
Hiding in Plain Sight: On the Robustness of
AI-generated Code Detection

Saman Pordanesh, Sufiyan Bukhari[0009−0008−5103−9067], Benjamin
Tan[0000−0002−7642−3638], and Lorenzo De Carli[0000−0003−0432−3686]

University of Calgary, Calgary AB T2N 1N4, Canada
{saman.pordanesh, sufiyanahmed.bukhari, benjamin.tan1,

lorenzo.decarli@ucalgary.ca�}

Abstract. AI code assistants, such as GitHub Copilot, are an increas-
ingly popular coding aid, but they also present risks. Large language
models (LLMs) upon which those assistants are built may generate in-
secure/incorrect code, either by accident or as a result of code poisoning
attacks. In general, LLMs obfuscate the lineage of source code used for
training. This is a problem, for example, in the context of supply chain
security, where tracking provenance is of the utmost importance. While a
number of recent approaches can flag AI-generated code based on a com-
bination of lexical and syntactic features, such works have not been eval-
uated in realistic settings. First, we identify and operationalize a number
of recently proposed AI code identification tools, measuring their base-
line performance on datasets generated by state-of-the-art models. Then,
we verify the robustness of such approaches to variations in training sets
and prompting strategies. Results show that existing AI code detectors
tend to be fragile and have limited accuracy in real-world scenarios.

1 Introduction

AI code assistants are quickly becoming ubiquitous within the software devel-
opment cycle. Such tools can quickly generate source code on demand, either
by completing developer-written code or in response to specific user requests.
In doing so, they can greatly reduce the effort to write boilerplate code, tests,
and similar components. This, in turn, reduces development time and frees pro-
grammers to concentrate on higher-level tasks, such as debugging and extending
functionality. As such, these tools enjoy ever-increasing popularity [31].

While AI code assistants have the potential to be immensely useful, they
also give rise to security concerns. Recent research points to the fact that code
assistants may, in certain situations, generate code that is less secure than that
written by humans [26,27]. Further, Large Language Models (LLMs), on which
assistants are based, are trained on large datasets of unvetted Open-Source code.
As such, they may learn to generate copyrighted [8] or incorrect code, or even be
the target of code poisoning attacks [30,39,41]. This is potentially problematic,
both in the context of direct use of the tools and when importing software
dependencies that may be AI-generated. Overall, LLMs obfuscate provenance [5],

2 S. Pordanesh et al.

as code generation is based on a training dataset, but the relation between
training and output is not clearly maintained. Thus, being able to track code
provenance back to a code assistant is of the utmost importance for security,
correctness, and legal reasons. Indeed, it is not uncommon for software companies
to limit or qualify the use of such tools by their employees [13, 29]. For the
reasons above, until the threat model surrounding AI-generated code is better
understood, there is a need for tools that can highlight the presence of AI-
generated code in the wild so that it can be appropriately reviewed if necessary.

Several recent works propose the design of classifiers that can identify the
human or AI provenance of source code with high accuracy, at least under certain
assumptions [5,17,22,32,35,40]. We believe such algorithms can fill an important
gap and be useful for AI code detection and general code measurement studies.
Unfortunately, the robustness of such tools has seen limited to no investigation.
There are multiple threats to their accuracy. One is overfitting the training set: as
multiple LLMs capable of generating code exist, there may be intrinsic differences
in the code they generate. This may make a detector trained on one model
underperform on code generated by another. Another issue is that differences
in the characteristics of human and AI-generated code may depend on specific
programming tasks. Indeed, past work observed that “[detector] performance
considerably improves when the common patterns – those that may occur in data
curated from the same domains – have been learned during the training” [22].

In this paper, we examine the robustness of recently proposed AI code de-
tectors. We consider multiple classifiers [5,22,32,41]. First, we measure baseline
classifier performance and examine the impact of classifier design parameters.
Then, we evaluate the effect of the classifier training dataset (where applicable)
and prompt variations on classifier effectiveness. Finally, we consider whether
diversifying training sets can help improve classifier performance.

For evaluation accuracy, it is important to use cleanly labeled, diverse datasets.
We use a set of 6K software samples from two source code datasets commonly
used in this domain [15, 16], each including programming task assignments and
human-generated solutions. To maximize external validity, we generate cor-
responding AI solutions using three prominent models: OpenAI’s GPT [24],
Google’s Gemini [28], and Anthropic’s Claude [2]. Furthermore, there exist nu-
merous AI code detectors based on different approaches. Most only have proof-
of-concept implementations, and for some, a full implementation has not been
released. We perform a literature review, selecting four representative detectors
(see Section 4) [5, 22, 32, 41]. We engineer all these approaches to perform clas-
sification on our dataset, implementing missing components when necessary1.

Overall, zero-shot detectors tend to exhibit a significant drop in accuracy
compared to the originally published results, even after parameter tuning. Clas-
sifiers based on train+evaluate ML pipelines tend to fare better, but this advan-
tage dissipates when training and evaluation sets have different characteristics.
These results suggest that the problem of AI-generated code detection is not
trivially solvable, and more work is needed to produce effective detectors.

1 Data and code package: https://osf.io/jahxs/?view_only=dff479fdad8c4b9cb2060e6a3c2c5e5a

https://osf.io/jahxs/?view_only=dff479fdad8c4b9cb2060e6a3c2c5e5a

Hiding in Plain Sight: On the Robustness of AI-generated Code Detection 3

2 Background

2.1 AI Code Assistant

We use the term “AI code assistant” to refer to any AI-based tool that can gen-
erate code on demand. We include in our definition both tools that are directly
integrated into software development IDEs, such as GitHub Copilot [11], and
tools that offer some form of chat UI where users can post questions and retrieve
code from the answers, such as OpenAI’s ChatGPT [24]. These code assistants
are generally based on LLMs. In extreme synthesis, those are transformer mod-
els with billions of parameters trained on petabytes of human-generated text.
They have the ability to continue a prompt with a stream of words (tokens)
likely to follow, thus generating, in many circumstances, “human-like” answers
to queries. In the coding domain, those models are used to complete source code
or to generate source code from scratch based on natural language descriptions.

The training dataset of prominent “foundation” LLMs includes many forms
of text, including, in the case of models used for coding, a substantial amount of
source code. Due to its size, text in the training data is often used as-is without
vetting for correctness or risks. In many cases, the specifics of those training
datasets are not made public. This has raised a number of concerns, including
the possibility of bias and/or generation of technically incorrect information [38],
and vulnerability of LLMs to poisoning attacks [30].

2.2 Supply Chain Security

Software supply chain security focuses on identifying risks and vulnerabilities in
components used within software artifacts. Much modern software is built com-
positionally, importing open-source software (OSS) components within a project.
These components provide ready-made, freely available implementations of func-
tionality that may be tedious or complex to implement correctly (e.g., JSON
parsers, messaging middleware, web UI frameworks, etc.). In the last 15 years,
this approach has revolutionized software development, enabling companies to
quickly and economically build infrastructure that previously would have needed
to be entirely developed in-house.

However, this approach also comes with security drawbacks, as including a
large amount of external modules can significantly extend the attack surface
of an software artifact [36]. AI coding assistants further complicate the issue:
as discussed in Section 1, they may obfuscate the provenance of code within
imported modules, and may even introduce additional vulnerabilities. Thus, we
consider AI code detection relevant to software supply chain security.

2.3 Threat Model

We consider a scenario where an AI code assistant generates vulnerable or ma-
licious code that gets embedded in a software artifact. This may be accidental,
e.g., due to defective examples in the training set, or purposefully caused by an

4 S. Pordanesh et al.

def calculate_md5(fileobject, size=2**16):
 fileobject.seek(0)
 md5 = hashlib.md5()
 for data in iter(lambda: fileobject.read(size), b’’):
 if not data: break
 if isinstance(data, six.text_type):
 data = data.encode('utf-8') # md5 needs a byte string
 md5.update(data)
 fileobject.seek(0) # rewind read head
 return md5.hexdigest()

def calculate_md5(fileobject):
 md5 = hashlib.md5()
 while chunk := fileobject.read(8192):
 md5.update(chunk)
 return md5.hexdigest()

(b) Human-generated example (c) AI-generated example

Prompt (abridged): “Utility function to calculate md5 hashes while being light on memory usage. By reading the fileobject
piece by piece, we are able to process content that is larger than available memory”

(a) Prompt used to generate the function

Fig. 1: Example of prompt and human- and AI-generated code (CSN dataset)

attacker conducting dataset poisoning [30,39]. To contain such attacks, an orga-
nization may opt to identify and track the provenance of AI-generated code to a
specific model/training set. This may enable countermeasures such as only allow-
ing the use of models in non-security-sensitive contexts or limiting code genera-
tion to specific, vetted models/training sets. To do so, we consider the problem
of identifying AI-generated code and distinguishing it from human-generated
code. While classifiers have been proposed for this problem [5,22,32,41], as part
of a more general trend towards distinguishing AI- and human-generated con-
tent [12,21], these tools have only been evaluated in “clean lab” settings, typically
on limited datasets and in the absence of confounding factors that exist in the
real world (e.g., training and evaluation sets with different characteristics) and
may degrade their performance. In this work, we aim to evaluate and compare
the performance of different classifiers in the presence of such factors.

3 Dataset

3.1 Prompt corpora

To assess the effectiveness of classifiers, we required a diverse dataset containing
code samples generated by both humans and AI. To control confounding factors,
we sought to have AI generate code for tasks for which corresponding human
implementations exist. To ensure and maintain the integrity of the dataset gen-
eration process, we established specific criteria for our dataset selection.

Comprehensive Problem Descriptions: Each human-written code sam-
ple must be accompanied by a detailed problem statement. This context is crucial
for a fair comparison between human and AI-generated code. Without it, AI may
produce incorrect or irrelevant code, potentially leading to biased analysis.

Sufficient Number of Code Samples: The dataset should contain a sub-
stantial number of code samples to enable large-scale analysis. A larger dataset
leads to more reliable and robust conclusions.

As the target language, we choose Python due to (i) the large amount of
Python code available for model training, which makes widely available AI code
assistants particularly suited to Python programming (Python routinely tops

Hiding in Plain Sight: On the Robustness of AI-generated Code Detection 5

def main():
 for a in range(1,10):
 for b in range(1,10):
 print("{}x{}={}".format(a,b,a*b))
 return None

def print_multiplication_table():
 for i in range(1, 10):
 for j in range(1, 10):
 print(f"{i}x{j}={i*j}")

print_multiplication_table()

(b) Human-generated example (c) AI-generated example

Prompt (abridged): “Write a program which prints multiplication tables in the following format: 1x1=1 1x2=2 […] [template for
various languages follows]”

(a) Prompt used to generate the function

Fig. 2: Example of prompt and human- and AI-generated code (IBM dataset)

lists of most popular programming languages [34]); and (ii) the widespread use
of Python in literature on AI-generated code detection [32,41].

CodeSearchNet The CodeSearchNet Corpus [15] is a collection of 6M+ code
functions from popular open-source GitHub repositories. They are written in a
variety of programming languages, including Go, Java, JavaScript, PHP, Python,
and Ruby. In the rest of the paper, we refer to this as the CSN dataset.

The dataset comprises approximately 2 million pairs of code functions and
their corresponding documentation. Additionally, it includes around 4 million
functions without associated documentation to facilitate model training and
evaluation for training, validation, and testing.

The primary goal of this dataset is to support the CodeSearchNet challenge.
This challenge focuses on the development of advanced code search techniques
that can accurately retrieve code snippets based on natural language queries.

Prompt set review. Manual review of this dataset reveals potential issues. Docu-
mentation is oftentimes truncated, resulting in loss of contextual information. In
some cases, the documentation fails to reflect requirements that are clear in the
human implementation, and/or the documentation is outdated and no longer ac-
curately reflects the original code. Figure 1 presents an example, together with
a human solution and a sample AI solution generated with OpenAI GPT 4o.
It is worth noting that while this dataset is popular in the AI code detection
literature [32, 41], these issues are virtually ignored. Ultimately, we decided to
use this dataset as, despite its limitations, it has the advantage of comprising re-
alistic software development tasks while noting that the information asymmetry
between human developers and AI may introduce systematic differences.

IBM Project CodeNet Project CodeNet [16], by IBM, is a massive dataset of
13.9 million code samples, each designed to solve one of 4,000 coding challenges.
Sourced from AIZU Online Judge 2 and AtCoder 3, these samples cover over
50 programming languages, primarily C++, C, Python, and Java. Each sample
includes detailed metadata like size, memory usage, execution time, and outcome

2 https://onlinejudge.u-aizu.ac.jp/home
3 https://atcoder.jp

https://onlinejudge.u-aizu.ac.jp/home
https://atcoder.jp

6 S. Pordanesh et al.

Provide python code as a function for the below problem statement and

produce no other text. Do not include the function inside a docstring.

Problem Statement:

PROBLEM DESCRIPTION GOES HERE.

Fig. 3: Template used for AI code generation

(accepted or rejected with reason). Human code samples are pre-vetted by human
judges. In the following discussion, we refer to this as the IBM dataset.

Over 90% of the problems in Project CodeNet are accompanied by detailed
descriptions. Additionally, over half of the 4K problems in the dataset have at
least one accepted code solution, providing a benchmark for evaluation.

Problem set review. Different from CodeSearchNet, samples in this dataset do
not suffer from information asymmetry: human samples were developed using
exactly the same information available for AI code generation. These descrip-
tions outline the specific problem and expected input and output formats, often
including sample input/output pairs. This rich contextual information provides
a comprehensive understanding of the problem to be solved. Figure 2 presents
an example, together with a human solution and a sample AI solution generated
with OpenAI GPT 4o. However, this dataset suffers from a different limitation,
as prompts veer towards artificial programming exercises rather than real-world
tasks. We decided to still retain this dataset, as it has the advantage of providing
clear, unambiguous tasks together with rigorously vetted human solutions.

3.2 Dataset generation and discussion

Human-generated samples We identified potential prompts for the LLMs
(coding task problem descriptions for the AI) in both CSN and IBM sets, re-
quiring (i) the prompt to be in English (to eliminate language as a confounding
factor); (ii) for the IBM prompt set, an accepted solution to be available; and
(iii) the solution to be non-empty and valid Python (as some classifiers generate
features based on the extracted Abstract Syntax Tree, which requires syntactic
validity). Finally, we randomly sampled a set of approximately 3000 solutions
from the acceptable samples for each dataset. As discussed in Section 3.3, we
only retained human samples for which a corresponding machine-generated so-
lution could be obtained from all models. This resulted in 3042 code/prompt
samples for CSN and 2984 code/prompt samples for IBM.

3.3 AI-generated samples

To construct code-generation prompts, we used the same problem descriptions
present in the set of human samples (described above) for both the CSN and IBM
datasets. We selected three state-of-the-art enterprise LLMs as our generative

Hiding in Plain Sight: On the Robustness of AI-generated Code Detection 7

GPT Gemini Claude
CSN IBM CSN IBM CSN IBM

Length 0.06 0.76 0.66 0.96 0.70 0.97

Cyclomatic Comp. 0.31 -0.20 0.48 -0.28 0.23 -0.26

Table 1: Effect size for Wilcoxon pairwise comparison between length and com-
plexity of human and AI samples (strong correlation highlighted)

models for addressing code-related problems: GPT-4o [24], Gemini 1.5 Flash [28],
and Claude 3.5 Sonnet [2], based on the most recent versions available as of mid-
2024. Despite their strong performance, open-source models such as LLaMA
3.0 [20] were excluded. They are hosted on limited cloud infrastructures and are,
therefore, less commonly used for day-to-day tasks like programming. All code
generation processes using these models were conducted via their APIs.

Generation Process We created a two-part initial prompt template to guide
the generative models. The first part provided specific instructions about the
desired response format and content, while the second part incorporated a prob-
lem description from one of the prompt sets. The prompt was created by follow-
ing OpenAI’s suggested best practices [25] and iteratively refined to minimize
invalid/incorrect code generation in initial informal experimentation. It also in-
cludes instructions to minimize the generation of extraneous non-code text. The
prompt is given in Figure 3. We further discuss the potential impacts of prompt
structure on detection results in Section 5.3.

After querying the generative models, the generated samples were checked for
non-emptiness and correctness. When checks failed, we re-tried code generation
up to three times, after which we dropped the prompt from the evaluation set.
Additionally, we observed that AI-generated samples occasionally only consist
of documentation (i.e., docstrings); we removed all such documentation before
checking for empty samples.

During generation, all LLMs failed to generate code for several problem
description prompts; the set of failed prompts overlaps only partially. To en-
sure a fair evaluation across models, we only retain prompts/generated code for
prompts from which all models could generate a valid code sample.

Quantitative datasets review Observing information asymmetry in Code-
SearchNet raises the question of whether systematic differences between human-
and AI-generated code exist. To address it, we compute two basic measures be-
tween paired code samples from our dataset: lengths in lines of code (LOCs), and
cyclomatic complexity [19]. The latter is defined as the number of independent
paths through a source code artifact and is frequently used to quantitatively
represent the level of complexity of a source code artifact.

Distribution of sample lengths from samples generated by human program-
mers, and the GPT, Gemini and Claude models on CodeSearchNet and IBM
are depicted in Figure 4(a) and (b), while complexity distributions are de-
picted in Figure 4(c) and (d). The plots present a nuanced picture, showing

8 S. Pordanesh et al.

0 25 50 75 100
0

50

100

150

200

Sample Length/CSN

Fr
eq

ue
nc

y

Generator
Claude
GPT
Gemini
Human

(a) Distribution of sample lengths
(CSN)

0 25 50 75 100
0

50

100

150

200

Sample Length/IBM

Fr
eq

ue
nc

y

Generator
Claude
GPT
Gemini
Human

(b) Distribution of sample lengths
(IBM)

5 10 15 20 25
0

50

100

150

Sample Complexity/CSN

Fr
eq

ue
nc

y

Generator
Claude
GPT
Gemini
Human

(c) Distribution of complexity lengths
(CSN)

5 10 15 20 25
0

50

100

150

Sample Complexity/IBM

Fr
eq

ue
nc

y

Generator
Claude
GPT
Gemini
Human

(d) Distribution of sample complexity
(IBM)

Fig. 4: Characterization of basic dataset metrics

small but noticeable distributional differences. Motivated by this, we conducted
Wilcoxon signed-rank tests pairwise between human samples and each set of
model-generated samples. All metrics are found to present statistically signif-
icant differences at p <= 0.01. Effect sizes are measured using Rank Biserial
Correlation (RBC) (r). Following practices from the literature, we interpret r
values above 0.6 as representing high correlation. Full results are given in Ta-
ble 1. Overall, these results suggest macroscopic statistical differences between
samples generated by humans and most sets of AI-generated samples. While this
does not imply that individual samples may be correctly labeled, it suggests that
there are indeed systemic effects at play that may make classification possible.

4 Evaluated Classifiers

To identify suitable classifiers from the analysis, we reviewed the literature on
the detection of AI-generated code. We did so by reviewing publications in high-
profile security venues, such as IEEE S&P, ACM CCS, and similar, searching
the arXiv online archive, and using search engines (e.g., Google Scholar) to iden-
tify any missing publications. We only retained publications with partial or full
code released and sufficient details to achieve a working implementation on our

Hiding in Plain Sight: On the Robustness of AI-generated Code Detection 9

dataset with reasonable effort. We further filtered approaches for which we could
not get accuracy and or F1 score consistently above 60%. For example, we were
unable to replicate Yang et al. [40] 70-80% AUC on Python samples in our ex-
periments. Finally, we filtered approaches that used similar techniques, retaining
one example per category. For example, we did not evaluate Whodunit [17], as
it is conceptually very similar to the one developed in our previous work [5],
discussed below. We discussed the selected classifiers in the following.

4.1 Bukhari et al.

In our previous work [5] we evaluated a classifier based on syntactic and se-
mantic features mutuated from the code stylometry feature set by Caliskan et
al. [6]. Such features are computed from source code and an intermediate AST
representation, and fed to a trained ML classifier. While the initial code release4

uses a subset of the stylometric features by Caliskan et al., we were able to ex-
tend it with limited effort to the full feature set, thus more closely representing
the potential of stylometry-based approaches. This classifier’s performance are
heavily dependent on which algorithm is used for classification (SVM, XGBoost,
random forest etc.). Based on preliminary experiments, XGBoost returns the
best result, and we use it for our experiments. For simplicity, in the rest of this
paper we refer to this classifier as “Bukhari et al.”.

4.2 GPTSniffer

GPTSniffer [22] is a CodeBERT-based classifier designed to detect source code
generated by ChatGPT. By fine-tuning a pre-trained language model, it aims at
identifiying patterns and anomalies specific to machine-generated code. This ap-
proach has a fully functional code release5, only requiring to format our dataset
appropriately. We further make minor alterations to the code to perform cross-
validation, compute additional metrics, and add small quality-of-life improve-
ments (e.g., saving the model after training for reuse).

4.3 Ye et al.

Ye et al. [41] introduce a zero-shot synthetic code detection technique through
code rewriting. Specifically, this model measures how code properties change
when a sample is partially rewritten by an AI code generation tool. This model
has the least complete implementation, requiring a substantial effort to extend
its code release6 to a functional tool. We reimplemented missing components
based on the description given in the paper. Further, this detector can be imple-
mented in different ways, as it is heavily dependent on which model is internally
used for rewriting, and how many times the code is regenerated. To provide

4 https://osf.io/46nva/?view_only=9110c4a94f0a4b4591f14fdd976deeca
5 https://github.com/MDEGroup/GPTSniffer
6 https://anonymous.4open.science/r/code-detection-6B35/README.md

https://osf.io/46nva/?view_only=9110c4a94f0a4b4591f14fdd976deeca
https://github.com/MDEGroup/GPTSniffer
https://anonymous.4open.science/r/code-detection-6B35/README.md

10 S. Pordanesh et al.

GPT 4o Gemini Claude

Approach P R A F1 AUC P R A F1 AUC P R A F1 AUC

Bukhari et al. 0.86 0.89 0.89 0.88 0.97 0.83 0.83 0.83 0.83 0.92 0.94 0.93 0.94 0.94 0.99

GPTSniffer 0.95 0.98 0.97 0.97 0.99 0.84 0.94 0.89 0.89 0.95 0.93 0.98 0.95 0.95 0.99

Ye et al.∗ 0.58 0.58 0.58 0.58 0.6 0.5 1.00 0.5 0.67 0.44 0.65 0.62 0.65 0.63 0.69

DetectCodeGPT∗ 0.61 0.85 0.85 0.71 0.72 0.51 0.97 0.74 0.67 0.63 0.60 0.85 0.79 0.7 0.72

Table 2: Performance of evaluated classifiers on CSN dataset using GPT-4o,
Gemini Flash 1.5, and Claude Sonnet 3.5 for code generation. ∗ denote zero-shot
models which were evaluated on whole dataset; for other models, 4-fold cross-
validation was used (P: Precision; R: Recall; A: Accuracy). Highest values in
green, lowest in purple.

a fair evaluation, we experimented extensively with different models (including
OpenAI GPT 4o Mini and Gemini 1.5 Flash), and 4/8/16 rewrites, and retained
the combination offering the best results.

4.4 DetectCodeGPT

DetectCodeGPT [32] applies zero-shot machine-learning to distinguish between
machine-generated and human-written code. This approach works by introduc-
ing perturbations in code samples, and measuring how these alter code natu-
ralness. Like GPTSniffer, this approach has a fairly complete implementation7,
only requiring reformatting our dataset and computing additional metrics.

5 Experimental Evaluation

5.1 Research Questions

In this section, we seek to answer the following research questions:

– RQ1: What are the baseline performance of evaluated classifiers on distin-
guishing AI- and human-generated code? Section 5.2 demonstrates that clas-
sifiers exhibit varying degrees of accuracy.

– RQ2: How robust are these classifiers to variations in training set and code
generation prompts? Experiments in Section 5.3 show that, in many cases,
model accuracy decreases drastically when training samples come from a
different problem domain than evaluation samples.

– RQ3: Can classifier performance be improved by diversifying training set?
Experiments in Section 5.4 suggest that diversifying training set has limited
impact on performance.

5.2 Baseline classifier performance

In this section, we evaluate baseline performance of the four classifiers under
examination. For “baseline performance”, we intend executing the classifiers in

7 https://github.com/YerbaPage/DetectCodeGPT

https://github.com/YerbaPage/DetectCodeGPT

Hiding in Plain Sight: On the Robustness of AI-generated Code Detection 11

GPT 4o Gemini Claude

Approach P R A F1 AUC P R A F1 AUC P R A F1 AUC

Bukhari et al. 0.94 0.95 0.97 0.95 1.00 0.94 0.95 0.97 0.95 0.99 0.95 0.96 0.98 0.96 1.00

GPTSniffer 0.99 1.00 0.99 0.99 1.00 0.99 1.00 0.99 0.99 1.00 0.99 1.00 0.99 0.99 1.00

Ye et al.∗ 0.63 0.76 0.65 0.69 0.71 0.58 0.12 0.52 0.20 0.46 0.67 0.61 0.66 0.64 0.72

DetectCodeGPT∗ 0.51 0.99 0.51 0.67 0.51 0.63 0.80 0.73 0.70 0.73 0.53 0.93 0.60 0.67 0.59

Table 3: Performance of evaluated classifiers on IBM dataset using GPT-4o,
Gemini Flash 1.5, and Claude Sonnet 3.5 for code generation. ∗ denote zero-shot
models which were evaluated on whole dataset; for other models, 4-fold cross-
validation was used (P: Precision; R: Recall; A: Accuracy). Highest values in
green, lowest in purple.

the absence of confounding factors. These are primarily a concern in the case
of training based classifiers (GPTSniffer and Bukhari et al.), as the accuracy of
those may suffer when trained on samples whose characteristics differ from the
evaluation set. Overall, this analysis also serves to establish baseline performance
expectations on our dataset.

Table 2 and 3 presents baseline results for the five classifiers under exami-
nation. We do not report variations across cross-validation folds as for all met-
rics the range is at most 0.03, and typically well below. Training-based models
(Bukhari et al. and GPTSniffer) generally perform reasonably well, with F1
scores substantially above 0.8 and in line with published results. However, there
is the question of whether such results hold up when training and evaluation set
have different charateristics, as samples derived from different sources may be
distributionally different. We evaluate this question in the next subsection.

Interestingly, zero-shot models performance measured on our datasets were
significantly lower than published results. Ye et al. [41] report AUCs above 80%
for many experimental scenarios on APPS [14] and MBPP [3] benchmarks. We
note that this approach performance appear sensitive to specific implementation
choices, such as the number of rewrites and the model used for rewriting. We
further investigate the impact of these choices below.

Similarly, DetectCodeGPT [32], which is a zero-shot classifier, shows varied
base-line results through different models and dataset in comparison with the
original paper. While the original publication was also based on the CSN dataset,
it used relatively small models (1-7B parameters) for AI code generation, which
may explain the discrepancies with our results.

Bukhari et al. Design Space Analysis Bukhari et al.’s approach works by
(i) using AST-based analysis to transform each sample program in a feature
vector; and (ii) training and using a Machine Learning classifier to label sample
vectors as either human- or machine-generated. As such, it is sensitive to the
particular algorithm used to train the classifier. We evaluate both XGBoost and
Random Forest classifiers as those resulted in the best performance in their
original paper [5]. F1 scores for both classifiers for all combinations of problem
set/generator model (using cross-validation) are depicted in Figure 5. XGBoost
results in marginally better performance, and we use it for all other experiments.

12 S. Pordanesh et al.

RFC XGB
0.00
0.25
0.50
0.75
1.00

Training+Evaluation sample generator

F1
 sc

or
e

Experiment
CSN/Claude
CSN/GPT
CSN/Gemini
IBM/Claude
IBM/GPT
IBM/Gemini

Fig. 5: F1 score for Bukhari et al. depending on classification algorithm used.

Claude GPT Gemini
0.00
0.25
0.50
0.75
1.00

Evaluation sample generator

F1
 sc

or
e

Experiment
4/GPT
4/Gemini
8/GPT
8/Gemini
16/GPT
16/Gemini

Fig. 6: F1 score for Ye et al. depending on number of rewrites/model used to
generate rewrites (CSN prompt set only).

Ye et al. Design Space Analysis As Ye et al.’s approach is dependent on
specific parameters including (i) number of times the code is truncated and
rewritten; and (ii) model used for rewriting (note, this is different from the
model used to generate the AI portion of the dataset), we investigate sensitivity
of the results on those choices. Figure 6 displays the resulting F1 scores on
our whole dataset for the CSN prompt set (we omit the IBM prompt set for
brevity). Results suggest no clear trend and for all other experiments we pick
the combination of parameters which maximizes the average of all measured
metrics across both prompt sets (8 rewrites w/ GPT).

5.3 Factors affecting classification

Impact of Training and Evaluation Set For classifiers which requires train-
ing, a relevant question is whether mismatch between training and evaluation
set can impact performance. The model used for generating samples to be clas-
sified may differ from the model used for generating training samples. Further,
the nature of coding tasks may differ, which may result in code samples with
different characteristics. To evaluate the joint impact of these factors, we pro-
ceed as follows. First, we define an experiment as a combination of three factors:
the Classifier being used, the combination of Problem sets used for training/e-
valuation (e.g., CSN IBM), and the combination of Models used for generating

Hiding in Plain Sight: On the Robustness of AI-generated Code Detection 13

CSN/Clau
de

CSN/GPT

CSN/Gem
ini

IBM/Clau
de

IBM/GPT

IBM/Gem
ini

CSN/Claude

CSN/GPT

CSN/Gemini

IBM/Claude

IBM/GPT

IBM/Gemini

Training set

Ev
alu

at
ion

 se
t F1

0.4
0.6
0.8

(a) Effect of training/evaluation set on F1
score for GPTSniffer classifier

CSN/Clau
de

CSN/GPT

CSN/Gem
ini

IBM/Clau
de

IBM/GPT

IBM/Gem
ini

CSN/Claude

CSN/GPT

CSN/Gemini

IBM/Claude

IBM/GPT

IBM/Gemini

Training set

Ev
alu

at
ion

 se
t F1

0.2
0.4
0.6
0.8

(b) Effect of training/evaluation set on
F1 score for Bukhari et al. classifier

Fig. 7: Training/evaluation set characteristics and F1 scores

the training and evaluation set (e.g., GPT Gemini). We run a code classifica-
tion experiment on all feasible combinations of factors, recording Precision and
Recall, and we tabulate the results. Finally, we build a random forest regressor
predicting each metric from the factors, and we extract Gini feature importance.

We resort to this approach as structured statistical tests would require a
large number of repeated samples for each experiment, which are prohibitive to
obtain due to the large and costly amount of computation required for individual
experiments. While we verified the variation among repetitions to be minimal,
we prefer the regression approach as it does not require repeated measures. We
acknowledge that this approach does not allow us to generalize results beyond our
set of experiments, but we believe that it is sufficient to identify general trends
and qualitatively identify significant factors that may affect classification. As our
goal here is not to achieve generalization but to maximize explanatory power,
we perform hyper-parameter tuning.

The Precision regressor achieves good explanatory power (R2 = 0.78), rank-
ing Problem sets as the top feature (Gini = 0.84), followed by Models (0.10) and
Classifier (0.07). The Recall regressor only achieves R2 = 0.46 but ranks factors
in the same order, respectively, with Gini scores 0.54, 0.25, 0.21. These results
suggest that, regardless of the algorithm being used, training-based classifier
performance is largely defined by differences between the characteristics of code
used for training and classification, with the AI model used for code generation
also playing a role.

To further investigate this observation, we plot heatmaps depicting how F1
scores vary based on the combination of training and evaluation set characteris-
tics (i.e., the combination of problem set and model used for the generation of AI
samples). Results for both GPTSniffer and Bukhari et al. are shown in Figure 7.
The plots clearly show how classifier performance degrades significantly when
the training and evaluation sets differ, particularly in terms of the problem set.

14 S. Pordanesh et al.

Approach
GPT 4o Gemini Claude

P R F1 P R F1 P R F1

Bukhari 0.84±0.01 0.79±0.02 0.82±0.01 0.84±0.01 0.79±0.02 0.82±0.01 0.84±0.01 0.79±0.02 0.82±0.01

GPTSniffer 0.92±0.01 0.99±0.00 0.96±0.00 0.92±0.01 0.99±0.00 0.96±0.00 0.92±0.01 0.99±0.00 0.96±0.00

Ye et al. 0.67±0.04 0.61±0.07 0.63±0.04 0.67±0.04 0.61±0.07 0.63±0.04 0.67±0.04 0.61±0.07 0.63±0.04

DetCodeGPT 0.52±0.04 0.95±0.08 0.67±0.01 0.52±0.04 0.95±0.08 0.67±0.01 0.52±0.04 0.95±0.08 0.67±0.01

Table 4: Base Prompt Variation Results: Each row presents the mean ± standard
deviation for Precision, Recall, and F1 score across Base Prompts 1-5, showing
the impact of different prompts on classifier performance. Highest values in green,
lowest values in purple.

Approach
GPT+Gem vs Cl GPT+Cl vs Gem Gem+Cl vs GPT
P R F1 P R F1 P R F1

Bukhari et al. 0.96 0.90 0.93 0.93 0.82 0.87 0.90 0.59 0.71

GPTSniffer 0.95 0.66 0.78 0.91 0.92 0.91 0.96 0.73 0.83

Table 5: Multi-model, multi-problem training set: Each row presents Precision,
Recall, and F1 score for a classifier trained on two out of three models, using
both CSN and IBM problem sets.

Impact of Prompt Template. Each prompt used in our AI code generation
experiments consists of two main components. The first part is the base prompt,
which provides the model with instructions on how to generate code, what as-
pects to focus on, and the required output format. The second part is a detailed
problem description from either the CSN or IBM dataset. During the code gener-
ation process, we kept the base prompt constant while iterating through problem
descriptions from the datasets.

In this section, we investigate whether the choice of prompt template used
for generation affects classification results. Our base prompt is discussed in Sec-
tion 3.3 and given in Figure 3. In this experiment, we designed five additional
base prompts to assess their impact on classification performance. To design
of the variations, we performed an extensive literature review [4, 7, 15, 18, 42]
and syncretized five styles: Validation-Centric,Minimalist, Self-Contained, Strict
Output-Only, and Testing-Oriented. Content and description of each style are
provided in our data package (see Section 1). We evaluate the effect of each
prompt template by randomly selecting 100 problems (evenly distributed among
the CSN and IBM sets) and feeding them to each of the models used for gener-
ation, resulting in a dataset of 300 instances (we used 4-fold cross-validation for
training-based classifiers, and we fed the whole dataset to zero-shot classifiers).

Results are presented in Table 4. For brevity’s sake, for each prompt/model
combination we list the average value for each metric and the standard deviation.
Variations across different base prompts are relatively small, which suggests that
the choice of base prompt has a minimal effect on the final generated code and,
consequently, on the classification process.

Hiding in Plain Sight: On the Robustness of AI-generated Code Detection 15

Approach
CSN vs IBM IBM vs CSN
P R F1 P R F1

Bukhari et al. 0.63 0.43 0.51 0.27 0.84 0.41

GPTSniffer 0.50 0.99 0.67 0.51 0.99 0.67

Table 6: Multi-model, single-problem training set: each row presents Precision,
Recall and F1 score for a classifier trained on samples generated by all models
on one problem set, and evaluated on samples generated by all models for a
different problem set.

5.4 Impact of diversified training set

For models that require training, another relevant question is whether diversifi-
cation aids classification performance. In particular, we ask: (i) does diversifying
the training set helps with classifying samples from previously unseen models?;
and (ii) does diversifying the training set helps with classifying samples from a
previously unseen problem set?

To answer the first question, we run one-out experiments where classifiers are
trained using combined samples from CSN and IBM generated by two models
and evaluated on samples generated by the third (we split the problem set so
each problem only appears in either training or evaluation). Results are shown in
Table 5. These results suggest that diversifying the training set does not consis-
tently improve detection performance on unseen models. For example, Bukhari
et al. suffers from low recall (0.28 average) in detecting Gemini/CSN when
trained on GPT/CSN or Claude/CSN only (see Figure 7(b)). When trained
on GPT+Claude/CSN+IBM, its recall jumps to 0.87. However, the same classi-
fier exhibits an average recall of 0.71 in detecting GPT/CSN based on training
on Gemini/CSN or Claude/CSN, while in this experiment, its recall falls to 0.59.

To answer the second question, we run four experiments where (i) we train
each classifier on all samples generated from all models on the CSN problem
set, and evaluate them on the IBM problem set; and (ii) vice versa. Results are
presented in Table 6. Metrics in columns 2-4 were computed by training on the
CSN problem set and evaluating on the IBM problem set; metrics in columns
5-7 were computed by training on IBM and evaluating on CSN. Results remain
poor, suggesting that diversifying the dataset in terms of the generator model
does not enable the classifiers to generalize across problem domains.

Overall, results show that the benefits of diversifying the training dataset may
be limited, at least for the current generation of AI code detectors. Classifiers are
able, to an extent, to generalize even from training data generated by a single
model to detect code from another model - as long as the problem set remains
the same. However, they are unable to transfer insights gleaned from one set of
software development tasks, to a different set of tasks. We further discuss these
observations in Section 6.

6 Discussion

Threats to Validity. We mitigate threats to internal validity by explicitly model-
ing confounding factors such as model used for generation, problem domain, and

16 S. Pordanesh et al.

discrepancies between training and evaluation set. We strive to mitigate exter-
nal validity threats by diversifying our set of models used for generation, and for
considering two different coding problem datasets. We believe our selection of
models to be representative; the popularity of GPT, Gemini and Claude is em-
pirically confirmed by the fact that these are the three models supported by the
popular GitHub Copilot plugin [9]. While our selection of problem sets is limited
to CSN and IBM, results show that they are sufficient to identify limitations of
existing models, and they both consist of high-quality prompts with directly or
indirectly vetted human solutions. As for construct validity, some models are
sensitive to design parameters. We pre-analyze the effect of such parameters to
ensure each model is tested under the most favourable conditions.

Another limitation of our study lies in the scope of the analyzed code sam-
ple: we focused exclusively on comparing source code that was entirely authored
by humans with source code that was entirely generated by AI. This binary
distinction enabled clearer ground-truth labeling and more controlled experi-
ments. However, it does not capture the scenario in which human-authored and
AI-generated code is intertwined—such as when developers use AI assistants
to suggest, complete, or modify code—highlighting the need for future work to
study these mixed-authorship settings. Thus, our current approach is inherently
geared towards a best-case classification scenario, where the inputs represent
fully human or fully AI-generated code.

A final limitation is that our study exclusively focused on Python source code.
While this decision removes language as confounding factor, it nonetheless re-
stricts the generalizability of our findings to other programming languages. Char-
acteristics such as syntactical, lexical, and style may vary significantly across
languages and may influence the performance of code origin classifiers. As a
result, further investigation is necessary to evaluate whether our methods and
conclusions hold when applied to code written in other coding languages.

Generated Code Functionality Preservation. An orthogonal but relevant ques-
tion is whether AI-generated code correctly implements the desired functionality
(human code samples in our datasets are directly or indirectly pre-vetted for
correctness). In a small-scale experiment evaluating the correctness of machine-
generated code, we compared 25 human-written code samples from the IBM
problem set with AI outputs from the three models under examination. The
IBM problems typically include sample test inputs/outputs, which we used to
generate per-problem unit tests. Claude achieved a 48% pass rate (12/25), Gem-
ini 24% (6/25), while GPT attained 52% (13/25). Notably, all three models
succeeded concurrently in only 24% of cases (6/25), whereas 40% (10/25) of
samples failed across the board, often due to recurring issues such as timeouts,
incorrect values, and missed edge cases. In these cases, human programmers
are likely not to use AI-generated code “as is”, but rather modify it to correct
recurring errors, resulting in mixed-authorship samples discussed above.

Implications and Future Directions. Results presented in Section 5 present a
complex picture, with some clearly identifiable insights. First, zero-shot models

Hiding in Plain Sight: On the Robustness of AI-generated Code Detection 17

tend to perform poorly, with precision oftentimes below 70%, and recall below
80%. Models based on training or fine-tuning can achieve high performance,
provided that the code submitted for classification comes from the same prob-
lem domain (i.e., problem set) used for training/fine-tuning. This observation is
consistent with past work [22], and with the observation that human- and AI-
generated code for the same problem set presents distinct statistical properties
(ref. Section 3.3). The same-origin assumption may be reasonable in some con-
texts – for example, detecting AI code in implementations of well-defined critical
functionality, such as implementations of specific ciphers.

In general, however, existing tools do not appear to be able to detect AI-
generated code in the wild, under realistic conditions, with sufficient accuracy
to be practical. Thus, it may be worth investigating alternative solutions such as
watermarking [33]. In situations where compliance requirements can be enforced,
it may also be possible to use developer tools to track the use of AI code assistants
and tag AI-generated code as it is created [5].

In parallel, incorporating developer perspectives may prove invaluable. This
would entail conducting a surveys on the experiences of developers with AI detec-
tion tools, developer views on the performance and security of machine-generated
code, and the broader culture surrounding the use of AI-assisted programming.

7 Related Work

Supply Chain Security. Supply chain security issues emerge from current soft-
ware design practices where code from various, potentially untrusted origins is
incorporated into a project. This increases the risk of malicious, vulnerable, or
other undesirable code being present in projects. Recent work includes identify-
ing malicious packages, such as in PyPI [10] or npm [1]. Such solutions are, how-
ever, imperfect, suggesting that any externally sourced code should be tracked
and examined. As AI-generated code potentially introduces new threat vectors
into the supply chain (e.g., through the generation of insecure code), there is a
need for automated processes that can complement existing human-driven soft-
ware practices for provenance tracking and analysis; our work provides insight
into the current state-of-the-art on this front.

Code Classification and Stylometry. Author identification using coding style
dates back to the 1980s, with Oman et al. [23] pioneering the approach by ana-
lyzing the typographic and layout styles of programs to identify the authors of
three Pascal algorithms from various computer science textbooks. More recently,
Caliskan et al. [6] developed the Code Stylometry Feature Set (CSFS) for pro-
grammer de-anonymization, specifically for identifying human authors from a set
of potential candidates. Caliskan’s technique, used for source code attribution,
is considered a closed-world machine learning task involving multi-class classifi-
cation. CSFS offers a comprehensive code representation, categorized into three
feature types: lexical features, which reflect programmer choices like keyword,
identifier, and operator frequency; layout features, capturing the visual structure

18 S. Pordanesh et al.

of the code, including indentation, line length, and comments; and syntactic fea-
tures, derived from Abstract Syntax Trees (ASTs), which delve deeper into the
code’s structure by examining element types, nesting levels, and control flow.

Building upon the foundation laid by Caliskan et al.’s [6] Code Stylometry
Feature Set (CSFS), researchers have explored various applications and exten-
sions. Watson [37], for example, presented a method to de-anonymize source code
contributors based on intrinsic programming style, building upon Caliskan-Islam
et al.’s work but modifying the feature set and modeling strategy for improved
scalability and feature-selection robustness. In our previous work [5], on the other
hand, we have leveraged the CSFS for a binary classification task, distinguish-
ing between AI-generated and human-written code. Nguyen et al. [22] developed
GPTSniffer, a machine learning solution designed to detect source code poten-
tially generated by ChatGPT. GPTSniffer’s classification engine utilizes Code-
BERT, a pre-trained model specialized in code analysis and trained on the exten-
sive CodeSearchNet dataset. Shi et al. [32] introduced DetectCodeGPT, a novel
method for identifying machine-authored code. DetectCodeGPT modifies code
and analyzes the responses of a pre-trained model. It focuses on stylistic tokens
like whitespaces and newlines. By strategically inserting such tokens, Detect-
CodeGPT aims to highlight stylistic differences between human and machine-
written code, making identification easier. Ye et al. [41] developed a zero-shot
method for detecting synthetic (AI-generated) code. Their method is based on
the principle that the similarity between the original code and versions rewritten
by LLMs is indicative of whether the code is AI-generated. The process involves
rewriting the code and subsequently comparing the original and rewritten ver-
sions for similarity.

8 Conclusion

We performed a comparative investigation of the performance of tools for detect-
ing AI-generated code. We investigated multiple classifiers, taking into account
both the impact of the model used for generating code, and of different pro-
gramming tasks. Results suggest that classifiers can be effective under narrow
assumptions, but are not yet sufficiently accurate to be used in the wild.

Acknowledgements: We thank the anonymous reviewers for their feedback.
We also thank Brian Meta, Masroor Posh and Elizabeth Wyss for their help
with this work. This work was supported by NSERC Alliance Grant #2341206
”Managing Risks of AI-generated Code in the Software Supply Chain”.

References

1. Adriana Sejfia, Max Schafer: Practical Automated Detection of Malicious npm
Packages. In: ICSE (2022)

2. Anthropic: Introducing claude. https://www.anthropic.com/news/introducing
-claude (Mar 2023)

https://www.anthropic.com/news/introducing-claude
https://www.anthropic.com/news/introducing-claude

Hiding in Plain Sight: On the Robustness of AI-generated Code Detection 19

3. Austin, J., Odena, A., Nye, M., Bosma, M., Michalewski, H., Dohan, D., Jiang,
E., Cai, C., Terry, M., Le, Q., Sutton, C.: Program synthesis with large language
models (2021), https://arxiv.org/abs/2108.07732

4. Brown, T.B., et al.: Language models are few-shot learners (2020), https://arxi
v.org/abs/2005.14165

5. Bukhari, S., Tan, B., De Carli, L.: Distinguishing AI- and Human-Generated Code:
A Case Study. In: ACM CCS SCORED Workshop (2023)

6. Caliskan-Islam, A., Harang, R., Liu, A., Narayanan, A., Voss, C., Yamaguchi, F.,
Greenstadt, R.: De-anonymizing Programmers via Code Stylometry. In: USENIX
Security Symposium (2015)

7. Chen, M., et al.: Evaluating large language models trained on code (Jul 2021),
http://arxiv.org/abs/2107.03374

8. Claburn, T.: GitHub and OpenAI fail to wriggle out of Copilot lawsuit. https:
//www.theregister.com/2023/05/12/github_microsoft_openai_copilot/

(May 2023)
9. Dohmke, T.: Bringing developer choice to copilot with anthropic’s claude 3.5 son-

net, google’s gemini 1.5 pro, and openai’s o1-preview. https://github.blog/ne
ws-insights/product-news/bringing-developer-choice-to-copilot/ (Oct
2024)

10. Duc Ly Vu, Zachary Newman, John Speed Meyers: Bad Snakes: Understanding
and Improving Python Package Index Malware Scanning. In: ICSE (2023)

11. Friedman, N.: Introducing GitHub Copilot: Your AI pair programmer. https://
github.blog/2021-06-29-introducing-github-copilot-ai-pair-programmer/

(Jun 2021)
12. GPTZero: AI Detector - the Original AI Checker for ChatGPT & More. https:

//gptzero.me/
13. HackerNews: Ask HN: Does your company ban GitHub Copilot? | Hacker News.

https://news.ycombinator.com/item?id=34914810 (Feb 2023)
14. Hendrycks, D., Basart, S., Kadavath, S., Mazeika, M., Arora, A., Guo, E., Burns,

C., Puranik, S., He, H., Song, D., Steinhardt, J.: Measuring coding challenge com-
petence with apps (2021), https://arxiv.org/abs/2105.09938

15. Husain, H., Wu, H.H., Gazit, T., Allamanis, M., Brockschmidt, M.: Codesearchnet
challenge: Evaluating the state of semantic code search (2020), https://arxiv.or
g/abs/1909.09436

16. IBM Research: github/project codenet. https://github.com/IBM/Project_Cod
eNet (Jan 2025)

17. Idialu, O.J., Mathews, N.S., Maipradit, R., Atlee, J.M., Nagappan, M.: Whodunit:
Classifying Code as Human Authored or GPT-4 Generated – A case study on
CodeChef problems. In: MSR (2024)

18. Mathews, N.S., Nagappan, M.: Test-driven development and llm-based code gen-
eration. In: ASE (2024)

19. McCabe, T.J.: A Complexity Measure. IEEE Transactions on Software Engineering
SE-2(4) (Dec 1976)

20. Meta AI: Introducing Meta Llama 3: The most capable openly available LLM to
date. https://ai.meta.com/blog/meta-llama-3/ (2025)

21. Mitchell, E., Lee, Y., Khazatsky, A., Manning, C.D., Finn, C.: Detectgpt: Zero-
shot machine-generated text detection using probability curvature (2023), https:
//arxiv.org/abs/2301.11305

22. Nguyen, P.T., Di Rocco, J., Di Sipio, C., Rubei, R., Di Ruscio, D., Di Penta, M.:
Gptsniffer: A codebert-based classifier to detect source code written by chatgpt.
Journal of Systems and Software p. 112059 (2024)

https://arxiv.org/abs/2108.07732
https://arxiv.org/abs/2005.14165
https://arxiv.org/abs/2005.14165
http://arxiv.org/abs/2107.03374
https://www.theregister.com/2023/05/12/github_microsoft_openai_copilot/
https://www.theregister.com/2023/05/12/github_microsoft_openai_copilot/
https://github.blog/news-insights/product-news/bringing-developer-choice-to-copilot/
https://github.blog/news-insights/product-news/bringing-developer-choice-to-copilot/
https://github.blog/2021-06-29-introducing-github-copilot-ai-pair-programmer/
https://github.blog/2021-06-29-introducing-github-copilot-ai-pair-programmer/
https://gptzero.me/
https://gptzero.me/
https://news.ycombinator.com/item?id=34914810
https://arxiv.org/abs/2105.09938
https://arxiv.org/abs/1909.09436
https://arxiv.org/abs/1909.09436
https://github.com/IBM/Project_CodeNet
https://github.com/IBM/Project_CodeNet
https://ai.meta.com/blog/meta-llama-3/
https://arxiv.org/abs/2301.11305
https://arxiv.org/abs/2301.11305

20 S. Pordanesh et al.

23. Oman, P.W., Cook, C.R.: Programming style authorship analysis. In: CSC (1989)
24. OpenAI: Introducing ChatGPT. https://openai.com/index/chatgpt/ (Nov

2022)
25. OpenAI: Best practices for prompt engineering with the OpenAI API | OpenAI

Help Center. https://help.openai.com/en/articles/6654000-best-practices
-for-prompt-engineering-with-the-openai-api (2025)

26. Pearce, H., Ahmad, B., Tan, B., Dolan-Gavitt, B., Karri, R.: Asleep at the Key-
board? Assessing the Security of GitHub Copilot’s Code Contributions. In: IEEE
S&P (2022)

27. Perry, N., Srivastava, M., Kumar, D., Boneh, D.: Do users write more insecure
code with ai assistants? In: ACM CCS (2023)

28. Pichai, S., Hassabis, D.: Introducing Gemini: Our largest and most capable AI
model. https://blog.google/technology/ai/google-gemini-ai/ (Dec 2023)

29. Roberto Torres: Apple restricts ChatGPT, GitHub Copilot use over data worries:
Report. https://www.ciodive.com/news/apple-chatgpt-openai-copilot-gen
erative-AI/650816/ (May 2023)

30. Schuster, R., Song, C., Tromer, E., Shmatikov, V.: You Autocomplete Me: Poison-
ing Vulnerabilities in Neural Code Completion. In: USENIX Security Symposium
(2021)

31. Shani, I., GitHub Staff: Survey reveals AI’s impact on the developer experience.
https://github.blog/2023-06-13-survey-reveals-ais-impact-on-the-dev

eloper-experience/ (Jun 2023)
32. Shi, Y., Zhang, H., Wan, C., Gu, X.: Between lines of code: Unraveling the distinct

patterns of machine and human programmers. In: ICSE (2025)
33. Suresh, T., Ugare, S., Singh, G., Misailovic, S.: Is the watermarking of llm-

generated code robust? (2025), https://arxiv.org/abs/2403.17983
34. TIOBE: Tiobe index. https://www.tiobe.com/tiobe-index/ (2025)
35. Tufano, R., Mastropaolo, A., Pepe, F., Dabić, O., Di Penta, M., Bavota, G.: Un-

veiling ChatGPT’s Usage in Open Source Projects: A Mining-based Study. In:
MSR (2024)

36. Vaidya, R.K., De Carli, L., Davidson, D., Rastogi, V.: Security Issues in Language-
based Software Ecosystems. http://arxiv.org/abs/1903.02613 (Nov 2021)

37. Watson, D.: Source Code Stylometry and Authorship Attribution for Open Source.
Ph.D. thesis, University of Waterloo (Sep 2019)

38. Weidinger, L., Uesato, J., Rauh, M., Griffin, C., Huang, P.S., Mellor, J., Glaese, A.,
Cheng, M., Balle, B., Kasirzadeh, A., Biles, C., Brown, S., Kenton, Z., Hawkins,
W., Stepleton, T., Birhane, A., Hendricks, L.A., Rimell, L., Isaac, W., Haas, J.,
Legassick, S., Irving, G., Gabriel, I.: Taxonomy of Risks posed by Language Models.
In: ACM FAccT (2022)

39. Yan, S., Wang, S., Duan, Y., Hong, H., Lee, K., Kim, D., Hong, Y.: An LLM-
Assisted Easy-to-Trigger Backdoor Attack on Code Completion Models: Injecting
Disguised Vulnerabilities against Strong Detection. In: USENIX Security Sympo-
sium (2024)

40. Yang, X., Zhang, K., Chen, H., Petzold, L., Wang, W.Y., Cheng, W.: Zero-shot de-
tection of machine-generated codes. https://arxiv.org/abs/2310.05103 (2023)

41. Ye, T., Du, Y., Ma, T., Wu, L., Zhang, X., Ji, S., Wang, W.: Uncovering llm-
generated code: A zero-shot synthetic code detector via code rewriting. https:
//arxiv.org/abs/2405.16133 (2024)

42. Zhou, Y., Muresanu, A.I., Han, Z., Paster, K., Pitis, S., Chan, H., Ba, J.: Large
language models are human-level prompt engineers (2023), https://arxiv.org/
abs/2211.01910

https://openai.com/index/chatgpt/
https://help.openai.com/en/articles/6654000-best-practices-for-prompt-engineering-with-the-openai-api
https://help.openai.com/en/articles/6654000-best-practices-for-prompt-engineering-with-the-openai-api
https://blog.google/technology/ai/google-gemini-ai/
https://www.ciodive.com/news/apple-chatgpt-openai-copilot-generative-AI/650816/
https://www.ciodive.com/news/apple-chatgpt-openai-copilot-generative-AI/650816/
https://github.blog/2023-06-13-survey-reveals-ais-impact-on-the-developer-experience/
https://github.blog/2023-06-13-survey-reveals-ais-impact-on-the-developer-experience/
https://arxiv.org/abs/2403.17983
https://www.tiobe.com/tiobe-index/
http://arxiv.org/abs/1903.02613
https://arxiv.org/abs/2310.05103
https://arxiv.org/abs/2405.16133
https://arxiv.org/abs/2405.16133
https://arxiv.org/abs/2211.01910
https://arxiv.org/abs/2211.01910

