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Abstract— IPSs determine whether incoming traffic matches
a database of vulnerability signatures defined as regular ex-
pressions. DFA representations are popular, but suffer from the
state-explosion problem. We introduce a new matching structure:
a tree of DFAs where the DFA associated with a node over-
approximates those at its children, and the DFAs at the leaves
represent the signature set. Matching works top-down, starting
at the root of the tree and stopping at the first node whose DFA
does not match. In the common case (benign traffic) matching
does not reach the leaves. DFA-trees are built using Compact
Overapproximate DFAs (CODFAs). A CODFA D′ for D over-
approximates the language accepted by D, has a smaller number
of states than D, and has a low false-match rate. Although
built from approximate DFAs, DFA-trees perform exact matching
faster than a commonly used method, have a low memory
overhead and a guaranteed good worst case performance.

I. INTRODUCTION

Intrusion Prevention System (IPSs) scan network traffic for

signs of suspicious activity. Many IPSs, such as Snort [20],

rely on attack signatures, i.e. patterns strongly associated with

malicious traffic. Deployed systems use hundreds or thousands

of signatures, usually represented as regular expressions (REs)

due to their flexibility. Matching each packet against each

signature in such a large set is a significant challenge. A

set of REs corresponding to signatures can be combined into

into a single Nondeterministic Finite Automaton (NFA), but

matching with NFAs is slow because a frontier of states

has to be maintained. Deterministic Finite Automata (DFA)

match quickly, but they suffer from the state-space explosion

problem. When DFAs are combined, in the worst case the

number of states can be the product of the number of states of

the components, and the DFA that corresponds to all signatures

becomes too large to fit in memory. Alternative compact

representations for DFAs, such as XFAs [24], come at the

cost of increased program complexity and processing time.

A simple, practical approach [28] partitions a signature set

such that signatures in each partition can be grouped into

a single DFA of a bounded size. The processing time is

proportional to the number of elements in the resulting DFA-

set representation, which is significantly smaller than the size

of the signature set, but it can still be large.

In this paper we introduce the DFA-tree, a novel data

structure for matching REs. We use DFAs organized in a tree

structure. The leaves of the tree are the DFAs obtained by

grouping a signature set. The DFA at each node acts as a
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filter for the DFAs in the subtree rooted at that node. Payload

scanning is performed top down: start with the root of the tree

and, if it doesn’t match we stop, otherwise we check whether

it is a real match by recursively matching with the children.

If a DFA at any of the leaves matches, then it is a real match

(the traffic matches a real exploit or a vulnerability). In the

common case of benign traffic, the payload does not match,

and it is usually rejected before reaching the leaves.

A DFA-tree performs exact matching of a signature set, as

if using a single DFA that combines all REs in the set. There

are no false positives or negatives: if a DFA-tree rejects a

payload, then it doesn’t match any RE in the signature set,

and if it accepts a payload, then at least one RE matches.

The main challenge in building a DFA-tree is generating the

intermediate filter nodes. To do so, we introduce the concept

of Compact Overapproximate DFA (CODFA) as the building

block for the DFA-tree construction. An overapproximation

for a DFA, D, is another DFA D′ which accepts a superset

of D’s language (L(D) ⊆ L(D′)). A CODFA is an overap-

proximation which is more compact in terms of the number

of states, and which has a low approximation error rate. We

believe that finding the best CODFA, i.e. with the fewest

number of states that does not exceed a given error rate,

is a hard problem. Therefore we provide an approximation

heuristic based on the following idea: a CODFA for D only

keeps the most frequent or “hot” states of D and the transitions

between them, and collapses the remaining states into a

single state. We call this construction shrinking, because our

algorithm collapses all states that are not “hot” into one.

Matching with DFA-trees achieved a factor of 4.7× speedup

in parsing HTTP packets using two published sets [11] of

respectively 1.4K and 2.6K signatures extracted from the

popular IPS Snort and also used by other authors (see [27]

and [24]). The speedup is relative to the technique described

in [28]. For an approximation error rate of 0.2% shrinking

produced CODFAs that, on average, have 97% fewer states.

Note that the DFA-tree intermediate nodes can potentially

cause a slowdown as in the worst case the input needs to

be matched against the entire tree. To quantify this effect we

emulated the worst case by forcing the traversal of the entire

tree, obtaining a slowdown of 26% (again with respect to [28]).

To summarize,this paper makes the following contributions:

1) We introduce the concept of DFA-trees to speedup the

matching of traffic against a set of signatures.

2) We introduce the notion of Compact Overapproximate

DFA. We provide a heuristic for constructing CODFAs.

Section II provides background on signature matching in978-1-4799-3360-0/14/$31.00 c© 2014 IEEE
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IPSs. Section III introduce DFA-trees and CODFAs. Sec-

tion IV describes shrinking. Section V presents experimental

results. Sections VI and VII survey related work and conclude.

II. BACKGROUND

Intrusion Prevention Systems (IPS) analyze network traffic

searching for attack signatures, i.e. patterns strongly associ-

ated with malicious traffic. Timely detection of such patterns

prevents or alleviates a wide range of network attacks. Regular

Expressions (REs) are commonly used to describe attack

signatures [26] and databases with thousands of REs are

matched against each payload. Because attack traffic is a small

percentage of the data seen on the wire, most network traffic

is benign and, in the common case, no matches are found.

A. Signatures, FSMs and DFA-sets

Signatures represented as REs can easily be transformed

into Finite Automata (FA). Ideally, multiple signatures

sig1, sig2, ..., sign would be merged into a single regular

expression sig1|sig2|...|sign and the resulting FA would match

all signatures simultaneously. Nondeterministic Finite State

Automata (NFAs) scale well space-wise, but at the cost of a

slower and more complex matching procedure which explores

multiple paths in parallel. Deterministic Finite Automata

(DFAs) need more space (the minimal DFA for a given RE

can be exponentially large [7]), but are popular due to their

matching algorithm’s simplicity and performance guarantees.

Definition 1: A DFA is a 5-tuple D=(Q,Σ, δ, q0, F ), where
Q is a finite set of states; Σ is the alphabet, a finite set of input

symbols (in our case a symbol is an 8-bit byte); δ : Q×Σ→ Q
is the transition function (δ(q, c) gives D’s next state when its

current state is q and the current input symbol is c); q0 ∈ Q is

the start state; F ⊆ Q is the set of final (or accepting) states.

Notations: The size of D is its number of states, |D| =
|Q|. The language accepted by D is L(D). If e is a regular

expression, L(e) is the language that matches e, and DFA(e)
is the minimized DFA that accepts L(e). Note that e, L(e) and
DFA(e) are equivalent representations for the same language.

If D1,D2 are two DFAs, then D1⊕D2 is the NFA for L(D1)∪
L(D2) obtained by combining D1 and D2 as NFAs1, and D1+
D2 is the DFA obtained by the determinization of D1 ⊕ D2.

dfaMatch(w,D) performs traditional DFA scanning of word

w using D by executing q←δ(q, b) for every byte b ∈ w.
An IPS needs to know which signatures in the signature

set match. If a payload prefix matches, the IPS may resume

scanning, looking for other matches; i.e, it searches for all

matches. For simplicity, we assume that we are only interested

in the first match, and later when the distinction between

these two behaviors becomes relevant, we will reconsider this

assumption. This means that the REs are considered suffix

closed, as if they ended in ·∗.

B. State Explosion and DFA-sets

Combining DFAs may result in a state space explosion. For

instance, if e1 = ·∗str1 ·∗ str2·∗ and e2 = ·∗str3 ·∗ str4·∗

1It has a new start state with an ǫ- transitions to D1 and D2’s start states

D1 D2 D3 D4 D5 D6 D7 D8 S
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S
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Fig. 1. The GROUP method partitions a set of DFAs, typically one per
signature, into groups such that the DFAs in each group can be combined into
a single DFA that fits in the memory. The result is a smaller set of DFAs. Here,
GROUP({d1, .., d50}) = {D1, ..,D8}, and D1=d1+d5+d20 ,..,D8=d49+d50

are regular expressions where str1, str2, str3 and str4 are

strings without any repeating characters or characters in com-

mon, then the approximate sizes of the minimized DFAs are

|DFA(e1)| ≈ |str1| + |str2|, |DFA(e2)| ≈ |str3| + |str4|.
But |DFA(e1|e2)| ≈ |DFA(e1)| × |DFA(e2)| [28].
When it is not practical to combine a large signature set into

a single DFA, a common practice is to partition the signatures

into multiple groups, and build a DFA for each group. The

result is a DFA-set [28].

Definition 2: A DFA-set is a set of DFAs, S={D1, ...,Dm}.
The language accepted by S is L(S)=L(D1) ∪ ... ∪ L(Dm).

Algorithm 1: payload scanning using DFA-sets.

dfaSetMatch (payload w, DFA-set S={D1,..,Dm})
output: Is w in L(S)?

foreach D ∈ S do
if dfaMatch(w,D)/* normal DFA matching */ then
return True;

end
return False;

In Algorithm 1, dfaSetMatch matches using DFA-sets.

Figure 1 shows the transformation named GROUP, which

partitions and groups signatures. GROUP transforms a large

DFA-set to a smaller one, such that both sets accept the same

language: GROUP({d1, d2, ..., dn}) = {D1, ...,Dm} where

each Di is the composition of some dk’s, L(d1)∪...∪L(dn) =
L(D1) ∪ ... ∪ L(Dm), and m < n.
Yu et al. [28] propose a simple practical heuristic to imple-

ment GROUP. It builds an interference graph with one node

per signature and one edge between two nodes if the number

of states for their combined DFA exceeds the sum for the two

individual DFAs. The algorithm then greedily groups nodes

that have few interferences into sets such that the number of

states in the combined DFA for one partition does not exceed

a heuristic parameter, MAX.

For instance, a set of over 1400 Snort HTTP signatures [11]

could not be combined into a single DFA that fits in memory,

but with Yu’s method and MAX=50000, we grouped them

into a group of 9 DFAs with sizes from 14399 to 49984 states.

C. Key insight: Low Match Frequency and High State Locality

There are two key insights: (1) matches occur rarely, and

(2) the match process itself spends most of the time in

a tiny fraction of the total number of states. Traditionally,

information systems use such disparities in frequency (low

entropy) for compression, and we use it to compress DFAs.

For instance, we scanned 650k HTTP packets with a 30k-

state DFA which combines 247 signatures. Only 1789 pack-

ets (0.27%) matched. We also measured state occurrences,
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Fig. 2. A DFA-tree. The root is labeled with D12, and the leaves are
labeled with D1,D2,... D8. This tree accepts the language L(S) where
S = {D1,D2,D3,D4,D5,D6,D7,D8}. If a node D has a child C then
L(D) ⊇ L(C). Overall, L(S) ⊂ L(D12), i.e D12 is a filter for L(S)

by counting how often each state was encountered inside

dfaMatch. The most frequent state occured 89% of the time,

and the top 15 most frequent states occured 99% of the time.

III. DFA-TREES

We introduce the DFA-tree, a new representation for DFA-

set matching. If S = {D1, ...,Dm}, a DFA-tree for S accepts

the language L(S) = L(D1) ∪ ... ∪ L(Dm).
A DFA-tree is a tree in which each node is labeled with a

DFA, and the DFAs satisfy certain language requirements.

Definition 3: A labeled tree over a set Λ is a directed tree

where each vertex has a label, T =(V,E, r0, λ), where

• (V,E, r0) is a tree

– V is the set of vertexes

– E ⊆ V × V is the set of directed edges

– r0 ∈ V is the root of the tree

• Λ is the set of labels

• λ : V → Λ associates a label to each vertex

Definition 4: D′ overapproximates D iff L(D) ⊆ L(D′).
Definition 5: A DFA-tree for an alphabet Σ is a labeled tree

T =(V,E, r0, dfa) over DΣ , where

• DΣ, the label set, is the set of all DFAs with alphabet Σ.
• dfa : V → DΣ labels each node with a DFA.

• the DFA at a node overapproximates the DFA at any child:

for all (v1, v2) ∈ E : L(dfa(v1)) ⊇ L(dfa(v2)).

Definition 6: T is a DFA-tree for a DFA-set S iff S is the

set of DFAs stored at the leaves of T .
The example in Fig. 2 is a DFA-tree for S={D1,...,D8}.

The label of the root is D12. The subset requirement im-

plies L({D1,D2,D3})⊆L(D9), L({D4,D5,D6})⊆L(D10),
L(D7,D8)⊆L(D11), and L({D9,D10,D11})⊆L(D12).
Algorithm 2 shows how a DFA-tree for S performs fast

matching on behalf of S. If S is a DFA-set for the signatures

of an IPS, dfaSetMatch most of the time rejects payloads.

The DFA-tree can accelerate this decision by acting as a filter.

Matching starts at the root of the tree and stops at the first

node whose DFA does not match. The subset requirement of

Definition 5 ensures the correctness of dfaTreeMatch:

Theorem 1: If T =(V,E, r0, dfa) is a DFA-tree for S, then
dfaTreeMatch(w, r0)=True ⇐⇒ w ∈ L(S)
The efficiency of dfaTreeMatch depends on how often

the slow path is taken; that is, on how often the payload w
is in L(dfa(r0)). We know that if S is the DFA-set for the

signatures of an IPS, then, in the common case, w 6∈ L(S),
unfortunately this does not imply that w 6∈ L(dfa(r0)) (the

Algorithm 2: Matching with DFA-trees. If T =
(V,E, r0, dfa) is a DFA-tree for a DFA-set S, then
dfaTreeMatch(w, r0) decides if w ∈ L(S).

dfaTreeMatch (payload w, DFA-tree v)
input : A payload: w
input : A node v in T = (V,E, r0, dfa)
output: Is any prefix of w in L(v)?

if dfaMatch(w,dfa(v)) then
if v is a leaf then return True; //real match
// Slow path. Must not be often taken!

foreach (v, child) ∈ E do
if dfaTreeMatch(w,dfa(child)) then

return True;
end

end
end
return False;

implication goes the other way around according to L(S) ⊆
L(dfa(r0)). If we want w 6∈ L(dfa(r0)) to happen frequently,

we must carefully build the DFA-tree with this goal in mind.

Exact Matches - No false positives: A DFA-tree matches

exactly the same language as the DFA-set set at its leaves.

Although inner nodes are overapproximations, a match at an

inner node does not imply a match by the DFA-tree. An inner

node match is verified by matching against its children. An

inner node match is declared a match if and only if a leaf

under that node also declares it a match, thus it is a real match.

Worst Case Scenario & Resilience to Algorithmic Attacks:
DFA-trees guarantee good worst case performance. There is no

attack that can slow down matching beyond a tree-dependent

limit. The best attack (i.e. our worst case scenario) forces the

traversal of the entire tree. The slowdown compared to DFA-

set matching is bounded by the ratio of number nodes to that

of the leaves; i.e, a constant depending only on the shape of the

tree. In Fig. 2 a full tree traversal matches the input against 12

DFAs, this is 1.5X (50%) slower than if DFA-sets were used

and the input was matched against the 8 DFAs at the leaves.

Such attacks or poor performance are easy to detect and, if

persistent, the ISP can temporary switch to DFA-set matching.

Memory Overhead: The memory overhead of DFA-trees

relative to DFA-sets is the extra space for the internal nodes.

In Fig. 2, the overhead is 50%, assuming equal size DFAs.

In our tests, the overhead is much smaller, because internal

nodes tend to have many children.

A. DFA-tree Construction

We build the tree bottom up. We alternate DFA compression

and grouping, until grouping fails to reduce the set size. If we

obtain only one element then we have a DFA-tree, otherwise

we obtain a set of trees, and matching uses all of them.

Figure 3 shows an example of DFA-tree construction for the

DFA-set S1 shown in Fig. 1.

CODFAs: The core concept that enables DFA-tree construc-

tion is that of Compact Overapproximate DFA (CODFA).
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Fig. 3. Example of DFA-tree construction. The DFA-set at the leaves
is S1=GROUP(S0), shown in Fig. 1 from S0 = the set with one DFA
per signature. S2=SHRINK(S1)={SHRINK(D)|D∈S1};S3=GROUP(S2);
S4=SHRINK(S3);S5=GROUP(S4); If we ignore the CODFA results of
SHRINK (shown as the small shaded DFAs), we obtain the tree in Fig. 2.

Definition 7: A DFA D′, is a Compact Overapproximate

DFA (CODFA) for another DFA D, if:

1) |D| > |D′|
2) L(D) ⊆ L(D′)

The first condition enables combining small CODFAs,

whereas the large original DFAs cannot be combined (see Fig-

ure 3). The second condition ensures the inclusion condition

of the DFA-tree definition: D′ must match every payload that

D matches. D′ is allowed to err only on the “positive” side i.e.,

to have false matches: strings that D′ accepts but D rejects.

In practice, a CODFA D′ for D must satisfy one more

condition: D′ must have a low false match rate, ǫ, compared

to D. This ensures that the slow path in Algorithm 2 is indeed

taken infrequently, despite the approximation errors introduced

at each level. The notion of false-match rate is defined in

Section III-B as a function of the network traffic.

Assume for now that SHRINK is a procedure which returns

a CODFA, B = SHRINK (D), for its argument D. Section IV

shows a heuristic for SHRINK, whose additional parameters

are a maximum false match rate, ǫ, and a training set of

payloads, I. Here we are only concerned on how to use

SHRINK and GROUP (from Section II-B) to construct a DFA-

tree from a DFA-set. Instead of showing the code, we explain

our method using the example in Fig. 3.

We start with S0, a set of DFAs, one for each signature, and

group them as shown in Fig. 1 and the bottom of Fig. 3. The

resulting DFA-set, S1 =GROUP(S0), is the DFA-set that the

method in [28] produces, and would use with dfaSetMatch

to scan the payload. We build a DFA-tree for S1. Because of

their large size, no two DFAs in S1 can be grouped within

the memory limits. If we want to further group DFAs from

S1, we must first reduce their sizes by overapproximation. We

use SHRINK to compress each element in S1 and obtain S2,
a set of CODFAs, then repeat grouping and compression steps

until we can no longer reduce the size of the DFA-set. When

this happens, we estimate if a higher ǫ would be acceptable. If

yes, then we increase ǫ and resume compression and grouping;

otherwise the algorithm terminates.

If we ignore the CODFAs in Fig. 3 (the small shaded

DFAs at the levels of S2 and S4), and the DFAs for the

signatures (S0, at the bottom) then the relationship between

the rest of the DFAs forms the DFA-tree shown in Fig. 2. It

contains a vertex for each DFA at the leaves, and for each DFA

created by GROUP. The edges show the language inclusion

relationship due to overapproximation and grouping. We do

not add vertexes for the intermediate CODFAs because we use

the more precise DFAs that they approximate. We do not create

vertexes for the signature DFAs in S0, because L(S0) = L(S1)
and a match for any DFA at the leaves, S1, is a real match. The

DFAs at the leaves store additional information for accepting

states, so that an IPS can identify the exact set of signatures

that match, and possibly resume scanning.

B. Measuring Approximation Errors

Inferring the distribution of the payloads scanned by an ISP

is outside the scope of our work. Instead, we assume that we

have a collection of payloads, I, which is a finite multiset (i.e.

repetitions allowed)2 with |I| elements representative of the

payload distribution. By abuse of notation we call I a training

set. We define a number of parameters based on I.
Definition 8: Let D,D′ be DFAs over the same alphabet Σ,

and I 6= ∅ a training set with elements in Σ+.

• A false match for D′ relative to D is any w∈L(D′)-L(D).

• N+

I (D′,D) = |(L(D′)− L(D)) ∩ I| is the number of

false matches for D′ relative to D, as measured on I.

• F+

I (D′,D) = N+

I (D′,D)/|I| is the probability of a false

match for D′ relative to D, as measured on I.

• PI(L) = |L ∩ I|/|I| the probability that an arbitrary

string in I belongs to the language L.

We quantify the false-match rate measured on a training set

I using the function F+

I . The definitions immediately imply

that F+

I (D′,D) = PI(L(D′)− L(D)).

Lemma 1: If D, D′ are two DFAs such that L(D) ⊆ L(D′),
then for every training set I and ǫ ∈ [0..1], we have:

F+

I (D′,D) ≤ ǫ ⇐⇒ |I − L(D′)| ≥ |I − L(D)| − ǫ ∗ |I|

Note that |I − L(D)| is the number of inputs in I that D
rejects. To attain F+

I (D′,D) ≤ ǫ, any D′ must have at most

ǫ ∗ |I| false matches and reject at least |I − L(D)| − ǫ ∗ |I|
inputs in I. These limits do not depend on D′.

Conflicting Constraints

Having a small DFA size and having a low false match rate

are conflicting constraints for a CODFA. Given a training set

I, a DFA D, and a number k, then in the finite set of DFAs

with at most k states, there is one that has the fewest false

matches relative to D, when measured on I. We can define a

function, using the false match rate of this best approximation:

minN+

I,D(k) = min{N+

I (D′,D)|L(D) ⊆ L(D′) ∧ |D′| ≤ k}
Lemma 2: For every DFA D, and every training set I, for

all k1, k2 : 1 ≤ k1 ≤k2 =⇒ minN+

I,D(k1)≥minN+

I,D(k2).
If |D′| = |D| then there is no need to approximate; we can

simply pick D′ = D and we have 0 false matches. At the

other extreme, if |D′| = 1 then D′ must be the one state DFA

that accepts everything and F+

I (D′,D) = 1− PI(L(D)).

2such repetitions allow modeling of non-uniform distributions
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Fig. 4. (a)DFA for ·∗(VIRUS|VIRAL)·∗. The light-dotted lines are the
default transitions. Assume that the states ordered in decreasing order of
occurrences are q0,q3,q2,q1,q4,q5,q6. H={q0,q3,q2} are the “hot” states. (b)
The corresponding shrunk DFA.(c) If states are re-numbered in decreasing
order of occurrence, then H={q′0,q

′
1,q

′
2} is the valid candidate H2.

Finding the best CODFA is NP-hard: Finding a CODFA

within specific limits is a problem with potential applications

outside IPSs, but exact, efficient, solutions are unlikely.

Problem 1: Given D, I, and ǫ ∈ [0..1], find D′ such that

L(D) ⊆ L(D′), F+

I (D′,D) ≤ ǫ and ∀D′′ : F+

I (D′′,D) ≤
ǫ =⇒ |D′′| ≥ |D′|
Problem 1 searches a smallest CODFA for a given ǫ. It is NP-
hard. This can be shown by picking ǫ = 0, and a reduction

from the NP-hard problem Minimum Inferred Finite State

Automaton [AL8] from [8], which requires finding the minimal

DFA consistent with a finite set of positive and a finite set of

negative examples.

In practice, it may be useful to solve a weaker problem,

which looks for any solution with fewer elements than D.

This is the SHRINK problem.

Problem 2: Given D, I, and ǫ ∈ [0..1], find D′ such that

L(D) ⊆ L(D′), F+

I (D′,D) ≤ ǫ and |D′| < |D|.
Solution quality for SHRINK is judged by |D′|: the smaller

|D′| the better. For good solutions we need a heuristic.

IV. PRACTICAL HEURISTIC FOR SHRINK

We present a SHRINK heuristic that works very well in

practice. For instance, our algorithm compressed a DFA with

100k states to one with 619 states, whose false match rate is

ǫ ≤ 0.8%. The heuristic is sound; i.e, if it finds a solution, that

solution satisfies the constraints of Problem 2. The heuristic

is not complete; i.e, a solution may exist, but we may fail to

find it. However, we have not encountered this in practice.

Our insight comes from an observation made in Section II-C

that, in practice, the large majority of the scanning time is

spent in a small set of hot states. Our method does not build

a CODFA from scratch, it starts with the original DFA and

uses a greedy approach which preserves the hot states and the

transitions among them, and which merges all other states into

a single new accepting state. This process is called shrinking.

In the rest of the section, we formally define shrinking, show

that it is an overapproximation, and finally show how to pick

a set of hot states to obtain a given false match limit.

A. Shrunk DFAs

Informally, if H⊆Q, the shrunk DFA corresponding to

D=(Q,Σ, δ, q0, F ) and H is the restriction of D to H , i.e.

the DFA obtained from D by keeping the states in H and

the transitions between them, and by collapsing the remaining

states into a new final state. Figure 4(a) shows the DFA cor-

responding to the regular expression ·∗(VIRUS|VIRAL)·∗.
The light-dotted lines are the default transitions. Figure 4(b)

shows the shrunk DFA obtained by grouping in a new state

f 6∈ Q all states that are not in the hot set H={q0, q3, q2}.
Definition 9: The shrunk DFA for D=(Q,Σ, δ, q0, F ) and

the “hot” set H⊆Q is DH=(Q′,Σ, δH , q0, FH), where

• Q′ = H ∪ {q0, f}; f is a new final state.

• DH and D have the same alphabet.

• δH : Q′ × Σ→ Q′: is the transition function

δH(s, c) =

{

δ(s, c), if s 6= f ∧ δ(s, c) ∈ H ∪ {q0}

f, if s = f ∨ δ(s, c) 6∈ H ∪ {q0}

• q0 ∈ Q is the same start state as for D.
• FH = (F ∩H) ∪ {f}

Lemma 3: If all states are reachable from q0 in D =
(Q,Σ, δ, q0, F ), then ∀H : H ⊆ Q =⇒ L(D) ⊆ L(DH),
and the inequality is strict if ((Q−H)− F ) 6= ∅
Therefore a shrunk DFA overapproximates the original DFA.

Corollary 1: If D=(Q,Σ, δ, q0, F ) and H ′⊆H⊆Q, then

L(DH) ⊆ L(DH′) and F+

I (DH ,D) ≤ F+

I (DH′ ,D).
Proof: Follows from Lemma 3 and DH′ = (DH)H′ .

Notations: statesD(w) is the set of states encountered

while performing regular DFA scanning of w with D. If Q is

ordered as {q0, q1, ..., q|Q|−1}, then smaxD(w) is the largest

index k of a state qk ∈statesD(w).
Example: the sequence of states for the DFA in Fig. 4(a)

while scanning w=avian is q0, q3, q2, q0, q0; statesD(w)
is {q0, q2, q3}; and smaxD(w) is 3.

Lemma 4: ∀D, H ′ ⊂ H ⊆ Q : L(DH′) − L(DH) =
{w|w 6∈ L(D) ∧ (statesD(w) ⊆ H) ∧ (statesD(w) 6⊆ H ′)}
Note that if statesD(w) 6⊆ H ′, then w ∈ L(DH′).

B. Using Shrunk DFAs for SHRINK

Given D = (Q,Σ, δ, q0, F ), a training set I, and ǫ ∈ (0..1),
we want to find a small set of hot states H such that

F+

I (DH ,D) ≤ ǫ. The idea is simple, since the majority of

the time is spent in a small set of states, we select the hot set

to be the first few states in decreasing order of frequency. The

complexity is in deciding how many states to select, since the

state frequency cannot be directly related to the desired ǫ.
If Q is ordered as {q0, q1, ..., q|Q|−1}, we restrict our

search for H to the |Q| sets of valid candidates of the form

Hk={q0, q1, ..., qk}, with {q0}=H0⊂H1⊂...Hk...⊂H|Q|−1=Q.

We aim to pick the smallest k such that F+

I (DHk
,D) ≤ ǫ.

For that, we use the intermediary sets Tk = {w|w 6∈ L(D) ∧
smaxD(w) = k}; Tk is the set of inputs correctly rejected by

DHk
, but incorrectly accepted by DHk−1

.

Lemma 5: For D = (Q,Σ, δ, q0, F ) and k∈{1, ..., |Q|−1}:

1) L(DHk
)−L(DHk−1

) = Tk, where L={w ∈ Σ∗|w 6∈ L}

2) L(DHk
) = ∪ki=0Ti, and Ti are disjoint sets

3) |I − L(DHk
)| = Σk

i=0|I ∩ Ti|

Corollary 2: If D = (Q,Σ, δ, q0, F ) and ǫ ∈ (0..1), then
the minimum k for which F+

I (DHk
,D) ≤ ǫ is the minimum

k for which Σk
i=0|I ∩ Ti| ≥ |I − L(D)| − ǫ ∗ |I|.
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The quantity on the right side of the inequality is a constant

that does not depend on k and can be evaluated in a single

scan of the training set. All elements |I ∩ Ti| on the left side

of the inequality can also be computed in a single scan. This is

important because scanning a good training set is expensive:

on our data, a single scan takes between 3.5s and 16s.

Our heuristic for SHRINK is shown in Algorithm 3. First we

scan the training set and determine |I|, |L(D) ∩ I|, and how

often each state in D occurs. Then we order {q1, ..., q|Q|−1}
in decreasing order of occurrences (line 2), to help reduce the

size of the candidate Hk. For instance, if D is the DFA

in Fig. 4(a), then H={q0, q3, q2} yields DH in Fig.4(b). But

H is not a valid candidate for D. The smallest candidate with

consecutive states that contains H is H3 = {q0,q1,q2,q3}; the
solution in Fig.4(b) cannot be found using valid candidates.

But if we reorder the states of D from Fig. 4(a) as in Fig. 4(c),

then H becomes the valid candidate H2 = {q′0, q
′
1, q

′
2}, and

the solution in Fig. 4(b) can be found.

Using the new order, we re-scan the input (line 3 of Alg. 3)

and measure all sizes T [i] = |I ∩ Ti| = the number of times

i=smaxD(w)∧w ∈ I − L(D). At line 5 we use Corollary 2

to find the best k. If we find such a k, then the result is DHk
.

SHRINK Complexity: If the total length of the payloads in I
is L(I) = Σw∈I |w|, then scanning the training set at lines 1

and 3 takes O(L(I)) time. Sorting at line 2 takes O(|Q| ×
log(|Q|)). Finding k at line 5 takes O(|Q|) time, and building

the shrunk DFA at line 6 is dominated by minimization in

O(|Q| × log(|Q|)). SHRINK’s time complexity is O(L(I) +
|Q| × log(|Q|)), and memory overhead is linear in |Q|.

Algorithm 3: SHRINK heuristic

SHRINK (I,D, ǫ): heuristic for SHRINK problem
input : a training set I
input : a DFA D = (Q,Σ, δ, q0, F )
input : a false match rate ǫ ∈ [0, 1]
output: a shrunk DFA, D′, such that F+

I (D′,D) ≤ ǫ

1 Scan all w ∈ I once with dfaMatch and measure:

1) |I| = the number of elements in I
2) |L(D) ∩ I| = the number of matches in I
3) ∀qk ∈ Q: nk = the number of times qk

occured at transition q←δ(q, b) of dfaMatch

2 Reorder the states {q1, q2, ..., q|Q|−1} in decreasing order
of occurences: n1 ≥ n2 ≥ ... ≥ n|Q|−1;

3 Scan all w ∈ I once with dfaMatch:
for each w 6∈ L(D) increment T [smaxD(w)].

4 reject← |I − L(D)| − ǫ ∗ |I|;
5 if ∃k < |Q| : Σk−1

i=0 T [i] < reject ≤ Σk
i=0T [i] then

6 return D{q0,q1,...,qk−1}; // A SOLUTION

end
7 return HEURISTIC FAILED ; // NO SOLUTION

V. EXPERIMENTAL EVALUATION

Experimental Highlights: We used DFA-trees for pub-

lished sets of HTTP SNORT signatures [11] and scanned

traces from three sources. We obtained a speedup of 4.7×
relative to the method from [28]. The average space overhead

Name #Signatures Origin
snort-small 1376 Snort March 2007 ruleset

snort-large 2592 Snort October 2009 ruleset

TABLE I
DESCRIPTION OF SIGNATURES

Name Size/#packets Origin
Department 3.34GB/2.6M Departmental webserver

Campus 18.6GB/13M Campus upstream link

DARPA 1.78GB/1.5M Lincoln lab DARPA set

TABLE II
DESCRIPTION OF TRACES

was 15%. Worst-case attacks can only achieve a 26% slow-

down on average. Shrinking is effective: for an approximation

error rate of 0.2% the average compression is 97%.

A. Comparison metrics

In order to compare matching using DFA-sets versus match-

ing using DFA-trees, we ran two experiments. We used I, a
payload set, S = {D1, ...,Dm}, a DFA-set which groups a set

of signatures (such as S1 in Fig. 3), and T , a DFA-tree for S.
In the first experiment (the baseline) we scanned every

element in I using S and dfaSetMatch. We obtained t1,
the wall-clock time to scan I. In the second experiment we

scanned every element in I using T and dfaTreeMatch.

We obtained t2, the wall-clock time to scan I.
We define the following metrics for dfaTreeMatch rel-

ative to dfaSetMatch, as measured on I:
Speedup: The speedup is t1/t2. The best achievable speedup

is equal to the number of leaves of T , |S| = m. This

corresponds to the ideal case of scanning with a single DFA.

Efficiency: Because the speedup is upper bounded by the

number of leaves, it is interesting to know how close it gets to

this theoretical limit. The efficiency is t1
t2×|S| , i.e. the ratio

between the speedup and the ideal speedup. Efficiency is

inspired by the work-efficiency metric in parallel algorithms.

Memory overhead: The memory overhead of T relative to S
is # of DFA states at internal nodes

# of DFA states at leaves

Worst-case guarantees: The effectiveness of our method is

based on the assumption that most input will not match neither

the original language, nor its approximation. An attack aimed

at decreasing performance would feed malicious payloads that

always require a visit of all the nodes in the DFA-tree. In

this case, performance becomes worse than the baseline be-

cause dfaTreeMatch visits every DFA in the tree, whereas

dfaSetMatch would only visit the leaves. For a given DFA-

tree the slowdown can be estimated to be at most # of nodes in T
# of nodes in S .

For the example in Fig. 2, in the worst case DFA-tree

matching can cause a slowdown of at most 12/8 = 1.5×, i.e.
50% slower than DFA-set matching. If a particular payload

is scanned in 2 seconds with dfaTreeMatch, and in 10s

with dfaSetMatch, then the speedup is 10/2 = 5, and the

efficiency is 5/8 = 0.625, or 62.5%. If all the DFAs have the

same size, then the memory overhead is about 4/8 = 50%.

Compression: We measured how effective the algorithm

SHRINK is in reducing the DFA size, by showing the relative

number of states removed. If D′ =SHRINK(I,D, ǫ) we define

the compression to be
|D|−|D′|

|D| .
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B. Methodology

We used four parameters to measure how matching with

DFA-trees compares versus matching with DFA-sets: (1) a set

of signatures, sigs={s1, s2, ..., sn}; (2) a maximum number

of allowed states per DFA, MAX; (3) a training set of payloads,

It; and (4) an evaluation set of payloads, Ie.
We built a DFA for each signature, and obtained a set of

DFAs, S0, then we used GROUP to group them in into a

DFA-set S1 =GROUP(S0,MAX), where S1 is the DFA-set

corresponding to the method in [28] (see Fig. 1). We used the

training set It to build T , a DFA-tree for S1; i.e. SHRINK in

Algorithm 3 uses It as the training set (see Fig. 3). We start

building the DFA-tree using ǫ = 0.002 as the false match rate

for SHRINK, and increase it, if needed and possible. For space

reasons we don’t report results for other starting values of ǫ.
Then we compared matching with dfaTreeMatch using

T , relative to dfaSetMatch using S, measured on the

evaluation set Ie. We report the metrics from Sec. V-A.

C. Datasets and Testbed

We used two signature sets, and three payload sources. All

six combinations of signature sets and payloads were tested.

Signatures: We used two sets of signatures created from rules

for the Snort IDS. These sets were published [11] by the

authors of [27]. The sets are summarized in Table I.

Traces: We used three distinct sets of traces, summarized in

Table II. Each set was partitioned into a training set, used

for DFA-tree construction, and a data set used for evaluation

(i.e. we used a 2-way cross validation; we also used a 4-

way cross validation with similar results, omitted here for

simplicity). The Department set consists of two traces of

traffic from our department; we used the first for training and

the second for evaluation. The Campus set consists of two

traces, each including six 2GB samples from different times

of the day. We used the first capture for training, and the

second for evaluation. The DARPA set consists of two traces

from the well-known DARPA intrusion detection evaluation

set provided by Lincoln Lab [13]. In particular, we used week

#2 for training and week #4 for evaluation.

Testbed: We ran all the experiments on a Linux server with 8

Xeon cores running at 2.5GHz and 16GB RAM. Note that our

implementation is single-threaded, thus the number of cores

does not affect results.

D. Results

Speedup, efficiency: Fig. 5, 6 show respectively the speedup

and efficiency for all combinations of signatures/trace sets,

as a function of MAX, the maximum number of states in a

DFA. The same information is summarized in Table III. In

many cases, our approach leads to speedups well above 4×,
and efficiency is between 40% and 60% of the theoretical

optimum (we remind that such optimum is unattainable in

practice because it requires that all the signatures be merged

into a single DFA which retains the same cache locality of

the leaf nodes in the DFA-set S). However, performance -

in particular efficiency - for the snort-large signature set are
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consistently worse than for snort-small. We determined that (1)

the large size of the set causes the instantiation of 32-60 leaves,

making the impact of each matching payload significant, and

(2) this set matches a consistent percentage of payloads, above

5% in all traces. In particular, 33% of the payloads in the

DARPA trace match some signature, causing the low speedup

observable in Fig. 5. We plan to investigate the issue further,

but we speculate that such unusually high matching rates are

due to signatures that are obsolete or have excessive generality.

Worst-case performance:We estimated the worst-case slow-

down (see Sections III and V-A) by computing the ratio

between the number of DFAs in the DFA-tree, and the number

of DFAs in the baseline DFA-set. The results are shown in

table III; additional experiments (omitted) involving worst-

case matching times confirmed this prediction.

Memory overhead: Figure 7 and columns 9-11 of Table III

summarize the memory overhead due to the additional nodes

in the DFA-tree. The overhead is limited, averaging 15% and

not exceeding 30% in any of the tests. The memory used

during matching was between 100MB and 5GB, depending

on the data structure (DFA-set or DFA-tree), signature set

and the upper bound for DFA size, MAX. For instance, if

MAX=200000, a single DFA could use up to 200MB.

Compression: Columns 15-17 of Table III show the

average reduction of DFA sizes resulted from shrinking. For

most DFAs the set of hot states is small, allowing an average

size reduction of 97% for an approximation error rate of 0.2%.
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Trace set Sig. set
Speedup Efficiency Mem. overhead Worst-case Compression

Min Avg Max Min Avg Max Min Avg Max Min Avg Max Min Avg Max

Depart.
snort-small 4.60 5.49 7.55 58% 65% 70% 12% 18% 28% 25% 29% 38% 33% 97% 99%
snort-large 4.27 4.97 6.52 11% 13% 14% 11% 15% 19% 18% 21% 28% 11% 98% 99%

Campus
snort-small 4.66 5.56 7.70 59% 65% 68% 6.9% 12% 19% 25% 29% 38% 44% 96% 99%
snort-large 4.23 4.78 6.47 11% 13% 14% 9.6% 14% 18% 18% 21% 25% 15% 99% 99%

DARPA
snort-small 3.81 4.42 5.26 40% 52% 60% 13% 20% 30% 25% 35% 43% 45% 96% 99%
snort-large 2.41 2.77 5.30 6% 7% 9% 9.6% 13% 17% 16% 20% 25% 10% 99% 99%

Overall 2.41 4.67 7.70 6% 36% 70% 6.9% 15% 30% 16% 26% 43% 10% 97% 99%

TABLE III
SUMMARY OF RESULTS
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E. Discussion

Results show that (1) shrinking is effective, and (2) our

approach leads to a significant speedup over the baseline

matching, with comparable memory usage. We did not eval-

uate the performance within a full-fledged intrusion detection

system, for two main reasons. The first is that our goal is to

provide a useful primitive - fast DFA-based matching - not a

complete NIDS solution. The second is that NIDS analyzes are

built around and optimized for a specific set of primitives; it is

unclear how to estimate the impact of a new primitive without

restructuring the architecture of the system. The relationship

– and possibly the integration – of shrinking with other work

in the area is qualitatively discussed in Section VI.

VI. RELATED WORK

The use of REs to describe attack signatures is well estab-

lished in the literature [3], [23], [26], [24]. DFA representa-

tions for REs [10] offer deterministic matching time and mem-

ory bandwidth, but scan only one byte at a time. This problem

is addressed by multi-stride automata [4] which consume k
symbols at a time, leading to a k-fold decrease in the number

of processing steps. Speculative Parallel Pattern Matching [15]

partitions the payload in n chunks and speculatively matches

them in parallel, later validating the result. Both are compatible

with our work as they can be adapted to use DFA-trees.

The state space explosion of DFA was addressed in [28],

[24], [23], [1], [27]. Common patterns that cause the explosion

are analyzed in [28], [1]. Yu et al. [28] introduces the notion

that two DFAs interact with each other if their combined

DFA has more states than the two of them together. These

interactions are used to greedily combine signatures into a

DFA-set; this is the GROUP procedure used in this paper. Our

work builds on top of GROUP; we enable more aggressive

merging by compressing the DFAs that can no longer be

grouped, and then grouping the compressed versions. Our

method can work with any other grouping algorithm.

Sommer and Paxson [26] observe that for most packets

the matching process visits a limited number of states. They

incrementally build the DFA, by adding states only when they

are needed. However, such incremental construction involves

a certain overhead, and an attacker can still force the instan-

tiation of the full DFA. Smith et al.[24] use EXtended Finite

Automata (XFAs) to address the DFA state explosion problem.

They generate a compact representation similar to a DFA, but

using additional memory and code. They however assume REs

consisting of non-overlapping patterns interleaved by ·∗ terms,

an assumption that may not always be valid in practice [3].

Other techniques decrease the memory footprint of a DFA by

performing state [12] or alphabet [2] compression, or more

sophisticated forms of encoding [14]. Such techniques can be

used with our work, as they work on the DFA representation.

NFAs [10] are usually more compact than DFAs, but have

the drawback that multiple states may be active at the same

time and they do not exhibit deterministic computation and

memory bandwidth guarantees, desirable properties that DFAs

have. Hardware implementations [22] alleviate NFAs disadvan-

tages. Another solution [1] uses a hybrid-FA which is mostly a

DFA, but retain parts that would cause a state-space explosion

in NFA form. Shrinking can be seen as complementary, as it

can be applied to the DFA part of the automaton.

Other researchers considered the idea of pre-filtering traffic.

Snort [25] defines for each rule a fast pattern - the longest

fixed string appearing in the rule [5], which sifts traffic before

rule matching; an approach that may fail if such string is

very short or appears frequently. The work closest to ours

is perhaps protomatching by Rubin et al.[21]. Protomatching

detects, by manual inspection, a number of meta patterns

and transforms each signature that fits one of the patterns

into a smaller RE. It is purely syntactic, it assumes that the

smaller expressions match infrequently, and it does not scale:

if the smaller expressions do not fit into a single DFA, this

method does not allow for further reductions. Our method

can be considered a generalization of these approaches, with

the advantage of being fully automated, and based on the

characteristics of the traffic. We make no assumptions about

the input, other than that we have a representative sample.

Finding the best CODFA and DFA shrinking can be con-

sidered variants of automata (or grammatical) inference [18]

which searches for DFA consistent with a set of positive and
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a set of negative examples. Exact learning of such a minimal

DFA is NP-hard [8], [9]. The concept of quotient automata

is often used in automata inference work [18], [6], [17]. A

quotient automaton is obtained by partitioning the states of an

automaton, and merging the states in the same partition. The

result may not be deterministic. A shrunk DFA is a special

case of quotient automaton, guaranteed to be deterministic

and smaller than the original. SHRINK’s result are CODFA

with bounded error rate. We are not aware of other work that

investigates the probability that a word is in the language

difference between a DFA and its quotient automaton.

The “best matching method” cannot be specified. There is a

huge volume of related work, a variety of matching methods

(both in software and in hardware, using specialized devices,

or generic ones such as TCAM[16][19] or GPU[29][30]),

and a diversity of testing conditions (signature sets, set sizes,

payloads, architectures, measured results or estimated based on

back-of-the-envelope speedup calculations [19]). The choice

of a method also depends on the budget available for the

hardware, thus we cannot offer a direct comparison with the

“best method”. Instead, we offer a method that can enhance

other DFA-based software or hardware approaches. We used

a commodity computer and published signature sets[11].

VII. CONCLUSIONS AND FUTURE WORK

We propose the DFA-tree structure for arbitrary REs match-

ing in IPS. It has high matching speed, low memory over-

head, and guaranteed worst case performance. In our tests on

thousands of signatures, compared to previous representations,

DFA-trees match 4.7× faster, require only 15% extra space,

and the best attack could slow them down by only 26%.

We introduce the concept of Compact Overapproximate

DFA, i.e. a smaller DFA that accepts a superset of language

of the DFA which is approximated. CODFAs with certain

accuracy and space parameters allow for a hierarchical rep-

resentation of large signature sets as DFA-trees. Defining the

NP-hard problem of finding the smallest CODFA for a given

accuracy is a main theoretical contribution of the paper. The

main practical contribution of this paper is the use of shrinking

as a heuristic. Shrinking builds a CODFA by maintaining

the states and the transitions between states in a set of high

frequency, “hot” states, and by merging the rest of the states

into a single new final state. This greedy method averages a

97% size reduction, due to the state locality of DFA matching.

Future Work: Frequency based language approximation and

DFA compression could perhaps be applied in other CS areas.

We aimed to introduce the DFA-trees and shrunk-DFAs

as useful primitives for IPSs, and our tests show that they

are very promising, but we have not fully explored various

design choices and possible optimizations. For instance, we

obtained CODFAs by shrinking, but we believe that there

are better methods that take into account the structure of

the directed graph induced by a DFA’s states and transitions.

Also, we attempted a fast and simple DFA-tree construction,

but optimizations are possible to improve their efficiency.

Matching with DFA-trees can easily be parallelized, or perhaps

used with hardware methods for signature matching.
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