional and multiprocess ransomware. Results
taken from [4, 7].

Approach Traditional 𝑇𝑃𝑅 Multiprocess 𝑇𝑃𝑅

ShieldFS [4] 100.00 0.00

RWGuard [28] 98.45 0.00

Minerva (ours) 99.25 99.98

.png, .gif), audio/video (.mp3, .mp4, .mov), compressed archives (.zip,

.gz), and office files (.docx, .xlsx, .pptx). After each ransomware ex-

ecution, we verified that the user files were successfully encrypted

and discarded samples that did not correctly execute. The VM was

reverted and reset after each execution. In total, we gathered 43

working samples from 5 different families, as illustrated in Table 3

(Traditional Current).

A.4 User Study Details
We recruited five volunteer bachelor and master computer science

students to carry out our user study. Each student was allowed to

freely interact with two Windows systems deployed in a virtual

machine: (1) standard system and (2) Minerva system. To ensure

that key actions were evaluated, the users were asked to include in

https://doi.org/10.1109/TDSC.2024.3364209
https://doi.org/10.1109/TDSC.2024.3364209
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Table 6: Performance analysis of Minerva against unseen
ransomware families.

Benign Ransomware Overall

Window 𝑇𝑁𝑅 𝑇𝑃𝑅 Acc. Prec. Recall F1

0.25sec 98.49 97.73 98.11 98.48 97.73 98.11

0.5sec 98.45 98.44 98.45 98.45 98.44 98.45

1sec 98.41 98.62 98.52 98.41 98.62 98.52

2sec 98.65 98.79 98.72 98.66 98.79 98.72

4sec 99.09 98.92 99.00 99.08 98.92 99.00

stacked 97.59 99.07 98.33 97.63 99.07 98.35

their workflow activities typically carried out by different types of

users. Participants were asked to include the use of a web browser

(standard user activity), edit documents on the local machine (office

activity), perform software installation and removal operations (ad-

ministration activity), and carry out file transfer operations. After

interaction with each system, they were asked to rate the system

usability on a scale from 1-5, considering in particular whether the

system was responsive to interaction and whether activities were

unusually slow.

B COMPARISONWITH SOTA
We compare our approach against two state-of-the-art ransomware

detection approaches: ShieldFS [4] and RWGuard [28]. As high-

lighted in recent publications [7, 47], ShieldFS and RWGuard still

represent reference benchmarks for behavioral-based ransomware

detection. Table 5 presents our comparison. As illustrated in the

table, Minerva achieves performance comparable to state-of-the-art

approaches against traditional ransomware. Furthermore, Minerva

successfully detects evasive multiprocess ransomware, a feat that

existing approaches fail to accomplish.

C UNSEEN DETECTION PERFORMANCE
Given the constant evolution of ransomware, an essential evalua-

tion criterion for ransomware detectors is their ability to generalize

to previously unseen data. We assess Minerva’s capability to gener-

alize to unseen ransomware by randomly removing 10% of the vari-

ants from our training data and evaluating detection performance

on these withheld samples. This evaluation provides a measure of

the expected predictive and generalization capabilities of Minerva

on future, unknown ransomware variants. Table 6 reports the re-

sults of our test. As highlighted in the table, Minerva’s performance

on unseen variants closely aligns with its performance on known

variants, exhibiting only a minor performance degradation of ∼0.2
percentage points across all classifiers. These findings underscore

the ability of Minerva to learn descriptive features that accurately

capture the diverse range of behaviors displayed by ransomware.
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