Enabling Security Analysis of IoT Device-to-Cloud
Traffic

Eda Zhou
Department of Computer Science
Worcester Polytechnic Institute
Worcester, MA, USA
ezhou@wpi.edu

Abstract—End-to-end encryption is now ubiquitous on the
internet. By securing network communications with TLS, parties
can insure that in-transit data remains inaccessible to collection
and analysis. In the IoT domain however, end-to-end encryption
can paradoxically decrease user privacy, as many IoT devices
establish encrypted communications with the manufacturer’s
cloud backend. The content of these communications remains
opaque to the user and in several occasions IoT devices have been
discovered to exfiltrate private information (e.g., voice recordings)
without user authorization.

In this paper, we propose Inspection-Friendly TLS (IF-TLS),
an IoT-oriented, TLS-based middleware protocol that preserves
the encryption offered by TLS while allowing traffic analysis by
middleboxes under the user’s control. Differently from related
efforts, IF-TLS is designed from the ground up for the IoT
world, adding limited complexity on top of TLS and being fully
controllable by the residential gateway. At the same time it
provides flexibility, enabling the user to offload traffic analysis
to either the gateway itself, or cloud-based middleboxes. We
implemented a stable, Python-based prototype IF-TLS library;
preliminary results show that performance overhead is limited
and unlikely to affect quality-of-experience.

I. INTRODUCTION

The total number of Internet-connected devices is expected
to reach 20 billion by 2020 [1]. Much of this growth is driven
by Internet-of-Things (IoT) devices: smart, network-connected
sensors and actuators such as cameras, thermostats, locks, and
the such. These are deployed in residential and commercial
settings to simplify and automate various everyday tasks.

Besides quality-of-life improvements, however, [oT devices
also carry privacy risks. Personally identifiable information—
such as usernames, passwords, and sensor streams—is not only
stored on the devices themselves, but also in the network data
these devices transmit. Fortunately, modern IoT devices tend
to secure network connections using Transport Layer Security
(TLS). This assurance of data privacy is especially important
for IoT streaming devices used in households, such as smart
home cameras and baby monitors, that transmit audio and
video of a user’s home with the expectation that unauthorized
parties cannot access the streams.

In some cases, however, the cryptographic mechanisms
intended to protect user privacy can have the opposite effect.
Although end-to-end encryption protects data while in transit,
this information cannot being inspected by any entities other

Joseph Turcotte
Department of Computer Science
Worcester Polytechnic Institute
Worcester, MA, USA
jaturcotte @wpi.edu

Lorenzo De Carli
Department of Computer Science
Worcester Polytechic Institute
Worcester, MA, USA
Idecarli@wpi.edu

than the two communicating endpoints—not even the device
owner. In several cases, manufacturers have been suspected or
determined to capture sensitive data beyond those necessary
for devices to perform their function, and to stream these
data to affiliate cloud endpoints. For example, it has been
shown that streaming services utilize device tracking for
advertising [2], and that home security systems contain hidden
microphones [3]. Unfortunately, end-to-end encryption makes
it impossible for the device user to detect unwanted leaks
of private information from device-to-cloud backend. Further-
more, the fact that device communications remain opaque
complicates the detection of security breaches where an at-
tacker compromises and commandeers IoT devices (e.g., [4],
[5D.

Currently, the commonly accepted approach is to sacrifice
potential user privacy and security violations in favor of
data security. Some approaches [6], [7] provide middlebox
decryption capabilities in a secure manner but introduce im-
practical overhead for IoT devices. Others (e.g., [8]) use risky
workarounds to give middleboxes decryption privileges; these
approaches often introduce new security risks and challenges
that outweigh the benefits of traffic inspection [9]. Given
the significant limitations of current approaches, we take the
alternative approach of a lightweight extension to TLS to
specify middleboxes as secure entities in IoT communication.

In this paper, we describe Inspection-Friendly TLS (IF-
TLS): a TLS-based protocol that preserves the secure data
transit property from TLS, but also allows authenticated mid-
dleboxes to inspect the data while it is in transit. A challenge
in providing this capability is to cover a broad range of user
cases without excessively increasing communication overhead
and penalizing quality-of-experience. IF-TLS’ simple, stream-
lined design allows the user to retain control over which
middleboxes have the ability to inspect traffic from each of
their devices. Furthermore, these middleboxes can be located
anywhere, including the local area network and the cloud.
Finally, performance analysis shows that latency overhead
remains limited and compatible with common use cases in
the IoT world. Overall, our work makes the following
contributions:

1) We describe the design of IF-TLS, an interception-

friendly encrypted communication library designed for

IoT Devices

Manager

Cloud
Middleboxes

Servers

Access
Control
List

sy IF-TLS without Middleboxes

1
i
Local
Middleboxes

sy IF-TLS with Cloud Middleboxes

Fig. 1. High-level overview of IF-TLS

IoTs in residential contexts.

2) We implement a stable, proof-of-concept realization of
IF-TLS which we plan to open-source to the public to
foster further development and experimentation.

3) We analyze the performance of the IF-TLS prototype,
highlighting that IF-TLS overhead is limited and un-
likely to affect user experience.

4) We discuss potential limitations of our current design,
and possible directions to extend it.

II. BACKGROUND AND MOTIVATION
A. TLS Design

Transport Layer Security (TLS) is the standard protocol for
creating an end-to-end secure connection using encryption. In
August 2018, RFC 8446 specified the latest version of TLS,
known as TLS 1.3 [10]. TLS 1.3 introduced a number of
changes; the most notable is the removal of algorithms that do
not provide forward secrecy (static RSA and Diffie-Hellman
cipher suites).

These changes were intended to create a more secure Inter-
net by removing algorithms that undermined the end-to-end
nature of encryption. In particular, the removed cipher suites
allowed a device to pre-share its private key with application-
level firewalls that relied on inspecting un-encrypted data [11].
Scenarios which involve security analysis of payloads become
impossible to handle since only the endpoints have access to
plaintext.

Privacy advocates recognize that securing user communi-
cations from interception outweighs the reduced ability to
perform security inspection. In the IoT domain however, the
mapping between end-to-end encryption and user privacy is
less straightforward. In many cases, end-to-end encryption
enables device firmware to establish communication channels
which remain opaque to the user.

B. IoT Privacy and Security

Many IoT devices can be characterized as ‘“always-on”
sensors that transmit information to the Internet. Researchers

have raised concerns about their potential to violate user
privacy. Ren et al. [12] found that some devices expose
their device IDs, locations, and names. Moghaddam et al. [2]
determined that many streaming services employ device track-
ing for advertising purposes, and that unique identifiers are
often collected and transmitted unencrypted. Finally, Google
revealed in February 2019 that its Nest home security system
was equipped with a microphone; this fact had previously
not been made explicit, raising concerns [3]. Since IoT de-
vices regularly communicate to cloud backends to perform
their legitimate function, and encrypt such communications,
determining whether a device over-shares private information
is difficult.

Many IoT devices also remain highly vulnerable to cyberat-
tacks. Manufacturers have little economic incentive to perform
proper security design [13], and may lack in-house expertise to
do so. As a results, vulnerabilities are common [4], [14], some
of which may result in the formation of large IoT botnets [15].
While traffic analysis can be deployed to identify misbehaving
devices, its effectiveness is generally reduced by the inability
to inspect encrypted traffic.

C. Threat Model

Our work contemplates the categories of threats above
("nosy manufacturer” and attackers commandeering IoT de-
vices). Our goal is to enable controlled decryption of IoT flows
by user-approved appliances, to improve the ability to detect
such behaviors. We assume that the middleboxes to which the
user delegates analysis are trusted not to willingly leak private
data or share decryption keys. We furthermore assume that
the appropriate response to suspicious network data is to drop
the flow containing the data. Therefore, our approach enables
third-parties to analyze packet payloads in unencrypted form,
but not to modify data in-transit.

III. SYSTEM DESIGN

At a high level, IF-TLS works by sharing the IoT device and
server session keys with authorized and trusted middleboxes

defined in an access control list (ACL). These middleboxes
are permitted to inspect all traffic from a device. The user
first provides an ACL that designates which middleboxes will
be able to inspect traffic from their IoT devices to a dedicated
component that we call the IF-TLS manager. Each IoT device
using IF-TLS shares its client-server session key with the IF-
TLS manager over a TLS connection. The IF-TLS manager
then shares the device’s session key with each authorized
middlebox through TLS connections. Finally, all traffic from
the IoT device is routed through the middleboxes by the
manager. The overall functioning of IF-TLS is depicted in
Figure 1.

A. Communicating Parties

Before we detail the protocol, we need to establish the
communicating parties:

1) IoT devices: The smart devices whose traffic needs to
be examined. We will refer to these as the clients who
will share their session keys with the manager.

2) Manager: The device that runs the IF-TLS manager, re-
sponsible for configuring the middleboxes and the client.
Most commonly, we expect the manager application to
execute on the local network gateway. However, this
is not required (e.g., it could reside on a specialized
hardware device).

3) Middleboxes: The trusted middleboxes to which the user
delegates inspection of IoT device traffic. While we
expect the middleboxes to detect attacks and private
information leaks, their specific function—beyond being
able to decrypt data—is outside the scope of our project.

The rest of this section expands on the three steps in IF-
TLS: initialization, key sharing, and data sending.

B. Initialization

The first step in IF-TLS is providing the access rules that
determine which middleboxes will be able to decrypt which
IoT devices’ traffic. This information is supplied as an Access
Control List (ACL) by the user. The ACL is a dictionary where
the keys are IoT MAC addresses and the values are a list of
middlebox IPs. The device traffic is sent to the middleboxes
in the same order as they appear in the list. This means that
IF-TLS enables offsourced traffic analysis at the granularity
of individual devices.

We use IP addresses as unique identifiers for middleboxes
because we need network layer addresses for forwarding
packets to middleboxes outside the local network. These ad-
dresses need to be updated when they are changed. We expect
middleboxes to be constantly running on a cloud instance or
within the user’s network, and thus to be less prone to being
assigned new IP addresses.

IoT devices are identified in the ACL by their MAC
addresses. MACs are locally unique to each device and we
assume that they are immutable. A MAC-based access rule
can be set for a device even before it is installed. This enables
the user to have all traffic from a device, including setup,
inspected.

Client (IoT Device) Server
QG 1 QG
5 2
8 Manager
3
7 Legend

@+ Session Key

Fig. 2. IF-TLS session establishment details

Middlebox Middlebox

>m

MAC Key

The initialization process requires that the user defines an
ACL for their configuration. In practice, we envision that traf-
fic analysis will be provided by commercial entities, and such
entities will provide pre-configured ACLs, and a mechanism
to load them into the system, to users.

C. Session Establishment

Once IF-TLS is initialized, each new connection attempt
by a local IoT device will initiate key sharing. There are
three initializations that need to occur: the client/server,
client/manager, and manager/middlebox initializations (sum-
marized in Figure 2). The client/server initialization establishes
the cipher suites and keys for the IF-TLS session. Then,
during the client/manager initialization, the client shares its
session key pre-master secret with the manager. Finally, in
the manager/middlebox initialization the pre-master secret is
distributed to the middleboxes.

1) Client/Server Initialization: An IoT device (client),
begins by establishing a TCP connection with the server.
Then, the following IF-TLS negotiation—similar to TLS, and
abridged for brevity’s sake—takes place (steps 1 and 2 in
Figure 2):

1) Cipher negotiation: the client agrees with the server on
the cipher suite to use, similar to TLS, and verifies the
Sserver.

2) Pre-master exchange: the client creates the pre-master
secret, encrypts it with the server’s public key, and sends
it to the server. The server receives the pre-master secret,
and computes the pre-master message from the client to
create the session and MAC! keys.

3) Acknowledgments: The server sends an acknowledg-
ment (ACK) message encrypted using the session key
and MAC key to the client. The server is now ready
to send and receive data through IF-TLS. The client
computes the session and MAC keys from the pre-master
and receives the ACK message from the server. Then,
the client decrypts the message and verifies the message.

'In this subsection, we use the "MAC” acronym to refer to a Message
Authentication Code, and not to layer-II MAC addresses as in the rest of the

paper.

2) Client/Manager Initialization: After the client/server
initialization, the IoT device proceeds to a client/manager
initialization in which the client shares its session key over
TLS with the manager (this step is similar to LOCKS [16]).
Since a device needs to resend its session key to the manager
with every new generation, this connection may remain open
between IF-TLS sessions.

In order to keep the packet length consistent, the client sends
a part of the pre-master secret to the manager, rather than the
computed key itself (step 3). In particular, the part sent to
the manager is the one used to generate the session key. The
remaining part of the pre-master secret is used to generate
the client/server MAC key and is not shared because it would
give manager and middleboxes the ability to modify packets
in transit. Once the manager finishes sharing the pre-master
session key with the specified middleboxes, the manager sends
an ACK to the client (step 8).

3) Manager/Middlebox Initialization: The remaining ini-
tialization is between the manager and the middleboxes. The
manager consults the ACL to determine which middleboxes
need a device’s session key. Then, the manager initializes each
middlebox by creating a TLS session with that middlebox
and sharing the device’s information (MAC address, cipher
used) and pre-master session key. The middlebox computes
the session key and respond with an ACK message if the
calculation is successful (steps 4-7).

D. Data Sending

Once the session key has been shared, packets can be
redirected through the middleboxes (Figure 1). The specific
redirection mechanism is orthogonal to IF-TLS, and a variety
have been proposed (e.g., [17], [18]) that can be adapted
to our use case. For evaluation purposes, we deploy simple
tunneling. When a packet arrives at the manager running on
the local router, the manager matches the packet’s source
MAC against the ACL. If there is no match, the packet is
forwarded normally. If there is a match, the list of middleboxes
responsible for analyzing the packet is retrieved and the packet
is forwarded to the first one (we assume that each middlebox
in the chain is correctly configured to send data to the next
one).

The packets that are routed through the middleboxes contain
a message authentication code to ensure integrity. While the
middleboxes are able to decrypt the payloads, they are unable
to modify in-transit data without being detected by the receiv-
ing end. The intended use of IF-TLS is for middleboxes to
block traffic containing excessive user information. Therefore,
we do not allow packet content manipulation, but we do allow
flows to be dropped in transit.

IV. DISCUSSION

a) Access granularity: The IF-TLS design implicitly
defines two access levels: no access (for any middlebox that
does not appear in an ACL entry), or full decryption access
(for every middlebox in an ACL entry). We chose this design
because it allows maximum flexibility to middleboxes in

deciding how to analyze traffic. If we were to enable partial
decryption, as in BlindBox [6] we would have to pre-process
a device’s traffic to determine what is suitable for a middlebox
to inspect, introducing an additional layer of complexity.

b) Analysis scope: While the server’s traffic to the client
is also sent over IF-TLS, it is not routed through middleboxes.
This is intentional because our purpose is to enable users to
view data emitted from their IoT devices. Incoming traffic is
less likely to be sensitive. Furthermore, redirecting this traffic
would require cooperation from the manufacturer’s backend,
a significant practical hurdle.

c) IP spoofing: The current design purposely does not
perform middlebox authentication. This choice is reasonable
if the middleboxes are either virtualized and running on
the gateway itself, or on a remote device/cloud to which a
secure channel exists. If this holds, further per-middlebox
authentication would provide limited security gains and signifi-
cantly increase overhead. However, we acknowledge that these
assumptions may not hold true in other deployment scenarios
where the attacker can inject arbitrary traffic to the gateway.
For these scenarios, IF-TLS would need to be extended with a
middlebox authentication capability, and a more robust notion
of middlebox identity beyond IP addresses. We leave this
extension as future work.

d) MAC spoofing: An attacker may perform MAC ad-
dress spoofing. Doing so to imitate a known device gives no
additional leverage, as it would simply cause the attacker’s
traffic to be routed through the middleboxes for analysis (and
the IF-TLS manager never sends any confidential information
to the IoT device). An attacker may also perform MAC
spoofing in order to evade IF-TLS. Similar to middlebox
authentication, device authentication would prevent this attack,
but also add complexity and latency. An alternative is to
employ device fingerprinting on the gateway[19] to the detect
situations where a known device suddenly changes layer-II/II1
identifiers.

e) Denial of Service: We focus on a DoS against the
IF-TLS manager, which we assume runs on a local router.
While it is also possible to launch a DoS on a middlebox or
server, those entities exist independently of IF-TLS and thus
are orthogonal to our work. Should an attacker successfully
disable the router, all devices connected to the router would be
unusable. However, using IF-TLS will not make a router more
vulnerable to conventional DoS attacks than it already is. Since
the IF-TLS manager only performs lightweight dictionary
look-ups to the ACL, the vulnerability of a router to DoS
remains roughly the same regardless of whether it runs the
IF-TLS manager or not.

f) Component Security: The security of IF-TLS depends
heavily on the security of its components: the IoT device,
the manager/router, the middleboxes, and the server. By virtue
of enabling middleboxes to access traffic, IF-TLS introduces
inherent risks related to information disclosure that do not exist
when using TLS 1.3. Adding middleboxes to the path increases
the attack space that adversaries can exploit. However, the risk

of compromising a well-established cloud middlebox, such as
one running on AWS or Google Cloud, is low.

g) Incentives: As IoT devices become commonplace,
we expect that purchasers of IoT devices will become more
conscious of related privacy issues. Thus, devices implement-
ing features such as IF-TLS will become more attractive to
consumers, incentivizing manufacturers to implement these
features. We also note that IoT data collection has, in many
cases, legitimate and useful applications. IF-TLS does not
prevent it. Instead, it encourages manufacturers to limit the
scope of data collection to the strictly necessary, and to be
transparent about the nature of collected data.

V. EVALUATION
A. Implementation, Testbed, and Traces

We implemented our IF-TLS prototype as a Python library
consisting of 800 lines of code. The user-facing API consists
of a single Python class that can be used to instantiate an
IF-TLS session on either the client- or server-side (we omit
details)®>. We chose Python for its ease of use and availability
of support libraries, as our goal is to evaluate the viability of
IF-TLS. However, we acknowledge that many IoT devices are
programmed in C/C++. We estimate the engineering efforts to
translate the Python module to C++ to be fairly limited.

In our testbed, we implemented four communication sce-
narios: TLS (i.e., no IF-TLS), IF-TLS w/o middleboxes,
IF-TLS w/ local middleboxes, and IF-TLS w/ cloud-based
middleboxes. IF-TLS w/ local middleboxes is representative
of a scenario where middlebox processing executes on the
local network, while IF-TLS w/ cloud middleboxes represents
a scenario where traffic processing is offloaded to the cloud.
The local network was simulated by implementing IoT device
(client), manager/gateway and a local middlebox as TinyCore
Linux VMs running on an 8GB 2015 Apple Macbook Laptop.
The server was implemented on a TinyCore VM executing on
a different home network and running on an 8GB 2015 HP
Notebook Laptop. A cloud-based middlebox was implemented
as an Amazon EC2 t2.micro instance based on the Amazon
Linux AMI template. To avoid making our results dependent
on a specific type of middlebox analysis, our test middlebox
implements a passthrough appliance that forwards all received
packets.

For our RTT measurements we replayed a set of three traces
captured in an affiliated institution’s IoT lab, summarized in
Table I. Each trace represents a full TCP session by an IoT
devices. We picked these traces as they are heterogeneous both
in terms of originating devices, and length/number of packets.

B. IF-TLS Initialization Overhead

Our first performance result highlights the total initialization
overhead for IF-TLS; this includes the client-server, client-
manager, and manager-middlebox initialization times. The
initialization overhead is defined as the time elapsed between

2The code can be accessed at:
https://www.dropbox.com/sh/dhk67rc7jdwtdhh/AACo0a8xT-
19v32ehkpYZ4wca

Device Capture Size Session
[# packets] Length [s]

Google Home Mini 1 24 0.5

Arlo Q Camera 1070 39.5
Arlo Q Camera 2052 12.1
ABLET

TRACES FOR RTT EVALUATION

1.75

1.50

1.25
— 1.00
g 0.75 1.55584
£

1.07233

0.50
0.70356
0.25
0.00
TLS1.3 IFTLSw/oMB IFTLS w/ IFTLS w/
Local MB Cloud MB

Fig. 3. Average initialization time for the test scenarios

the client initiating the establishment of an IF-TLS session,
and the establishment of the session as signaled by the
reception of an acknowledgment from the server (all events
are timestamped on the client). We consider three IF-TLS
scenarios: IF-TLS w/o middleboxes in the path and IF-TLS
with a middlebox located respectively on the local gateway
and in the cloud. For comparison, we also measure the TLS
session initialization time between the same machines. Each
measure was repeated 30 times (we report averages).

Figure 3 shows the average amount of time it took for the
initialization procedure to complete under TLS and the three
IF-TLS scenarios. On average, IF-TLS without a middlebox
adds 21 percent additional delay to the initialization procedure
compared to TLS 1.3. The percentage increases for IF-TLS
with a local middlebox and cloud-based middlebox are 52%
and 121%, respectively.

C. Initialization Overhead Breakdown

In addition to analyzing the total initialization time before
data sending, we also measured the individual components of
the initialization across the three IF-TLS scenarios. Figure 4
shows each component’s proportion of the total initialization
time for these scenarios; from left to right, the client-server
initialization makes up 91, 76, and 75 percent of the initial-
ization procedure®. The absence of a middlebox in the first
IF-TLS scenario implies that the client-manager initialization
consists of a simple lookup in the access control list, followed
by an acknowledgment to the client that all middleboxes (in
this case, 0) have computed the session key.

The latter two measurements are representative of having
one middlebox in the path; thus, the client-manager proportion

3The components do not exactly sum to the totals of Figure 3, as those also
account for a few auxiliary operations that are not part of either initialization.

0.80426

Time [s]

0.76697

0.37765

0.25981

0.07626
IFTLS w/o MB

IFTLS w/ Local MB IFTLS w/ Cloud MB

B Client-Server Initialization Client-Manager Initialization

Fig. 4. Breakdown of initialization times in IF-TLS

Middlebox | Client-Manager | Manager-Middlebox
Location init time [s] init time [s]
Local 0.260 0.182
Cloud 0.377 0.297
TABLE T

CLIENT-MANAGER INITIALIZATION DETAILS

will increase by a roughly constant factor as more middleboxes
are added to the path. Table II shows the overhead we
obtained by timing the manager-middlebox initialization time
on the manager. This data shows that the manager-middlebox
initialization, which is a sub-component of the client-manager
initialization, takes up a significant percentage of the latter.
The additional overhead for a middlebox in the local network
and the cloud is roughly 0.2s and 0.3s, respectively. The cloud-
related overhead is expected to vary slightly depending on the
physical location of the cloud server.

D. RTT analysis

Beyond initialization, it is important to characterize the
impact of IF-TLS on the performance of an ongoing data trans-
fer. By introducing additional forwarding steps, IF-TLS may
increase a connection’s round-trip time (RTT) with possible
impact on both congestion control and the perceived QoE of
interactive traffic.

Figure 5 shows a comparison of the average RTTs for
the four scenarios. Compared to TLS 1.3, the averaged RTT
increases amount to (left to right) 36%, 22% and 80%. IF-
TLS with a local middlebox is generally comparable to IF-
TLS without middleboxes; as expected the effect of routing
through a local appliance is negligible.

The RTT will increase with more middleboxes in the con-
nection. Assuming that middleboxes performs passive moni-
toring (i.e. they do not hold packets for processing), the only
factors contributing to the overhead are packet forwarding
operations between middleboxes. This overhead is negligible
if the middleboxes are co-located, but may be high if the mid-
dleboxes are geographically distributed. Commercial services
deploying cloud-based analysis may need to perform optimiza-
tion of their network topology to minimize this overhead.

0.20
o 0.155
o 0.15
£ 0.118 0.151
- 0.1098
£ 0.0905 0.1175
b R
-é 0.10 0.1025
5 0.0905
2
o 005 010929
<]
E ‘
S
& 000

TLS 1.3 IFTLS w/ no IFTLS w/ IFTLS w/
Local MB Cloud MB
B Google Home Mini W Arlo Q #1 Arlo Q #2

Fig. 5. RTT comparison

E. Discussion of Results

One of our goals in our performance testing was to de-
termine whether the additional delay introduced by IF-TLS
would still allow for an acceptable user experience with an
IoT device, even when placing a middlebox in the cloud. One
accepted metric for how long users are willing to wait for
loading a web page is 2 seconds [20]; this is analogous to the
IF-TLS initialization time, which does not exceed 2 seconds
in the case of a single cloud-based middlebox. Furthermore,
the majority of data transmitted using IoT devices is sensor or
streaming data, and does not require frequent interaction, such
as clicking between web pages, with the user. Other studies
[21] [22] have shown that the frequency of interaction with IoT
devices is not high enough for a user to notice a few seconds of
initialization overhead, which thus does not negatively impact
the quality of the user experience. Based on the initialization
and round-trip time data we obtained, we conclude that IF-
TLS can still perform reasonably with a series of cloud-based
middleboxes.

Our second goal was to determine the performance impacts
of placing a middlebox in the local network versus placing it
in the cloud. In the previous three sections, we observed that
placing a middlebox in the cloud resulted in higher initializa-
tion and data sending times; thus, utilizing the cloud presents
a performance trade-off between cloud-based benefits, such as
scalability and reduced IT costs, and a faster connection.

VI. RELATED WORK

Naylor et al. [7] propose Multi-Context TLS (mcTLS)
to provide decryption capabilities to middleboxes without
requiring the client to install a root certificate. The notion
of an encryption “context”, or a set of symmetric encryption
and message authentication code (MAC) keys, functions as an
access control mechanism that allows for flexible configuration
of middlebox decryption capabilities. Endpoints can limit the
kinds of data to which a middlebox has decryption access,
define per-flow decryption rights, and restrict permissions to
read-only for the purpose of preventing illegal data modifica-
tions. By specifically restricting its scope to the IoT domain,
IF-TLS can define a much simpler design. For a cryptographic

session layer, there is strong evidence that keeping complexity
to a minimum is crucial to ensure correct implementation
and simplifying audits [23]. Furthermore, we believe that the
capabilities we provide are sufficient for practical use cases.

Bierma et al. [16] introduce Locally Operated Cooperative
Key Sharing (LOCKS), a mechanism that allows clients to
share TLS keys with a trusted agent, such as a security moni-
toring system, inside an enterprise network. While our design
shares some aspects with LOCKS, their approach specifically
targets enterprise environments and would not directly work
with middleboxes in the cloud.

Sherry et al. [6] propose BlindBox, a system that allows DPI
on encrypted traffic. BlindBox utilizes searchable encryption
to inspect encrypted traffic using keywords or according to
predefined rules. This mechanism restricts the capabilities of
middleboxes to inspect and analyze user data. However, the
connection setup happens on the order of minutes for large IDS
systems with thousands of search rules, and thus is impractical
for use on smart devices.

VII. CONCLUSION

While IoT-originated network communications can benefit
from encryption, it is important to guarantee that users retain
the ability to inspect the traffic that their devices generate. This
paper put forward an initial proposal to do so. We presented
IF-TLS, a simple session-layer protocol to encrypt in-transit
data while ensuring user-controlled middleboxes remain able
to inspect it. IF-TLS is designed to be simple and generate
very limited overhead compared to conventional TLS. While
additional features will be necessary to support all use cases
(e.g. middlebox authentication), we hope IF-TLS can act as
a “conversation starter” for the design of encrypted protocols
that do not make IoT communications opaque to the user.

REFERENCES

[1] R. van der Meulen. (2017) Gartner says 8.4 billion connected
“things” will be in use in 2017, up 31 percent from 2016. [Online].
Available: https://www.gartner.com/en/newsroom/press-releases/2017-
02-07- gartner-says- 8-billion-connected- things- will-be-in-use-in-2017-
up-20-31-percent-from-2016

[2] H. M. Moghaddam, G. Acar, B. Burgess, A. Mathur, D. Y. Huang,
N. Feamster, E. W. Felten, P. Mittal, and A. Narayanan, “Watching you
watch: The tracking ecosystem of over-the-top tv streaming devices,” in

CCS, 2019.
[3] S. Fussell. (2019, February) The microphones that
may be hidden in your home. [Online]. Avail-

able: https://www.theatlantic.com/technology/archive/2019/02/googles-
home-security-devices-had-hidden-microphones/583387/

[4] S. Nichols, “Don’t panic, but your baby monitor can be hacked into a
spycam,” Jun. 2018. [Online]. Available: https://www.theregister.co.uk/
2018/06/22/baby_monitor_hacked/

[5] C. Cimpanu, “Hacker leaks passwords for more than 500,000
servers, routers, and IoT devices,” Jan. 2020. [Online].
Available: https://www.zdnet.com/article/hacker-leaks-passwords-for-
more-than-500000-servers-routers-and-iot-devices/

[6] J. Sherry, C. Lan, R. A. Popa, and S. Ratnasamy, “Blindbox: Deep packet
inspection over encrypted traffic,” SIGCOMM Comput. Commun. Rev.,
vol. 45, no. 4, pp. 213-226, Aug. 2015.

[71 D. Naylor, K. Schomp, M. Varvello, I. Leontiadis, J. Blackburn, D. R.
Lopez, K. Papagiannaki, P. Rodriguez Rodriguez, and P. Steenkiste,
“Multi-context tls (mctls): Enabling secure in-network functionality in
tls,” ACM SIGCOMM Computer Communication Review, vol. 45, no. 4,
pp. 199-212, 2015.

[8]

[9]

[10]

(11]

(12]

[13]

[14]

[15]

[16]

(17]

(18]

[19]

[20]

[21]

[22]

(23]

V. Zakharevich and M. Rakhmanov, “Intercepting ssl and
https traffic with mitmproxy and sslsplit,” Apr 2016. [Online].
Available: https://www.trustwave.com/en-us/resources/blogs/spiderlabs-
blog/intercepting-ssl-and-https- traffic- with-mitmproxy-and-sslsplit/

Z. Durumeric, Z. Ma, D. Springall, R. Barnes, N. Sullivan, E. Bursztein,
M. Bailey, J. A. Halderman, and V. Paxson, “The security impact of https
interception.” in NDSS, 2017.

E. Rescorla, “The Transport Layer Security (TLS) Protocol Version
1.3,” Internet Requests for Comments, RFC Editor, RFC 8446, August
2018. [Online]. Available: https://tools.ietf.org/rfc/rfc8446.txt

F. Andreasen, N. Cam-Winget, and E. Wang, “Tls 1.3
impact on network-based security,” Working Draft, IETF
Secretariat, Internet-Draft draft-camwinget-tls-use-cases-00, October
2017, http://www.ietf.org/internet-drafts/draft-camwinget-tls-use-cases-
00.txt. [Online]. Available: http://www.ietf.org/internet-drafts/draft-
camwinget- tls-use-cases-00.txt

J. Ren, D. J. Dubois, D. Choffnes, A. M. Mandalari, R. Kolcun, and
H. Haddadi, “Information exposure from consumer iot devices,” in IMC,
2019.

B. Schneier. (2016) Security economics of the internet of things.
[Online]. Available: https://www.schneier.com/blog/archives/2016/10/
security_econom_1.html

G. Acar, D. Y. Huang, F. Li, A. Narayanan, and N. Feamster, “Web-
based Attacks to Discover and Control Local IoT Devices,” in IoT S&P,
2018.

M. Antonakakis, T. April, M. Bailey, M. Bernhard, E. Bursztein,
J. Cochran, Z. Durumeric, J. A. Halderman, L. Invernizzi, M. Kallitsis,
D. Kumar, C. Lever, Z. Ma, J. Mason, D. Menscher, C. Seaman,
N. Sullivan, K. Thomas, and Y. Zhou, “Understanding the Mirai Botnet,”
in USENIX Security Symposium, 2019.

M. Bierma, A. Brown, T. DeLano, T. M. Kroeger, and H. Poston,
“Locally operated cooperative key sharing (locks),” in ICNC, 2017.

J. Sherry, S. Hasan, C. Scott, A. Krishnamurthy, S. Ratnasamy, and
V. Sekar, “Making middleboxes someone else’s problem: network pro-
cessing as a cloud service,” ACM SIGCOMM Computer Communication
Review, vol. 42, no. 4, pp. 13-24, 2012.

C. R. Taylor, T. Guo, C. A. Shue, and M. E. Najd, “On the feasibility
of cloud-based sdn controllers for residential networks,” in 2017 IEEE
Conference on Network Function Virtualization and Software Defined
Networks, 2017.

B. Bezawada, M. Bachani, J. Peterson, H. Shirazi, I. Ray, and 1. Ray,
“Behavioral Fingerprinting of IoT Devices,” in ASHES, New York, NY,
USA, 2018.

F. F-H. Nah, “A study on tolerable waiting time: how long are web
users willing to wait?” Behaviour & Information Technology, vol. 23,
no. 3, pp. 153-163, 2004.

C. Axel, G. Ravindra, and O. W. Tsang, “Towards characterizing users’
interaction with zoomable video,” in SAPMIA, 2010.

N. Q. M. Khiem, G. Ravindra, and W. T. Ooi, “Towards understanding
user tolerance to network latency in zoomable video streaming,” in
Proceedings of the 19th ACM International Conference on Multimedia,
2011.

S. Schmidt, “Introducing s2n, a New Open Source TLS Implementation,”
Jun. 2015. [Online]. Available: https://aws.amazon.com/blogs/security/
introducing-s2n-a-new-open-source-tls-implementation/

