
What the Fork? Finding Hidden Code Clones in npm
Elizabeth Wyss
University of Kansas
Lawrence, KS, USA

ElizabethWyss@ku.edu

Lorenzo De Carli
Worcester Polytechnic Institute

Worcester, MA, USA
ldecarli@wpi.edu

Drew Davidson
University of Kansas
Lawrence, KS, USA

DrewDavidson@ku.edu

ABSTRACT

This work presents findings and mitigations on an under-
studied issue, which we term shrinkwrapped clones, that is
endemic to the npm software package ecosystem. A shrink-
wrapped clone is a packagewhich duplicates, or near-duplicates,
the code of another package without any indication or refer-
ence to the original package. This phenomenon represents a
challenge to the hygiene of package ecosystems, as a clone
package may siphon interest from the package being cloned,
or create hidden duplicates of vulnerable, insecure code which
can fly under the radar of audit processes.

Motivated by these considerations, we propose unwrap-
per, a mechanism to programmatically detect shrinkwrapped
clones and match them to their source package. unwrap-
per uses a package difference metric based on directory tree
similarity, augmented with a prefilter which quickly weeds
out packages unlikely to be clones of a target. Overall, our
prototype can compare a given package within the entire
npm ecosystem (1,716,061 packages with 20,190,452 differ-
ent versions) in 72.85 seconds, and it is thus practical for
live deployment. Using our tool, we performed an analysis
of a subset of npm packages, which resulted in finding up to
6,292 previously unknown shrinkwrapped clones, of which
up to 207 carried vulnerabilities from the original package
that had already been fixed in the original package. None of
such vulnerabilities were discoverable via the standard npm
audit process.
ACM Reference Format:

Elizabeth Wyss, Lorenzo De Carli, and Drew Davidson. 2022. What
the Fork? Finding Hidden Code Clones in npm. In 44th International
Conference on Software Engineering (ICSE ’22), May 21–29, 2022, Pitts-
burgh, PA, USA. ACM, New York, NY, USA, 12 pages. https://doi.org/
10.1145/3510003.3510168

1 INTRODUCTION

The security and correctness of code stored in package reposi-
tories is an important concern because such repositories are
crucial to modern software infrastructure. Indeed, language-
based package repositories such as npm, pypi, and RubyGems
collectively serve billions of packages each week [39]. Much
of the popularity of package repositories is due to the pack-
age manager frontend, which allows a user to easily import a
package by issuing a simple install directive on the command

Permission to make digital or hard copies of part or all of this work for personal
or classroom use is granted without fee provided that copies are not made or
distributed for profit or commercial advantage and that copies bear this notice
and the full citation on the first page. Copyrights for third-party components of
this work must be honored. For all other uses, contact the owner/author(s).
ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA
© 2022 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-9221-1/22/05.
https://doi.org/10.1145/3510003.3510168

line. While seamless import of external code is convenient,
it also creates problems: developers tend to assume code to
be reliable rather than vetting prior to import [6], and once a
package is imported, latent bugs and vulnerabilities become
part of the final application. Importing the “wrong” package
may cause significant supply-chain security issues [17].

This work presents findings and mitigations on an under-
studied issue within the npm package repository1, which we
term shrinkwrapped clones. We use this term to refer to pack-
ages which are uploaded to a package repository and contain
code that is identical, or nearly-identical, to that of an existing
(legitimate) package. Specifically, we discover two types of
clones: (i) identical clones, which contain source code that is
identical to that of an existing package, and (ii) close clones,
whichmake potentially significant syntactic/semantic changes
to the code, but generally localized to a small number of files
(we refine this definition in the following). This phenomenon
is characteristic to npm, as this ecosystem lacks the notion
of forks, by which we mean copied code repositories that ex-
plicitly link back to their source repositories (as is common
for example in GitHub [2]). Instead, shrinkwrapped clones in
npm cannot be explicitly linked back their source packages
since npm lacks official mechanisms for forking packages.

The phenomenon of shrinkwrapped clones represents a
challenge to the hygiene of package repositories; in particular,
it contributes to the problem of confusability of npm packages.
npm contains more than 1.7 million packages, and while the
ecosystem provides a robust search interface, it provides no
assistance in choosing the most appropriate package to pro-
vide a desired functionality. Previous work on typosquatting
attacks [39] suggests that it is fairly common for developers
to install a package different from the one they intended.

Clones exacerbate these problems. Most obviously, a clone
package causes confusion, as clone packages are oftentimes
named similarly to the original package, and inmany occasions
they also reuse their metadata (such as the package descrip-
tion). Users of the package repository may thus misattribute
the provenance of a package, giving credit to the wrong de-
veloper for creating a particular codebase. However, we also
find that a non-trivial number of clone packages are rarely
maintained and fail to include updates to the package being
copied. The users of the clone are thereby locked into older
versions of functionality and, crucially, forgo any bug fixes
that are applied to the package being cloned. In effect, the users
of the clone are subject to vulnerabilities which have already
been patched. Moreover, clones can exist deep within pack-
age dependency trees, which means that installing a package
that (transitively) depends on a clone also implicitly installs

1We choose npm as our repository of interest because it is the largest and most
popular.

https://doi.org/10.1145/3510003.3510168
https://doi.org/10.1145/3510003.3510168
https://doi.org/10.1145/3510003.3510168

ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA Elizabeth Wyss, Lorenzo De Carli, and Drew Davidson

that clone via npm’s automated dependency resolution mech-
anism. For these reasons, a user may be unaware that they
have downloaded a clone, wherein vulnerabilty disclosures
fail to propagate, because there is no facility in npm to link a
clone to the package that has been cloned.

In this work, we study the scope and impact of shrink-
wrapped clones. Detecting shrinkwrapped clones presents
several challenges. First, there is no agreed-upon standard on
what extent of code-reuse constitutes a code clone [21, 22,
25, 29, 30, 38]. Second, close clones - i.e., clones that make
changes to the original package - exhibit local but complex
syntactic modifications (e.g. translating CommonJS syntax to
ES6). Thus, they are incompatible with many existing clone
detectors, which focus on the insertion and deletion of state-
ments [25, 29] (we further review related work in Section 6).
Finally, in order to determine whether a package clones any
other, the package must be compared to the entirety of npm,
which leaves limited to no time for any form of code analysis.
We address these challenges with a parametrizable heuris-
tic designed for pairwise package comparison. The heuristic
defines shrinkwrapped clones via a tunable file-granularity
syntactic distance threshold. With this approach, any two
packages whose distance is below the threshold are consid-
ered close clones, or identical clones if the distance equals one2
(we discuss strategies for tuning the threshold in Section 3).
The heuristic only considers whole-file hashes and eschews
tokenization and any form of lexical analysis, making it com-
putationally efficient - a package can be matched for clones
against the entirety of npm in a matter of seconds. Based on
this heuristic, we propose unwrapper: a mechanism to detect
when a package is a clone of another more popular package.

Explicitly linking a clone to the package from which it came
has several benefits. It enhances the provenance information
of packages, restoring the connection to the originators of the
package. Furthermore, it allows users to avoid clone packages,
preventing them from unwittingly using a less-maintained
copy of a codebase and directing them to the original. Finally,
users can be made aware of any vulnerabilities that may have
been reported in the original version of the package. Thus, our
approach constitutes a turnkey solution, suitable for operating
over the package repository with no manual intervention.

Overall, our work makes the following contributions:
• We identify and characterize the problem of shrink-
wrapped clones in the npm package repository.

• We propose unwrapper, a technique to check when a
package is a shrinkwrapped clone of any other package.

• We evaluate unwrapper and find that it is effective in
practice to identify shrinkwrapped clones with reason-
able time and space overhead (the majority of packages
can be compared to the existing 20M package set for
clones in 72.85 seconds using off-the-shelf hardware).

• We report our findings based on the analysis of a subset
of npm. Our analyses identified up to 6,292 clones. Up
to 2159 relied on vulnerable, outdated dependencies.
Furthermore, up to 207 clones directly incorporated

2npm packages contain a unique-per-packagemetadata file which limits package
distance to a minimum of 1.

vulnerabilities which were not discoverable via the npm
audit process.

Additionally, we publicly release our code and supporting
data, freely distributed via the Open Science Framework [5]:

https://osf.io/jfk3n/?view_only=6f930d1de870
4a26903540f75982bffb

The remainder of our paper is structured as follows. Sec-
tion 2 reviews background material. Section 3 provides tech-
nical details of the clone detection methodology. We describe
results of our experiments in Section 4, and discuss our find-
ings in Section 5. We review related work in Section 6, and
conclude in Section 7.

2 BACKGROUND

2.1 npm

npm consists of a package manager and a repository for soft-
ware developed for the Node.js environment. npm is the largest
online language-based software ecosystem [41]; it contains
millions of publicly available packages and weekly download
counts range from hundreds of millions to billions. Similar to
other package management tools, the primary goal of npm
is to simplify third-party code reuse by managing software
dependencies. When a user issues the npm install command,
the front-end constructs a tree of all required dependencies
and then installs each package within the tree without the
need for user involvement. npm allows packages to be down-
loaded freely (either directly or as dependencies of another
package), and allows new packages to be uploaded without
any external moderation. However, the maintainers have a
security teamwhose goal is to detect and remove explicitly ma-
licious packages, either via internal analysis or by collecting
external reports [31].

2.2 Versioning and Forking

Development in npm is characterized by fast-evolving code
and extensive code reuse via import of external dependencies,
even for trivial functionality [6]. To help prevent breakage in a
package due to the evolution of its dependencies, npm automat-
ically freezes dependencies within a compatible version range,
and further allows developers to specify exact dependency
versions via a process known as shrinkwrapping. Using this
feature guarantees that dependencies will always be fetched
at the version they were originally imported. However, npm
offers no official support for developers wishing to modify a
third-party package prior to importing it. In other words, there
is no explicit concept of a fork as in other ecosystems such as
GitHub [2]. As such, developers seeking to modify an existing
package must download, alter, and then republish the modified
package under a new name. For this reason, modified packages
on npm are difficult to detect; to make matters worse, when a
package is manually duplicated, information attached to that
package is lost. Critically, this lost information includes both
the original version history and any known vulnerabilities as-
sociated to the original package (typically retrievable via npm
audit). Thus, the act of duplicating a package implicitly hides

https://osf.io/jfk3n/?view_only=6f930d1de8704a26903540f75982bffb
https://osf.io/jfk3n/?view_only=6f930d1de8704a26903540f75982bffb

What the Fork? Finding Hidden Code Clones in npm ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA

opts.log.http(
'fetch',
`${method.toUpperCase()} ${res.status}
${res.url} ${elapsedTime}ms${attemptStr}
${cacheStr}`

)

Listing 1: Vulnerable code snippet present in unpatched

versions of npm-registry-fetch and in the most up-to-

date version of @evocateur/npm-registry-fetch

let urlStr
try {

const { URL } = require('url')
const url = new URL(res.url)
if (url.password)

url.password = '***'

urlStr = url.toString()
} catch (er) {

urlStr = res.url
}

opts.log.http(
'fetch',
`${method.toUpperCase()} ${res.status}
${urlStr} ${elapsedTime}ms${attemptStr}
${cacheStr}`

)

Listing 2: Nonvulnerable code snippet present in

patched versions of npm-registry-fetch

important information including authorship, whether more
recent versions of the same package exist, and any known
security issues.

2.3 Shrinkwrapped Clones

The goals of our work are (i) to measure how frequently de-
velopers duplicate—and potentially modify— third-party pack-
ages into one of their packages; (ii) to determine whether this
process can have negative security implications; and (iii) to
devise techniques for identifying the “missing link” between
duplicate npm packages and the original package. One ques-
tion we do not investigate is why developers perform such
duplication; as this would require making inferences or as-
sumptions about developers’ intentions and goals. However,
we did observe that in many cases duplicates are exact copies
of the original package; therefore, including a duplicate ac-
complishes the same result as shrinkwrapping the original
package at the duplicated version. It is for this reason that we
refer to these packages as shrinkwrapped clones. An example
includes the package redux-form-v6, which is an exact copy
of redux-form at version 6.4.3.

While we use shrinkwrapped clones as an umbrella term for
all duplicates, we also note that in some cases developers make

Metric npm

Total Unique Packages 1,716,061
Total Unique Package Versions 20,190,452
Total Size (Compressed) 13 TB

Table 1: Statistics related to the size of the npm package

repository

small functional changes to duplicate code prior to republish-
ing. A manual review of such cases reveal that in the large
majority of cases the developer intends to remove function-
ality (as in the case of @cypress/listr-verbose-renderer,
which is near-identical to listr-verbose-renderer but dis-
ables logging) or to implement programmer preferences (@xtuc/
ieee754 is a clone of iee754 but reconstructed using Com-
monJS syntax rather than ES2015 syntax).

The observation above warrants further analysis: to what
extent should modifications made to a package cause a dupli-
cate to not be considered a clone? Rather than addressing the
question above—which cannot be answered quantitatively—
we empirically define a differencemetric and a threshold below
which two packages are labeled as clones. We provide details
on metric and threshold in Section 3, and further discuss our
findings in Section 4.

2.4 Vulnerabilities Introduced by Clones

As described in Section 1, shrinkwrapped clones can carry
latent vulnerabilities from the time of their creation. One such
example is present in the @evocateur/npm-registry-fetch
package, which is a clone of the npm-registry-fetch pack-
age. Versions of npm-registry-fetch prior to version 4.0.5
contain a sensitive data exposure vulnerability in which pri-
vate information such as password values are written to stdout
and log files [?]. The vulnerable code snippet is depicted in
Listing 1, and the relevant patched code snippet that fixes
the vulnerability is depicted in Listing 2. @evocateur/npm-
registry-fetch copied the codebase of npm-registry-fetch
at version 3.9.1, which contains the known sensitive data ex-
posure vulnerability. Although @evocateur/npm-registry-
fetch has received two minor updates since it was first pub-
lished, none of these updates fix the sensitive data exposure
vulnerability that still remains in the package’s codebase.

2.5 Scale of npm Analysis

Table 1 describes the total size of npm in terms of packages,
versions, and storage. It is a nontrivial problem to individually
analyze millions of package versions, accounting for over 13
terabytes of package data in total. As such, we focus our efforts
on caching metadata and applying heuristics to analyze such
metadata at scale. This metadata-based approach is consis-
tent with ongoing industry efforts to analyze large-scale open
source package repositories such as the Package Feeds [4]
and Kritis [3] projects. We believe that our metadata-based
approach is efficient and sufficient in detecting shrinkwrapped
clones; we describe our approach in detail in Section 3, and

ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA Elizabeth Wyss, Lorenzo De Carli, and Drew Davidson

Clone Prefilter

Clone Detector

npm
listener

NPM package
database
(external)

npm
crawler

Fingerprint
dataset

npm interface

1

2

3

Figure 1: Workflow of unwrapper from collection of

packages to classification

we provide justification for the effectiveness of this approach
in Section 4.

3 UNWRAPPER DESIGN

Based on our observations described in Section 2, we design
unwrapper to identify instances of shrinkwrapped clones
that exist within npm. In this section, we describe our goals
for this tool and how our design meets those goals.

3.1 unwrapper Assumptions and Goals

At a high level, we are interested in identifying instances of
packages that are similar to another known package. Fur-
thermore, we also intend to propose practical techniques to
identify these objects at ecosystem scale.We assume that while
a developer may fail to explicitly acknowledge the source of a
shrinkwrapped clone, no attempt is made to obfuscate similar-
ity at the code level. This assumption is based on the lack of
incentive to do so; most npm package code is provided under
permissive licenses which allow reuse [24], and there is no
direct negative consequences for code duplication.

We envision unwrapper being used to retroactively detect
shrinkwrapped clones that are already present in npm, restor-
ing the provenance of the package code. Using unwrapper
in this way allows users of npm to detect whether packages
that they depend on are shrinkwrapped clones and to suggest
the original package that they may prefer. We also envision
unwrapper being used to proactively detect if a new package
being added to npm is a clone at the time it is published.

The popularity of npm makes analysis challenging – the
number of existing packages already in the repository is sig-
nificant. Furthermore, we observe that a key problem with
shrinkwrapped clones is that they are clones of non-current
versions of other packages. Thus, unwrapper needs to match

any package of interest against the entirety of the npm ecosys-
tem, including all versions of all packages. Additionally, ap-
proximately 850 new packages are uploaded daily to npm [15].
unwrapper must remain able to process all new packages
without slowing down their deployment.

3.2 Design Overview

Based on the discussion above, we design unwrapper with
the goal of being able to scale with the growth of a repository;
it must be relatively fast and lightweight in its analysis and be
capable of running in an environment separate from the repos-
itory itself. The overall unwrapper pipeline is depicted in
Figure 1. Packages are initially acquired using an npm crawler
and listener (module 1 in Figure 1). The task of determining
whether a package is a clone of another is primarily carried by
the Clone Detector component (module 3). Our approach to
shrinkwrapped clone detection leverages the identification of
differences between directory trees of candidate original-clone
pairs–where each file node is labeled by its name and check-
sum, and no other information about the file is considered.
This approach does not require performing any code analysis
other than checksum computation and is consistent with the
assumption of non-adversarial settings.

However, we found that while this approach is efficient,
it is too time-intensive for live analysis of new package up-
loads. Thus, we augmented it with a prefiltering step (module
2). This prefilter sits between the package dataset and the
clone detector, and quickly weeds out packages unlikely to
be shrinkwrapped clones. In the following, we describe each
component in detail.

3.3 npm Interface

The frontend of unwrapper interfaces with npm to collect
information from every version of every package that is cur-
rently available and analyzes new packages in a timely fash-
ion. We accomplished package collection by implementing
an npm crawler which downloads and stores each package
version locally. This approach allows packages to be accessed
rapidly and without burdening the repository with analysis
requests. Since changes to packages are necessarily made as
new versions, the package database remains accurate for all
existing package versions and only needs to be updated with
new versions as they are added to the repository. To support
updates, we implement an npm listener that triggers when-
ever a new package – or a new version of an existing package
– is added to the repository. New entries are automatically
added to the local package database and queued for detection
as shrinkwrapped clones. The listener uses the npm webhook
system and is automatically notified of updates without the
need for polling. Using this system means that new packages
and versions are added to the analysis queue in real-time.

3.4 Clone Detector

This component takes in a shrinkwrapped clone package can-
didate pair, and evaluates their similarity by computing a
domain-specific pairwise difference metric which we term

What the Fork? Finding Hidden Code Clones in npm ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA

Candidate
Clone

Package 𝑃

Checksum
computation

𝑑-score

Calculation

𝑑P,Q = 𝐼 + 2(𝑈P +𝑈Q) ≤ TD?

Clone
Identification

Candidate
Original

Package 𝑄

Checksum
computation

Figure 2: Operation of the Clone Detector

𝑑-score. More precisely, the difference between two packages
𝑃 and 𝑄 is defined as:

𝑑𝑃,𝑄 = 𝐼 + 2(𝑈𝑃 +𝑈𝑄)
where 𝐼 is the number of identically named files with dif-

ferent checksums amongst both packages, and 𝑈𝑃 ,𝑈𝑄 are the
number of files unique (name-wise) to only one of the pack-
ages. As such, packages with a lower difference score are more
similar than packages with a higher difference score, and pack-
ages with a difference score of one are semantically identical,
differing only in their package.json metadata file which is guar-
anteed to be unique to each package. A candidate package is
considered to be a clone of the input package if their pairwise
𝑑-score is less than a given threshold 𝑇𝐷 across any version
of either package. We present the design of our clone detector
in Figure 2.

3.4.1 Difference Threshold. We determine an appropriate dif-
ference threshold by manually building an initial dataset of
clone packages. To do so, we analyze the extent to which repos-
itory URLs3 are duplicated across the 10,000 most popular npm
packages. The initial analysis returned thousands of hits; the
large majority of such hits are caused by packages which are
sub-modules to other packages (e.g. the lodash._getarray
package is a sub-module of the lodash package which exports
the getArray function from lodash). To filter out these sub-
module packages, we removed packages that shared maintain-
ers with the packages that duplicated their repository URLs.
Applying this filter left 38 packages, and manual review of
these packages empirically showed all of them to contain code-
bases that were initially copied over from the packages that
their duplicated repository URLs originate from.

We then examined the distribution of 𝑑-scores within the
sample of 38 packages (plotted in Figure 3). 34 out of 38 clones
have 𝑑-scores at or below 11. Conversely, analysis of a set of
package pairs which do not include clones reveal 𝑑-scores in
the tens or hundreds. The four identified clone packages with
𝑑-scores greater than 11 all made substantial changes to the
core functionality of the packages that they cloned and had
𝑑-scores no less than 17. Thus, to minimize false positives, we

3npm packages can optionally express a source repository URL, such as a GitHub
page, as metadata (we further analyze the effectiveness of source repository
URL duplication as a clone detection signal in Section 4.3).

1 2 3 4 5 6 7 8 9 10 11 17 21+
Difference Score

0

1

2

3

4

5

6

Fr
eq

ue
nc

y
of

 O
cc

ur
en

ce

Histogram of Difference Scores Across Sample of 38 Clone Packages

Figure 3: Distribution of difference scores across a sam-

ple of 38 manually identified clone packages

Clone File Tree Size 𝑑-score Threshold

1 1
2 2
3 4
4 6
5 8
6 10
7+ 11

Table 2: 𝑑-score threshold by clone file tree size

empirically choose 11 as the 𝑑-score threshold below which
two packages are labeled as shrinkwrapped clones.

This 𝑑-score threshold is further tightened in cases where
packages have very few files as to prevent small packages
from being falsely over-reported as shrinkwrapped clones of
other small packages. Table 2 depicts our determined 𝑑-score
threshold as a function of file tree size. These thresholds were
selected empirically by measuring the 𝑑-scores in cases where
small packages were falsely identified as shrinkwrapped clones
of other small packages.

3.5 Clone Prefilter

Our design goal of supporting real-time detection of shrink-
wrapped clones requires a scalable analysis that accounts for
the size and rapid growth of npm. Handling the scale of npm
is a technical challenge in its own right. Our core similarity
metric requires a pairwise comparison against each package
version, of which there are over 20 million at the time of this
writing. In recognition of this scalability challenge, we imple-
ment a clone prefilter mechanism which rapidly determines if
a package is a candidate for pairwise similarity metric check-
ing.

The first design goal for the prefilter is to speed up match-
ing against the pre-existing package dataset. Furthermore, it
should eliminate packages from consideration that are unlikely
to be marked as clones during the full clone detection pass.

ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA Elizabeth Wyss, Lorenzo De Carli, and Drew Davidson

In-memory
fingerprint

dataset

New
package C

Fingerprint
computation

Fingerprint
FC

Fingerprint
matching

1. |#FC - #FP| < TS?
2. #(FC ∩ FP) / #FC > TO?

Fingerprint
FP of known

package
Matching
outcome

Figure 4: Functioning of the Clone Prefilter

In service of speeding up matching in the prefilter, we aim
to precompute as much information as possible about known
packages in the repository. However, given the scale of the
npm ecosystem, it is also necessary to ensure that: (i) precom-
puting the necessary information for the entire set of existing
packages does not become a significant bottleneck; and (ii)
precomputed information has a memory footprint compati-
ble with off-the-shelf hardware. We present a prefilter design
meeting those conditions below; the approach is also depicted
in Figure 4.

Like the clone detector, the prefilter uses folder structure
similarity to identify potential clones; however, the similarity
metric is purely based on file names (i.e. it uses no information
concerning file content). Specifically, a package 𝑃 is repre-
sented as a fingerprint 𝐹𝑃 defined as 𝐹𝑃 = {ℎ(𝑝1), ..., ℎ(𝑝𝑛)},
where each of 𝑝1, ..., 𝑝𝑛 is a package file path and ℎ(𝑝) =

𝑠ℎ𝑎256(𝑝)1,32, i.e., the 32-bit prefix of the sha256 hash of the
path4. Computing fingerprints for 20M npm packages takes
29.4 hours. The resulting fingerprint set requires 80.2 GB of
in-memory storage. Therefore, this design meets our practi-
cality requirements above.

Given a set of package fingerprints, the prefilter determines
whether a target package𝐶 is a candidate clone for an existing
package 𝑃 as follows. First, it computes |#𝐹𝐶 − #𝐹𝑃 |, i.e., the
difference in number of files in each packages. If the result is
above a threshold𝑇𝑆 , the candidate is dropped. Second, it com-
putes #(𝐹𝐶 ∩ 𝐹𝑃)/#𝐹𝐶 , i.e., the overlap between fingerprints
normalized by the number of files in the candidate clone. If
the result is below a threshold 𝑇𝑂 , the candidate is dropped.
Additionally, any packages that share maintainers with pack-
age𝐶 are dropped (this is to prevent submodule packages and
maintainer-intended duplicate packages from falsely being
identified as clones), and further, if package 𝐶 contains no
source code files, it is excluded from consideration (this is
to prevent trivial packages with no code from falsely being
identified as clones); otherwise, the candidate is forwarded to
the clone detector as depicted in Figure 1. Based on ROC curve
analysis, we found that setting𝑇𝑆 = 2 and𝑇𝑂 = 0.8 results in a
good balance of minimizing false negatives and false positives.
In a production deployment, these parameters can be further
tuned to satisfy the desired ROC characteristic of the prefilter.

4We use this hash function for convenience in our Python prototype; the func-
tioning of the prefilter is largely orthogonal to the choice of function.

Table 3.1 Prefilter Performance

Metric Min Time Max Time Avg Time

Add a Package
to Prefilter 0.566 ms 442 ms 5.24 ms
Test a Package
Against Prefilter 54.22 s 203.79 s 70.81 s

Table 3.2 Clone Detector Performance

Metric Min Time Max Time Avg Time

First Test 174 ms 5,820 ms 319 ms
Additional Tests 168 ms 3,840 ms 255 ms

Table 3: Performance metrics related to our shrink-

wrapped clone detector and prefilter

The rationale for choosing this particular combination of
tests is based on the goal of approximating the 𝑑-score compu-
tation, which identifies packages as similar if they have most
of their files in common. At the same time, the prefilter ignores
file content, resulting in a vastly more efficient computation.

4 EVALUATION

To evaluate the practicality and effectiveness of our shrink-
wrapped clones detection pipeline, we focus on answering
three research questions:

• RQ1: Is the pipeline’s performance satisfactory in gen-
erating prefilter fingerprints for the entire npm package
repository?

• RQ2: Does the pipeline offer real-time performance
capable of scaling with the growth rate of npm?

• RQ3: Is the pipeline effective in discriminating shrink-
wrapped clones from novel packages?

In the remainder of this section, we detail our methodology
used to answer these research questions, we discuss our results,
and we present an analysis of detected clone packages.

4.1 Performance

We measure the minimum, maximum, and average time that
our shrinkwrapped clone detector and prefilter require to per-
form their operations, and we present the measured perfor-
mance metrics in Table 3. All measurements are collected
across 1,000 independent trials on a CentOS Linux 8 server
with an Intel Xeon Gold processor operating at 2.1 GHz.

The rest of this subsection discusses the online and offline
performance of our shrinkwrapped clone detection pipeline
as laid out in RQ1 and RQ2.
Prefilter FingerprintGeneration: Since shrinkwrapped clone
detection relies on information about the file structure of ev-
ery version of every npm package, our pipeline must be able
to retrofit the entire npm package repository with reasonable
performance. From analyzing every package publicly available
on npm, we find that there exists 20,190,452 unique versions of
packages on npm. All of these unique package versions must
be added to our prefilter’s fingerprint database in order for

What the Fork? Finding Hidden Code Clones in npm ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA

our shrinkwrapped clone detection pipeline to function. Ta-
ble 3.1, row 3, details the time to add a package to the prefilter.
Given that our prefilter can add a single package version to its
fingerprint database in an average time of 5.24 ms, generating
a fingerprint database that contains every unique package ver-
sion across npm requires 29.39 hours of CPU time. To lessen
the required time, this process of adding packages to our pre-
filter’s fingerprint database can be parallelized across multiple
CPU cores to reduce the required time to a mere fraction of
29.39 hours. With parallelization in mind, we believe that this
performance in generating prefilter fingerprints for the entire
npm package repository is reasonable since retroactively gen-
erating the prefilter’s fingerprint database is a process that
only needs to be done once.
Real-time Clone Detection: Because of npm’s rapid growth
in packages per day, real-time shrinkwrapped clone detection
requires performance that scales with the growth rate of npm.
At the time of writing, npm is growing at rate of just over
850 new packages per day [15]. In order to keep up with a
new package uploaded to npm, our pipeline requires that the
new package is added to the prefilter and tested against the
prefilter (ref. to Table 3.1), and then any positives reported by
the prefilter must be verified with the clone detector. Table 3.2
details the time for the clone detector to determine whether
a package is a clone of another. Since a candidate clone is
typically matched against multiple potential matches from the
prefilter, we report analysis times both for the first test and
subsequent ones. Subsequent tests are typically faster as file
hashes for the candidate clone need only to be computed once.

Given the performance results listed in Table 3, our shrink-
wrapped clone detection pipeline can perform its required
operations on just a single CPU core within 1/850th of a day
as long as the prefilter reports fewer than 122 positives on
average. In practice, we find that the majority of packages can
be tested against our entire shrinkwrapped clone detection
pipelinewithin 72.85 seconds.We note that our shrinkwrapped
clone detection process is highly parallelizable and could eas-
ily utilize multiple CPU cores if the growth rate of npm or the
total positives reported by the prefilter were to increase. As
such, we consider the real-time performance of our pipeline to
be more than reasonable with respect to the scale and growth
rate of npm.

4.2 Effectiveness of Clone Detection

We now analyze the effectiveness of our tools in detecting
shrinkwrapped clones as described in RQ3.
Clone Detector: Due to the inherent lack of ground truth
regarding whether a package is a clone of another package,
we rely on random sampling and manual vetting to verify the
effectiveness of our shrinkwrapped clone detector. Our true
positive verification process is as follows: We first collect a
random sample of packages that our clone detector positively
identifies as (non-identical) clones of another package. Then,
both packages in the identified original-clone relationship are
manually examined in terms of their file tree structures and
file contents. Lastly, we mark identified clone packages as false
positives if their clone relationship cannot clearly be identified

0 1000 2000 3000 4000 5000
Prefilter False Positives

0.0

0.2

0.4

0.6

0.8

1.0

Cu
m

ul
at

iv
e

Pe
rc

en
t o

f T
es

te
d

Pa
ck

ag
es

CDF of Prefilter False Positives

Figure 5: Distribution of prefilter false positives across

all tested clone packages

from their package files. In a random sample of one hundred
packages that our detector reports as clones, We find a total
of 94 true positives and 6 false positives.

We find that the false positives reported by our clone detec-
tor share a set of common properties that increase the difficulty
of clone detection. They are all small packages with limited
functionality, they contain very few files, and they have short
and nondescriptive names–such as copy, merge, and capitalize.
As such, these packages are similar to other small packages
that provide independent implementations of similar function-
ality, and our clone detector can misreport them as clones.
Despite the existence of these few false positives, we believe
that our clone detector’s precision of 94% is satisfactory in
accurately detecting shrinkwrapped clones.
Prefilter: We utilize clone packages identified by our detector
as the basis for ground truth in evaluating the effectiveness of
our prefilter. We randomly sample 1,000 identified clone pack-
ages, test them against our prefilter, and then record the total
number and kind of positives reported by the prefilter. From
this experiment, we find that the recall of our prefilter (i.e., the
percentage of correctly identified known clone relationships)
is 95.3%. We present the cumulative distribution function of
observed false positives identified by our prefilter in Figure 5.
From this distribution, we find that the median number of
false positives reported by our prefilter is 8, although there
exists a small portion of input packages that generate false
positive quantities in the thousands. This is consistent with
the prefilter design goal of maximizing recall at the cost of
precision. Given that the prefilter is merely the first step in our
shrinkwrapped clone detection pipeline which involves veri-
fying positives using our clone detector, we believe that the
quality and quantity of reported positives is quite reasonable,
especially with the parallelizable performance of our clone
detector.

ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA Elizabeth Wyss, Lorenzo De Carli, and Drew Davidson

0 250 350 500 750 1000
Clone Package Weekly Downloads

0.0

0.2

0.4

0.6

0.8

1.0

Cu
m

ul
at

iv
e

Pe
rc

en
t o

f C
lo

ne
 P

ac
ka

ge
s

CDF of Clone Package Weekly Downloads

Figure 6: Distribution of total weekly downloads over

all identified clone packages. The 6.7% of clone pack-

ages right of the red line have more than 350 weekly

downloads and are likely installed by real users

4.3 Analysis of Clone Packages

Lastly, we analyze packages that our pipeline identifies as
clones in order to quantify and categorize the posture of shrink-
wrapped clones across the npm package ecosystem.
Quantifying Total Clones Across the npm Registry: To
quantify how many clones potentially exist within the entire
npm package registry, we collect a random sample of 6,000
npm packages and test our shrinkwrapped clone detection
pipeline against those packages to estimate an upper bound
of how many clones exist in the entirety of the npm package
registry. Out of the 6,000 randomly sampled packages, our
detection pipeline identifies 626, or roughly 10.4% of analyzed
packages, to be clones of another npm package. By extrapolat-
ing this ratio to the entire npm package ecosystem (1,716,061
packages), we estimate that as many as 178,470 npm packages
could be shrinkwrapped clones of other packages or be cloned
by other packages. This sheer quantity of packages only am-
plifies the impact and dangers imposed by the existence of
shrinkwrapped clones.

We further analyze the 626 packages positively identified
as shrinkwrapped clones by our detection pipeline to quantify
the extent to which name-similar clones likely exist within
the npm package ecosystem. Clones that are similar in name
to the packages that they clone pose a more serious threat
to the health of npm given that they lead to much greater
confusability in package provenance. We find that 175 out of
the 626 identified shrinkwrapped clones, or approximately 28%,
have package names such that the cloned package’s name is a
substring of the clone package’s name. While there certainly
exists shrinkwrapped clones with dissimilar names, we believe
that focusing our analysis on the cloneswith themost potential
to cause harm is the right direction for this work.
Identical Clones and Close Clones: In this analysis, we
distinguish between two distinct subsets of clones that our
pipeline detects: identical clones and close clones. Identical

Table 4.1 Clone Dependents on npm

Dependent Type Identical (348) Close (5,944)

Total Dependents 397 6,496
Dependents by
Same Maintainers 160 2,588
Dependents by
Different Maintainers 237 3,908

Table 4.2 Clone Repository URLs

URL Type Identical (348) Close (5,944)

Copied URL 210 3,153
Unique URL 121 2,602
No URL 17 189

Table 4: Statistics categorizing identical clones and close

clones

clones are identical in contents–character by character–to
a specific version of another package (although they may dif-
fer in metadata). In contrast, close clones make some sort of
modification or extension to the packages that they clone.
From analyzing similarly named packages across the entire
npm package registry, our shrinkwrapped clones detection
pipeline identifies 348 identical clones and 5,944 close clones
that are publicly available on npm.
Clone Popularity: The relative popularity of packages can
be inferred from npm since the registry publicly provides the
weekly download counts of all packages; Figure 6 depicts the
distribution of weekly download counts across all identified
clone packages. However, weekly download counts do not
accurately represent the quantity of real users of a package
since npm mirrors and bots routinely download packages for
storage and analysis. The npm development team estimates
that packages with fewer than fifty downloads per day are
likely never installed by a real user [?]. From this metric of
fifty downloads per day, we identify clones that have weekly
download counts greater than 350 as likely installed by real
users, and clones that have fewer than 350 weekly downloads
as low-impact packages that are likely never installed by real
users. We find that 21 out of the identified 348 identical clones
and 399 out of the identified 5,944 close clones have more than
350 weekly downloads (ranging from a few hundred to more
than ten million) and are very likely to impact real users.
Clone Dependents: Due to package dependencies across
npm, it is possible that packages are indirectly installed and
utilized as part of other packages. As such, we analyze the ex-
tent to which packages across npm depend on identified clone
packages to further quantify the use of shrinkwrapped clones.
Table 4.1 details npm packages that depend on identified clone
packages.We find that a total of 397 packages depend on one or
more of the identified 348 identical clones, and a total of 6,496
packages depend on one or more of the identified 5,944 close
clones. Upon further examination, we find that 160 out of the
397 identical clone dependents are packages that are addition-
ally developed by the same maintainers as the identical clone,

What the Fork? Finding Hidden Code Clones in npm ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA

Table 5 Clone Vulnerability & Popularity

Clone Type Identical (348) Close (5,944)

Likely Downloaded 21 399
More Vulnerable 62 2,304
Likely Downloaded AND More Vulnerable 4 148
More Vulnerable AND Vulnerabilities Undetected by Audit 17 190
Likely Downloaded AND More Vulnerable AND Vulnerabilities Undetected by Audit 0 8

Table 5: Measured popularity and vulnerability statistics of identical clones and close clones

0 10 20 30 40 50
Clone Package Updates

0.0

0.2

0.4

0.6

0.8

1.0

Cu
m

ul
at

iv
e

Pe
rc

en
t o

f C
lo

ne
 P

ac
ka

ge
s

CDF of Clone Package Updates

Figure 7: Distribution of total package updates over all

identified clone packages

and 2,588 out of the 6,496 close clone dependents are packages
that are also developed by the same maintainers as the close
clone. This tendency for package maintainers to utilize their
own shrinkwrapped clone packages as dependencies in addi-
tional packages that they develop could suggest one reason as
to why package maintainers create clone packages–they in-
tend to use their functionality for development purposes. Due
to the existence of a large quantity of shrinkwrapped clone
dependents, the total impact of clone packages is increased,
since clone packages are installed unknowingly whenever a
user installs a package that depends on a clone.
Clone Maintenance: Packages that are rarely or never main-
tained pose issues of health to the npm package ecosystem
because it is less likely that their bugs and security vulnerabili-
ties are ever addressed.We examine the update history of clone
packages to determine if these packages are well-maintained
or published yet forgotten. Figure 7 illustrates the distribution
of total package updates across all identified clone packages.
We find that 209 out of the identified 348 identical clones and
2,744 out of the identified 5,944 close clones have never re-
ceived a single package update. This lack of maintenance poses
a serious threat to the health of the npm registry.
Latent Vulnerabilities in Clones: The greatest danger that
shrinkwrapped clones pose is that they can contain old vul-
nerabilities with known exploits that used to be present in
the packages that they clone. We analyze the extent to which

clones contain latent vulnerabilities by scanning the npm ad-
visory database for vulnerabilities in the clone’s dependencies,
in the relevant version of the cloned package, and in the clone
itself. We find that 62 out of the identified 348 identical clones
and 2,304 out of the identified 5,944 close clones contain vul-
nerabilities that are not present in the most up-to-date version
of the cloned package. Most of the identified vulnerabilities
are located in outdated versions of clone dependencies, and
these kinds of vulnerabilities could be resolved if a user exe-
cutes an npm audit to fix known vulnerabilities within their
installed packages. However, vulnerabilities that exist directly
in the code of a cloned package version will also exist in the
code of the corresponding clone, and even an npm audit can-
not detect these vulnerabilities since the npm frontend lacks
awareness of clone relationships. We find that 17 out of the 62
more vulnerable identical clones and 190 out of the 2,304 more
vulnerable close clones potentially contain these kinds of la-
tent vulnerabilities that are undetectable by standard auditing
procedure.

Because it is possible that a close clone package maintainer
could independently discover and fix a vulnerability copied
over from a cloned package, we randomly sample 20 of the 190
close clones containing potentially unreported vulnerabilities,
and we manually verify whether the vulnerability found in the
cloned package is still present in the clone package. We find
that in 18 cases, the vulnerability is present in the clone and
undetected by an npm audit, and we find that in 2 cases, the
package identified as a clone was falsely identified as a clone.
Hence, these previously undetected vulnerabilities are quite
prevalent, and even a security-conscious npm user cannot fix
them with the auditing tools provided by npm.

We also examine the intersection between clone package
popularity and clone package vulnerabilities to determine
whether real users are likely impacted by these vulnerabilities.
These intersecting subsets of identified clones are described
in Table 5. We find that 4 out of the 21 identical clones with
more than 350 weekly downloads and 148 out of the 399 close
clones with more than 350 weekly downloads contain latent
vulnerabilities not present in the most up-to-date version of
the cloned package. We further discovered that 8 of the 148
vulnerable close clones likely downloaded by real users also
contain vulnerabilities that are not detected by an npm audit,
and one of these 8 clones, @evocateur/npm-registry-fetch,
has more than one million weekly downloads. As such, we
conclude that clone vulnerabilities pose an imminent threat
to the npm package ecosystem because they are exposing real

ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA Elizabeth Wyss, Lorenzo De Carli, and Drew Davidson

users to known exploits of old vulnerabilities and are evading
reasonable detection by security-conscious users.
Clone Repositories: In npm, package metadata often con-
tains a repository URL pointing to where the package code
resides, typically in the form of a GitHub URL. We analyze
whether identified clones copy the repository URL of the pack-
age that they clone to determine if repository URLs could
serve as a sufficient signal in detecting shrinkwrapped clones.
The breakdown of repository URLs across identified clone
packages is detailed in Table 4.2. Because identical clones can
define their own distinct metadata, we find that out of the
identified 348 identical clones, 210 copy the repository URL of
the cloned package, 121 have a unique repository URL, and 17
do not provide a repository URL. Out of the 5,944 identified
close clones, we find that 3,153 copy the repository URL of the
cloned package, 2,602 have a unique repository URL, and 189
do not provide a repository URL. We compare these URL ratios
to the npm registry as a whole, where 65% of packages provide
a repository URL and 35% of packages do not. Hence, package
repository URLs can provide some good insight into validating
package clone relationships, but they are not sufficient as a
clone detection signal.

5 DISCUSSION

5.1 Disadvantages and Benefits of Clones

The existence of identical clones offers no benefit to the npm
ecosystem since npm already allows shrinkwrapping depen-
dencies, where specific versions of packages can be specified
as dependencies. Identical clones simply introduce more po-
tentially vulnerable and less-documented packages to npm,
and in particular, identical clones offer no functional benefit
over using a shrinkwrapped version of the cloned package.

The existence of close clones offers some benefit to de-
velopers requiring modified packages, but npm lacks direct
support for this, such as through forking packages. This leads
to clones on npm being poorly documented, prone to latent
vulnerabilities, and lacking maintenance.

In both cases, having a technique which can identify clones
can offer benefits. Creators of identical clones can be redi-
rected to use the npm shrinkwrap feature instead. Clones with
functional differences can be explicitly linked to their original
packages so that an auditing team discovering a vulnerability
in one package can check whether the same exists in the other.

5.2 Future Work

While this work focuses on the detection and classification of
shrinkwrapped clones, we identify several directions for fu-
ture work, most notably in mitigating the dangers that shrink-
wrapped clones pose.

Registry Integration of Forking. We note that registry sup-
port for forking packages and tracking fork relationships
would help to mitigate many of the ecosystem health con-
cerns introduced by shrinkwrapped clones. With explicitly
labeled fork relationships, package confusability would be re-
duced, the update history and authorship of fork packages

would be transparent, and vulnerabilities discovered in forked
packages would also be detectable in fork packages.

Forking integration could be implemented directly into npm
with the assistance of registry maintainers, or it could be im-
plemented independently in a mirror of the npm registry. The
greatest challenge posed in accomplishing this integration
is in manually retrofitting existing clone packages as official
forks. We believe that our clone detection pipeline, unwrap-
per, would aid greatly in this process, although it is still a
challenging problem of scale to tackle given the total size of
the npm package registry.

Clone Update Patching. We consider the implementation of
patching tools capable of applying security critical updates to
clone packages to be another worthwhile direction for future
work. With knowledge of clone relationships and critical up-
dates to cloned packages, code patches for old vulnerabilities
and bugs are identifiable. These patches can then be applied
to clone packages, thus resolving critical issues that have pre-
viously been fixed in their corresponding cloned packages.

The greatest challenge posed by this approach is that pro-
gramatically altering code, especially in highly dynamic pro-
gramming languages such as JavaScript, is notoriously difficult.
Although many patches applied to packages are very straight-
forward in nature, a patching tool will likely encounter many
patches that are difficult or impossible to programatically re-
solve. As such, we leave navigating this challenge as an avenue
for future work.

6 RELATEDWORK

Detection of Code Clones: There is a significant body of
work on the detection of code clones, i.e., instances where a
software is duplicated without maintaining clear attribution of
the original source code. Early efforts were based on extraction
of lexical features as fingerprints. Moss [37], by Schleimer et
al., is based on a winnowing algorithm to select small sections
of source code, which are then used as fingerprints. Many sim-
ilar approaches utilize n-grams to extract fingerprints. Smith
and Horwitz [38] propose a clone detection algorithm based
on the identification of least-frequent n-grams. Kim et al. [25]
use similarities in locality-disjoint n-grams for clone detec-
tion. Ishio et al. [21] propose a clone detection approach based
on identification of minimum-valued sets of n-gram hashes.
NIL [29], by Nakagawa et al., utilizes the longest common
subsequence of n-grams to detect clones with extensive modi-
fications.

Deckard [22], by Jiang et al., uses a novel AST clustering
algorithm for identification of similar code. CLEVER [30], by
Nayrolles and Hamou-Lhadj, detects clones based on simi-
larities within code blocks modified by commits in version
control systems. For a review of other similar works, we refer
the reader to Merlo et al. [9]. More recent work investigates
the application of modern machine learning techniques to the
problem [42, 45].

Many of the above techniques focus on clones that insert
and delete statements of code, yet within the domain of npm
we observe significant clones that exhibit complex syntactic
modifications that lie outside the models of existing clone

What the Fork? Finding Hidden Code Clones in npm ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA

detectors. In our work, we eschew code-based features for
metadata analysis due to these domain-specific challenges
and performance requirements in order to operate at scale.
Efficiently and effectively integrating the techniques above for
clone detection is an interesting direction for future work.
Provenance Inference: Our work specifically attempts to
address which package has been cloned, as opposed to simply
classifying a package as a clone. In this regard, our work has
some similarities to previous works that attempt to infer the
provenance of code. A related problem in provenance inference
is that of authorship attribution [23]: mapping a software
sample, either in binary [7, 12] or source code [10], to the
developer who created it. Our work explicitly considers the
effect of similarity on the security and stability of the language-
based ecosystem in which the clone appears. Furthermore,
authorship information alone is not sufficient to detect clones,
since an author may create numerous legitimate packages, and
many packages are the result of many distinct contributors.
Characterization of Package Repositories: Previous re-
search has investigated the structure and evolution of various
package repositories [19, 36, 43]. However, these works do not
specifically analyze or discuss their security. Unlike these past
works, our work seeks to characterize and address a specific
security-relevant phenomenon present in the npm package
repository (which we believe generalizes to other repositories
as well).
Security and Stability of PackageRepositories: A number
of previously published works have investigated the effect of
dependencies on the security and stability of software stored in
package repositories, chiefly npm [6, 14, 16, 20, 26, 34, 41, 46].
Other package managers have also been an object of study [8,
13, 28]. More generally, poorly vetted dependencies represent
an example of supply-chain security issue, a topic that has
been discussed extensively [11, 27, 35, 40, 44] and has recently
received renewed attention [1]. Finally, some recently pro-
posed techniques aim at directly identifying malicious pack-
ages via code and/or metadata analysis [17, 18, 39]. Rather
than analyzing existing dependencies and vulnerabilities, our
work focuses on identifying hidden relationships—and thus
potential security issues—between packages. To our knowl-
edge, our work is the first to identify the shrinkwrapped clone
phenomenon as a cause of security and stability issues.

7 CONCLUSION

The hygiene of package repositories is an important concern
for the usability of language ecosystems. Programmers rely on
the ecosystem to discern which packages are appropriate for
their requirements, to deliver patches to package code, and to
communicate vulnerabilities or bugs. Package maintainers rely
on the ecosystem to credit their contributions appropriately.
Maintaining package provenance is key to these capabilities.

In this work, we describe a phenomenon that we call shrink-
wrapped clones. This phenomenon threatens the hygiene of

the repository by obscuring the provenance of individual pack-
ages, weakening the security and usability of the entire lan-
guage ecosystem. We analyze npm, and show that shrink-
wrapped clones are observable. We show the harms of shrink-
wrapped clones by reporting on instances that we found of
clone packages that present older, vulnerable versions of other
packages. Furthermore, we discover cases in which obscur-
ing the provenance of these packages limits the reporting of
security flaws and the deployment of patches in practice.

To address these issues, we have developed an analysis that
is capable of detecting shrinkwrapped clones and restoring
the provenance of a package. We implemented our analysis
in a prototype tool we call unwrapper, which is capable of
operating efficiently, in real-time at the scale of the entire
npm repository. Tools such as unwrapper are a step towards
mitigating the threat of shrinkwrapped clones and improving
the hygiene of language ecosystems.

8 ACKNOWLEDGEMENTS

We thank the anonymous reviewers for their insightful feed-
back that greatly aided us in improving this work. This work
was partially supported by a generous gift from the Google
Open Source Security Team.

REFERENCES

[1] 2021. Executive Order on Improving the Nation’s Cybersecu-
rity. https://www.whitehouse.gov/briefing-room/presidential-
actions/2021/05/12/executive-order-on-improving-the-nations-
cybersecurity/.

[2] 2021. Fork a Repo. https://docs.github.com/en/get-started/quickstart/for
k-a-repo

[3] 2021. Grafeas Kritis. https://github.com/grafeas/kritis
[4] 2021. OSSF Package Feeds. https://github.com/ossf/package-feeds
[5] 2022. Open Science Framework. https://osf.io
[6] Rabe Abdalkareem, Olivier Nourry, Sultan Wehaibi, Suhaib Mujahid, and

Emad Shihab. 2017. Why Do Developers Use Trivial Packages? An Empiri-
cal Case Study on Npm. In Proceedings of the 2017 11th Joint Meeting on
Foundations of Software Engineering (Paderborn, Germany) (ESEC/FSE 2017).
Association for Computing Machinery, New York, NY, USA, 385–395.

[7] Saed Alrabaee, Paria Shirani, Lingyu Wang, Mourad Debbabi, and Aiman
Hanna. 2018. On Leveraging CodingHabits for Effective Binary Authorship
Attribution. In ESORICS.

[8] Anish Athalye, Rumen Hristov, Tran Nguyen, and Qui Nguyen. 2014.
Package Manager Security. Technical Report. https://pdfs.semanticschol
ar.org/d398/d240e916079e418b77ebb4b3730d7e959b15.pdf

[9] Stefan Bellon, Rainer Koschke, Giulio Antoniol, Jens Krinke, and Ettore
Merlo. 2007. Comparison and Evaluation of Clone Detection Tools. IEEE
Transactions on Software Engineering 33, 9 (Sept. 2007), 577–591.

[10] Steven Burrows, Alexandra L. Uitdenbogerd, and Andrew Turpin. 2009. Ap-
plication of Information Retrieval Techniques for Source Code Authorship
Attribution. In DASFAA.

[11] Mircea Cadariu, Eric Bouwers, Joost Visser, and Arie van Deursen. 2015.
Tracking known security vulnerabilities in proprietary software systems.
In SANER.

[12] Aylin Caliskan, Fabian Yamaguchi, Edwin Dauber, Richard Harang, Konrad
Rieck, Rachel Greenstadt, and Arvind Narayanan. 2018. When Coding Style
Survives Compilation: De-Anonymizing Programmers from Executable
Binaries. In NDSS.

[13] Justin Cappos, Justin Samuel, Scott Baker, and John H Hartman. 2008. A
look in the mirror: Attacks on package managers. In Proceedings of the
15th ACM conference on Computer and communications security. 565–574.

[14] Kyriakos Chatzidimitriou, Michail Papamichail, Themistoklis Diaman-
topoulos, Michail Tsapanos, and Andreas Symeonidis. 2018. Npm-miner:
An infrastructure for measuring the quality of the npm registry. In 2018
IEEE/ACM 15th International Conference on Mining Software Repositories
(MSR). IEEE, 42–45.

[15] Erik DeBill. 2021. Modulecounts. http://www.modulecounts.com/
[16] Alexandre Decan, Tom Mens, and Eleni Constantinou. 2018. On the im-

pact of security vulnerabilities in the npm package dependency network.

https://docs.github.com/en/get-started/quickstart/fork-a-repo
https://docs.github.com/en/get-started/quickstart/fork-a-repo
https://github.com/grafeas/kritis
https://github.com/ossf/package-feeds
https://osf.io
https://pdfs.semanticscholar.org/d398/d240e916079e418b77ebb4b3730d7e959b15.pdf
https://pdfs.semanticscholar.org/d398/d240e916079e418b77ebb4b3730d7e959b15.pdf
http://www.modulecounts.com/

ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA Elizabeth Wyss, Lorenzo De Carli, and Drew Davidson

In Proceedings of the 15th International Conference on Mining Software
Repositories. 181–191.

[17] Ruian Duan, Omar Alrawi, Ranjita Pai Kasturi, Ryan Elder, Brendan
Saltaformaggio, and Wenke Lee. 2021. Towards Measuring Supply Chain
Attacks on Package Managers for Interpreted Languages. In Proceedings
of the 28th Annual Network and Distributed System Security Symposium.
Internet Society.

[18] Kalil Garrett, Gabriel Ferreira, Limin Jia, Joshua Sunshine, and Christian
Kästner. 2019. Detecting suspicious package updates. In 2019 IEEE/ACM
41st International Conference on Software Engineering: New Ideas and Emerg-
ing Results (ICSE-NIER). IEEE, 13–16.

[19] Daniel M German, BramAdams, and Ahmed E Hassan. 2013. The evolution
of the R software ecosystem. In CSMR.

[20] Joseph Hejderup. 2015. In Dependencies We Trust: How vulnerable are
dependencies in software modules? Master’s thesis. Delft University of
Technology.

[21] Takashi Ishio, Yusuke Sakaguchi, Kaoru Ito, and Katsuro Inoue. 2017.
Source File Set Search for Clone-and-Own Reuse Analysis. In 2017
IEEE/ACM 14th International Conference on Mining Software Repositories
(MSR). 257–268. https://doi.org/10.1109/MSR.2017.19

[22] Lingxiao Jiang, Ghassan Misherghi, Zhendong Su, and Stephane Glondu.
2007. DECKARD: Scalable and Accurate Tree-Based Detection of Code
Clones. In ICSE. 96–105.

[23] Vaibhavi Kalgutkar, Ratinder Kaur, Hugo Gonzalez, Natalia Stakhanova,
and Alina Matyukhina. 2019. Code Authorship Attribution: Methods and
Challenges. Comput. Surveys 52, 1 (Feb. 2019), 1–36.

[24] Dulanka Karunasena. 2021. How I Analyzed All NPMDependency Licenses
in One Go. https://blog.bitsrc.io/how-i-analyzed-all-npm-dependency-
licenses-in-one-go-18de0f7244bc

[25] Miryung Kim, Vibha Sazawal, David Notkin, and Gail Murphy. 2005. An
Empirical Study of Code Clone Genealogies. In Proceedings of the 10th
European Software Engineering Conference Held Jointly with 13th ACM
SIGSOFT International Symposium on Foundations of Software Engineering
(Lisbon, Portugal) (ESEC/FSE-13). Association for Computing Machinery,
New York, NY, USA, 187–196. https://doi.org/10.1145/1081706.1081737

[26] Igibek Koishybayev and Alexandros Kapravelos. 2020. Mininode: Reducing
the Attack Surface of Node.js Applications. In 23rd International Sympo-
sium on Research in Attacks, Intrusions and Defenses (RAID 2020). USENIX
Association, San Sebastian, 121–134. https://www.usenix.org/conference/
raid2020/presentation/koishybayev

[27] R. G. Kula, C. D. Roover, D. German, T. Ishio, and K. Inoue. 2014. Visual-
izing the Evolution of Systems and Their Library Dependencies. In IEEE
VISSOFT.

[28] Trishank Karthik Kuppusamy, Santiago Torres-Arias, Vladimir Diaz, and
Justin Cappos. 2016. Diplomat: Using delegations to protect community
repositories. In 13th {USENIX} Symposium on Networked Systems Design
and Implementation ({NSDI} 16). 567–581.

[29] Tasuku Nakagawa, Yoshiki Higo, and Shinji Kusumoto. 2021. NIL: Large-
Scale Detection of Large-Variance Clones. In Proceedings of the 29th ACM
Joint Meeting on European Software Engineering Conference and Symposium
on the Foundations of Software Engineering (Athens, Greece) (ESEC/FSE
2021). Association for Computing Machinery, New York, NY, USA, 830–841.
https://doi.org/10.1145/3468264.3468564

[30] Mathieu Nayrolles and Abdelwahab Hamou-Lhadj. 2018. CLEVER: Com-
bining Code Metrics with Clone Detection for Just-in-Time Fault Preven-
tion and Resolution in Large Industrial Projects. In Proceedings of the 15th
International Conference on Mining Software Repositories (Gothenburg, Swe-
den) (MSR ’18). Association for Computing Machinery, New York, NY, USA,
153–164. https://doi.org/10.1145/3196398.3196438

[31] NPM Blog Archive 2020. Npm Blog Archive: A Day in the Life of Npm
Security. https://blog.npmjs.org/post/190665497245/a-day-in-the-life-of-
npm-security.html

[33]]npm-registry-fetch-advisory npmjs.com. [n. d.]. npm advisory 1544. https:
//www.npmjs.com/advisories/1544.

[33]]npm-download-count npmjs.org. [n. d.]. numeric precision matters: how
npm download counts work (accessed 02/2021). https://blog.npmjs.o
rg/post/92574016600/numeric-precision-matters-how-npm-download-
counts-work.

[34] Brian Pfretzschner and Lotfi ben Othmane. 2017. Identification of
Dependency-based Attacks on Node.Js. In ARES.

[35] H. Plate, S. E. Ponta, and A. Sabetta. 2015. Impact assessment for vulnera-
bilities in open-source software libraries. In ICSME.

[36] Steven Raemaekers, Arie van Deursen, and Joost Visser. 2013. The maven
repository dataset of metrics, changes, and dependencies. In MSR.

[37] Saul Schleimer, Daniel S Wilkerson, and Alex Aiken. 2003. Winnowing:
Local Algorithms for Document Fingerprinting. In SIGMOD. 10.

[38] Randy Smith and Susan Horwitz. 2009. Detecting andMeasuring Similarity
in Code Clones. In IWSC. 7.

[39] Matthew Taylor, Ruturaj Vaidya, Drew Davidson, Lorenzo De Carli, and
Vaibhav Rastogi. 2020. Defending Against Package Typosquatting. In
International Conference on Network and System Security. Springer, 112–
131.

[40] Jørgen Tellnes. 2013. Dependencies: No Software is an Island. Master’s
thesis. The University of Bergen.

[41] Ruturaj K. Vaidya, Lorenzo De Carli, Drew Davidson, and Vaibhav Rastogi.
2019. Security Issues in Language-based Sofware Ecosystems. CoRR
abs/1903.02613 (2019). arXiv:1903.02613 http://arxiv.org/abs/1903.02613

[42] Wenhan Wang, Ge Li, Bo Ma, Xin Xia, and Zhi Jin. 2020. Detecting Code
Clones with Graph Neural Network and Flow-Augmented Abstract Syntax
Tree. In IEEE SANER. 261–271.

[43] Erik Wittern, Philippe Suter, and Shriram Rajagopalan. 2016. A look at the
dynamics of the JavaScript package ecosystem. In MSR.

[44] A. A. Younis, Y. K. Malaiya, and I. Ray. 2014. Using Attack Surface Entry
Points and Reachability Analysis to Assess the Risk of Software Vulnera-
bility Exploitability. In HASE.

[45] Hao Yu, Wing Lam, Long Chen, Ge Li, Tao Xie, and Qianxiang Wang. 2019.
Neural Detection of Semantic Code Clones Via Tree-Based Convolution.
In IEEE/ACM ICPC. 70–80.

[46] Markus Zimmermann, Cristian-Alexandru Staicu, Cam Tenny, andMichael
Pradel. 2019. Small world with high risks: A study of security threats in
the npm ecosystem. In 28th {USENIX} Security Symposium ({USENIX}
Security 19). 995–1010.

https://doi.org/10.1109/MSR.2017.19
https://blog.bitsrc.io/how-i-analyzed-all-npm-dependency-licenses-in-one-go-18de0f7244bc
https://blog.bitsrc.io/how-i-analyzed-all-npm-dependency-licenses-in-one-go-18de0f7244bc
https://doi.org/10.1145/1081706.1081737
https://www.usenix.org/conference/raid2020/presentation/koishybayev
https://www.usenix.org/conference/raid2020/presentation/koishybayev
https://doi.org/10.1145/3468264.3468564
https://doi.org/10.1145/3196398.3196438
https://blog.npmjs.org/post/190665497245/a-day-in-the-life-of-npm-security.html
https://blog.npmjs.org/post/190665497245/a-day-in-the-life-of-npm-security.html
https://www.npmjs.com/advisories/1544
https://www.npmjs.com/advisories/1544
https://blog.npmjs.org/post/92574016600/numeric-precision-matters-how-npm-download-counts-work
https://blog.npmjs.org/post/92574016600/numeric-precision-matters-how-npm-download-counts-work
https://blog.npmjs.org/post/92574016600/numeric-precision-matters-how-npm-download-counts-work
https://arxiv.org/abs/1903.02613
http://arxiv.org/abs/1903.02613

	Abstract
	1 Introduction
	2 Background
	2.1 npm
	2.2 Versioning and Forking
	2.3 Shrinkwrapped Clones
	2.4 Vulnerabilities Introduced by Clones
	2.5 Scale of npm Analysis

	3 unwrapper Design
	3.1 unwrapper Assumptions and Goals
	3.2 Design Overview
	3.3 npm Interface
	3.4 Clone Detector
	3.5 Clone Prefilter

	4 Evaluation
	4.1 Performance
	4.2 Effectiveness of Clone Detection
	4.3 Analysis of Clone Packages

	5 Discussion
	5.1 Disadvantages and Benefits of Clones
	5.2 Future Work

	6 Related Work
	7 Conclusion
	8 Acknowledgements
	References

