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Abstract—Binary analysis of malware to determine uses of
encryption is an important primitive with many critical applica-
tions, such as reverse-engineering of malware network commu-
nications and decryption of files encrypted by ransomware. The
state of the art for encryption fingerprinting in dynamic execution
traces, the ALIGOT algorithm—while effective in identifying a
range of known ciphers—suffers from significant scalability limi-
tations: in certain cases, even analyzing traces of a few thousands
of machine instructions may require prohibitive time/space. In
this work, we propose KALI, an enhanced algorithm based on
ALIGOT which significantly reduces time/space complexity and
increases scalability. Moreover, we propose a technique to focalize
the analysis on encryption used for specific purposes, further
improving efficiency. Results show that KALI achieves orders of
magnitude reduction in execution time and memory utilization
compared to ALIGOT, and processes real-world program traces
in minutes to hours.

I. INTRODUCTION

Despite wide-ranging efforts by academia and industry,
malware remains one of the most widespread and damaging
online threats. Infections can affect individual users and orga-
nizations, bringing about significant damage due to financial
and reputation loss [1], [2], [3]. Due to the strong economic
incentives in creating and distributing malware, these are
extremely popular activities, with new samples being observed
at rates of millions per year [4]. Given this situation, it is
extremely difficult for security operators and developers of
anti-malware tools to keep their expertise and techniques up-
to-date and effective against the most recent attack strategies.

Developing methods for detecting and counteracting mal-
ware infections is complex and involves malware reverse-
engineering, which is accomplished by analysis of malware
binaries and the network traffic they produce. Such analysis
is more art than science, requiring significant expertise and
being complicated by defenses deployed by malware, such as
virtual machine detection and binary obfuscation. Performing
this time-consuming analysis manually on each new malware
family is impractical; it is therefore important for the security
community to provide tools to automate this process.

A critical aspect of malware functioning is the use of
encryption, for purposes such as securing communications
between infected machines and command and control (C&C)
servers, and scrambling local files as in the recent WannaCry
outbreak [3]. It is clear that being able to profile and reverse
the use of encryption ciphers is an important analysis primitive
which can benefit both malware understanding and detection.

ALIGOT [5], by Calvet et al., is a recently proposed
algorithm to fingerprint and reverse symmetric encryption used
by malware, with several promising characteristics. First, it is

based on dynamic analysis of malware execution traces, which
allows it to sidestep hurdles that are traditionally deployed
against static binary analysis, such as obfuscation and packing.
Also, it works in a largely automated fashion, only requiring
access to a malware machine-level instruction trace, and can
extract encryption keys and cleartexts. Internally, ALIGOT is
based on the insight that loops are recurring structures in
cipher implementations, therefore searching execution traces
for chains of dynamic loops. Once such chains have been
identified, each candidate chain is validated by comparing
its inputs and outputs against those of known ciphers. At
the end of the process, each candidate is either discarded or
successfully matched to a known cipher. In the latter case, the
algorithm also returns keys, cleartext and ciphertext.

Unfortunately, ALIGOT also has significant limitations
which hamper its usefulness in practice. First, the core algo-
rithm for loop detection has time and space complexity which
are quadratic in the number of instructions in a trace. While
this may appear low, in § V we show that it translates to
prohibitive execution times and memory occupations even for
traces of a few thousands of instructions. Second, the vali-
dation step—which matches candidates to known encryption
ciphers—is highly time-consuming, due to the large number
of potential interpretations of input and output parameters.

In this paper, we propose KALI, an encryption fingerprinting
algorithm which improves ALIGOT to solve its most signif-
icant limitations, thus achieving high scalability. In partic-
ular, KALI implements a significantly faster loop detection
step which internally leverages the Kolpakov/Kucherov algo-
rithm [6] to achieve quasi-linear complexity (KALI stands for
Kolpakov/Kucherov-based ALIGOT). Furthermore, it filters
candidate encryption functions based on the uses of their out-
put, allowing the analyst to select for example only encryption
that affects network data. This operation can significantly limit
the number of candidates that must undergo the expensive
matching step. Overall, KALI lifts the maximum feasible trace
size from tens of thousands of instructions to millions, pro-
viding a practical primitive for malware analysts. In previous
work, we have used KALI as part of a reverse-engineering
pipeline for malware protocols [7], which demonstrates our
solution’s effectiveness and versatility.

The rest of this paper is organized as follows. In § II we
describe and analyze ALIGOT. In § III we introduce KALI and
discuss our implementation of the loop detection step, while
§ IV describes our candidate filtering procedure. § V presents
the experimental evaluation, § VI discusses related work, and
§ VII concludes the paper.



II. BACKGROUND: THE ALIGOT ALGORITHM

ALIGOT, by Calvet et al. [5] is a dynamic program analysis
algorithm for heuristically detecting the execution of sym-
metric encryption algorithms (ciphers) in program instruction
traces. The algorithm detects instruction sequences executing
encryption ciphers, together with inputs (key, cleartexts) and
outputs (ciphertexts). ALIGOT is based on the intuition that
symmetric encryption algorithms operate by applying the same
computation (encryption) over a stream of data (cleartext) in
an iterative fashion. The execution of an encryption primitive
therefore presents itself as one or more instruction loops, con-
nected to each other in a chain by input/output relationships.
ALIGOT uses a loop detection algorithm to identify dynamic
loops, i.e. repeated sequences of instructions, and joins them
into chains, each chain representing a candidate encryption
instance. Candidates are then matched to known ciphers by
comparing their inputs and outputs.

In our operative experience with ALIGOT, we identified
several potential pitfalls that may inflate execution time and
memory. Most can be solved by simple optimizations, but
one issue required significant effort: loop detection takes
impractical amount of time/space due to algorithm design.
The rest of this section introduces the problem, while § III
describes a redesigned loop detection step.

Algorithm 1 Loop detection step for ALIGOT

Input: A machine instruction trace T
Output: A set RL of all loops in T

1: RL← ∅;
2: H ← ∅; . List of past instructions
3: for each Instruction i ∈ T do
4: matched← true;
5: for each StackOfLoops ∈ RL do
6: if MATCH(StackOfLoops, i, H) then
7: matched← true; break;
8: if not matched then
9: APPEND(H , i);

10: if there exist other occurrences of i in H then
11: Create associated loop instances;
12: Add them to RL;

A. Overview of ALIGOT loop detection step

Formally, if AM is the alphabet defined by all possible
machine instructions, ALIGOT defines loops as words in the
language L ∈ {αnβ|α ∈ AM

+, β ∈ AM
+, n ≥ 2, β ∈

Pref(α)}. This definition covers all repetitions of a root α,
possibly followed by a prefix of α (e.g. the string ababa).
However, it does not cover nested loops, which are supported
with a simple extension. A language L′ that includes all loops
at nesting depth d can be defined by replacing all loops at
nesting depth d+1 with loop identifiers, such that loops with
the same root α are replaced by the same identifier, and adding
all identifiers to the alphabet of L′. Consider for example the
string abababcababc, which contains two iterations of an outer

loop (ab)+c. The two iterations of the inner loop have the
same root ab, and would therefore be replace by the same
identifier lab, resulting in the string labclabc. We can then
define a language L′ whose alphabet is A′M = {a, b, c, lab};
the string labclabc is a valid loop in L′. This suggests a
detection procedure based on recursively replacing loops with
loop identifiers, which is implemented by ALIGOT.

The loop detection step in ALIGOT uses an approach
that detects all loops, including nested ones, in a single
pass. The key operations are depicted in Algorithm 1. The
instruction trace T is scanned start to end (lines 3-12). If
no suitable candidate loops currently exist (line 8), each
instruction is considered the potential beginning of a new loop,
and a candidate loop structure is created for every previous
occurrence of the same instruction (lines 9-12). Candidate
loops are then either confirmed or discarded depending on the
instructions encountered next (lines 4-7). In particular, for each
candidate loop the MATCH procedure on line 6 (omitted for
brevity) checks whether the current instruction i corresponds
to the next expected instruction in the loop body. If yes, the
candidate is retained; if not discarded. Loops that complete
at least 2 iterations are confirmed and returned. Furthermore,
the algorithm keeps track of nested loops by maintaining a
loop stack for each candidate, with each element of the stack
corresponding to a nesting level—as soon as the innermost
loop terminates, the instructions in the loop are replaced by a
loop identifier, and matching continues on the outer loop. We
refer the reader to the ALIGOT paper [5] for the details.

B. Complexity of ALIGOT loop detection step

First, we note that—in order to process nested loops—
during each step MATCH can recursively call itself up to d
times, where d is the maximum loop nesting depth. As d tends
to be limited in typical programs, we model MATCH execution
time as constant. The main loop (lines 3-12) executes once
per instruction in the trace; however, identifying previous
occurrences of the current instruction (line 10) requires a
scan of the instruction history H , which can grow as large
as the trace T itself. As this scan must be performed for
every instruction in T , the worst-case time complexity of the
algorithm is O(n2), where n = |T |.

As for space complexity, the main auxiliary structure main-
tained by ALIGOT is RL, which at every step stores both
confirmed and candidate loops. A candidate loop is instantiated
whenever there exists a previous instance i−1 of the current
instruction i; creating a candidate loop involves creating a
copy of the loop body, i.e. all instructions between i−1 and
i. The maximum number of concurrent candidates is at least
linear in n and storing a candidate requires storing up to n−1
instructions. Therefore, ALIGOT’s space complexity is O(n2).

While quadratic complexity may in principle appear accept-
able, experimental evaluation—detailed in § V—reveals that
in practice it may translate to prohibitively high execution
times for traces as small as 10000 instructions. It is therefore
necessary to investigate an alternative approach to improve the
efficiency of this step, which we discuss in the next section.



III. SCALING ALIGOT: THE KALI ALGORITHM

As discussed in § II, ALIGOT’s loop detection algorithm
has quadratic complexity which results in impractical time and
memory consumption. In investigating a potential alternative
approach, we observe that the definition of dynamic loop
used by ALIGOT—excluding the extension to nested loops—
is equivalent to the definition of maximal repetition in word
combinatorics, which is formalized as follows:

Definition 1 (Period of a word). Consider a word w of length
n consisting of a sequence of characters a1...an. The period
of w is the smallest positive integer p such that ∀i s.t. 1 ≤
i, i+ p ≤ n, ai = ai+p. n/p is called the exponent of w.

Definition 2 (Maximal repetition). A maximal repetition in a
word w = a1...an is a word r = ai...aj , with 1 ≤ i, j ≤ n,
such that:

1) If i > 1, the period of ai−1...aj is greater than the
period of r.

2) If j < n, the period of ai...aj+1 is greater than the
period of r.

Note that it is tempting to interpret “maximal repetition”
as “longest possible repetition”. This interpretation however
is misleading, as “maximal” only means that it is not possible
to further extend the repetition either on the left or on the
right without increasing the repetition’s period. Also, maximal
repetitions can overlap. An example from [6]: the word
babbababbabba contains seven maximal repetitions: babab
(period 2), prefix babbababbab (period 5), prefix babbabba
(period 3), suffix babbab (period 3), and bb (period 1).

For the purpose of this work, it is interesting to observe
that the definition of dynamic loop used by ALIGOT—
excluding the extension to nested loops—is equivalent to the
definition of maximal repetition given above1. Importantly,
there exist in literature an approach to find all maximal
repetitions in a word of arbitrary length in linear time: the
Kolpakov/Kucherov algorithm [6]. This observation informs
the design of an improved version of ALIGOT, which we call
KALI (Kolpakov/Kucherov-based ALIGOT). In the rest of this
section we first introduce the Kolpakov/Kucherov algorithm,
and then illustrate how it is used to detect loops in dynamic
instruction traces in quasi-linear time.

A. Kolpakov/Kucherov algorithm primer

The Kolpakov/Kucherov algorithm is based on a result
by Main [8], which demonstrates how to detect all the
unique leftmost maximal repetitions in a word—i.e. all the
first occurrences of distinct maximal repetitions in the word
(assuming that the word is processed left-to-right)—in linear
time. By extending this approach, it is possible to detect all
maximal repetitions in a word in linear time. In particular, the
Kolpakov/Kucherov algorithm first uses Main’s approach to
find all leftmost maximal repetitions, referred in the following

1Formally, ALIGOT’s definition of a loop matches that of repetition, and
not the more specific one of maximal repetition. However, ALIGOT’s loop
algorithm in practice only returns maximal repetitions.

Algorithm 2 Main steps in the Kolpakov/Kucherov algorithm

Input: A word w of arbitrary length
Output: A set R of maximal repetitions in w

1: SA← COMPUTE SUFFIX ARRAY(w);
2: SF ← COMPUTE S FACTORIZATION(SA);
3: R1← COMPUTE TYPE1 REPETITIONS(SF );
4: R2← COMPUTE TYPE2 REPETITIONS(SF , R1);
5: R← R1 ∪R2;

as type-1 repetitions. It then finds the remaining maximal
repetitions, denoted as type-2 repetitions (note that type-2
repetitions are duplicates of type-1 repetitions).

1) Detecting type-1 repetitions: Main’s algorithm [8] is
based on a result which we state without further discussion:
all leftmost maximal repetitions (type-1 repetitions) in a word
w lie on the frontier between two s-factors2 of w.

Definition 3 (s-factorization). Consider a word w consisting
of a sequence of n symbols a1...an. The s-factorization of w
is a partition of w in s-factors u1...uk. Each s-factor ui is
defined inductively:

1) If a symbol a immediately following u1...ui−1 does not
occur in u1...ui−1, then ui = a.

2) Otherwise, ui is the longest word such that u1...ui is a
prefix of the word w, and ui has at least two possibly
overlapping occurrences in u1...ui.

s-factorization of a word w can be efficiently computed
using a suffix array for w, which in turn can be constructed
using various linear-time algorithms [10]. Main’s algorithm
first computes such s-factorization for the word of interest,
and then uses a set of linear-time auxiliary functions to find
all maximal repetitions on the frontiers between factors.

2) Detecting type-2 repetitions: Because of the properties
of s-factorization, each factor ui of a word w is either a novel
symbol, or a repeat of a subword encountered previously in
the input word w. Therefore, if a maximal repetition occurs
inside a factor ui, it is necessarily a duplicate of a type-
1 repetition encountered earlier in the word. In particular,
if the earlier occurrence of ui, which we refer to as ti,
contains a maximal repetition, then the same repetition will
occur again shifted to the right, at a distance from the first
occurrence equal to the difference between the position of ui
and the position of ti. In extreme synthesis, step 2 of the
Kolpakov/Kucherov algorithm exploits this fact, by keeping
track of the earlier occurrence of each factor ui in a word
w, and using this information to retrieve duplicate maximal
repetitions. We refer the reader to literature on the subject [6],
[9] for further details. Algorithm 2 summarizes the main steps
of the Kolpakov/Kucherov algorithm.

2Conflicting definitions of s-factorization seem to exist in literature.
Kolpakov and Kucherov define it as equivalent of Lempel-Ziv factoriza-
tion [6], however in [9] the same authors call the factorization given here
s-factorization, and give a different definition of Lempel-Ziv factorization.
Moreover, Ohlebusch and Gog’s definition of Lempel-Ziv factorization [10]
is equivalent to Lothaire’s (and ours) definition of s-factorization. To avoid
confusion, we refer to the operation solely as s-factorization.



B. The KALI algorithm

KALI replaces ALIGOT’s loop detection step (ref. § II)
with one based on the Kolpakov/Kucherov algorithm de-
scribed above. The KALI loop detection step is given
in Algorithm 3. At its core, KALI detects loops (line
4) by running the Kolpakov/Kucherov algorithm (function
FIND MAXIMAL REPETITIONS, defined in Algorithm 2) on
the input instruction trace T , and collecting all the detected
maximal repetitions. However, this is not sufficient because
the Kolpakov/Kucherov algorithm per se cannot detect nested
loops. Furthermore, ambiguities can arise with certain se-
quences of instructions. We deal with both issues using post-
processing steps.

Algorithm 3 Loop detection step for KALI

Input: A machine instruction trace T
Output: A set R of all loops in T

1: R← ∅;
2: do
3: . Repetitions in L are sorted by start, end position
4: L← FIND MAXIMAL REPETITIONS(T );
5: A← ∅;
6: for each Repetition r ∈ L do;
7: accept← true;
8: for each Repetition r′ ∈ A do
9: if overlap(r, r′) then

10: accept← false; break;
11: if accept = true then
12: A = A ∪ {r};
13: for each Repetition r ∈ A do
14: T ← REPLACE WITH ID(T, r);
15: R← R ∪A;
16: while A 6= ∅;

1) Nested loop detection: Our approach performs multiple
passes over the input trace T , each detecting one level of
nested loops. This is described in Algorithm 3, lines 2-16.
Ignoring lines 5-12 for now, lines 13-14 iterate over all ac-
cepted maximal repetitions detected in one pass. The auxiliary
function REPLACE WITH ID takes each detected loop and
replaces its body in the trace by a loop identifier. As an
example, consider again the string abababcababc consisting
of two iterations of the outer loop (ab)+c. We would first
identify all innermost loops (ab)+ and replace them by an
identifier, lending to the string l1cl1c. We would then run the
Kolpakov/Kucherov algorithm again, this time identifying the
outer loop l2. Our approach iterates until no further loops are
detected in one pass, in general performing d+1 passes, where
d is the maximum loop nesting depth in the trace.

2) Loop filtering: An instruction trace may contain am-
biguous sequences of instructions, that may be interpreted as
containing different sets of potentially overlapping loops. As
in a valid program execution loops cannot overlap, such ambi-
guities must be resolved by selecting some of the overlapping
loops, and discarding the others. One case of particular interest

is that of nested loops, that can create artifacts in the trace. For
example, consider the string ababac, abababac, ababababac
(with commas inserted for clarity and not part of the string),
representing an outer loop with body (ab)+ac, where the inner
loop with body ab repeats a variable number of times at each
iteration. The Kolpakov/Kucherov algorithm will correctly
locate all the instances of the inner loop (ab)+ but it will
also identify the apparent loop (ababacab){2}. The original
ALIGOT loop detection algorithm resolves such ambiguities
by greedily accepting loops; i.e. as soon as a loop is iden-
tified it is stored, and the instructions which are part of its
body become unavailable for constructing other loops. This
is a reasonable heuristic (although without any guarantee of
correctness), and in the situation above it will greedily accept
the first, shorter loop, and it will not generate the fake loop
(ababacab){2}. In our approach, we simulate this strategy by
post-processing the list of maximal repetitions in this way:

1) Sort list of maximal repetitions by start position, use end
position as sorting criterion to resolve ties.

2) Traverse the sorted list of maximal repetitions. At each
position, examine the current repetition:

• If the current repetition does not overlap with any
accepted repetition, accept it,

• If the current repetition does overlap with one or
more accepted repetitions, discard it.

Sorting repetitions by start position and end position guar-
antees that, in case multiple loops overlap, the one occurring
earlier is accepted, which is the same heuristic selection
strategy implicitly adopted by ALIGOT. In Algorithm 3, the
filtering operation is implemented in lines 5-12; note that
FIND MAXIMAL REPETITIONS internally already sorts the
repetitions, as this is necessary for finding type-2 repetitions.

C. Complexity of KALI

Detecting maximal repetition is accomplished in time linear
in the length n of the trace T . Checking overlap between
repetitions has complexity O(r2) where r is the number of
maximal repetitions in T . Note that both operations must be
repeated d times, where d is the maximum nesting depth;
however as discussed in § II, we treat d as a small multiplica-
tive constant. Therefore, the overall time complexity of our
loop detection approach is O(n+ r2). In contrast, ALIGOT’s
original loop detection step has complexity O(n2); note that in
realistic program traces n >> r. In practice, we observed that
KALI lifts the maximum trace size that is practical to analyze
with ALIGOT by orders of magnitude, as evaluated in § V.

In terms of space complexity, the main working data struc-
ture kept by KALI—besides the trace T itself—is the list of
loops R; however, differently from ALIGOT, KALI only stores
confirmed loops, so the memory occupation of this structure is
O(r) and negligible. As for FIND MAXIMAL REPETITIONS,
the most expensive operation in terms of memory occupation
is the s-factorization; we use an algorithm by Ohlebusch and
Gog whose space complexity is O(n) [10].



IV. CLASSIFYING ENCRYPTION USES

Besides the loop detection step described in § III, in KALI
we deploy a second optimization which decreases the overall
number of candidate encryption instances that are matched
against known ciphers. This is motivated by two observations.
The first is that matching each candidate to a known cipher is
a time-consuming operation. At high level, the set of inputs
IN(G) to an encryption candidate G is passed to each element
k in a set K of known ciphers. If the output of any known
cipher k ∈ K is equal to the encryption candidate’s output
OUT (G), then the candidate G is accepted and associated
to the cipher. However, this approach faces scalability issues
as there are many different possible mappings from the low-
level inputs of an encryption instance (contents of individual
memory locations and machine registers) to the high-level
inputs of a cipher algorithm (variables with abstract types such
as string key, byte[] cleartext). A similar prob-
lem is faced when dealing with the outputs of the encryption
candidate. ALIGOT tackles the instance-to-cipher matching
problem by considering many possible mappings from the
low-level parameters of an encryption instance to the high-
level parameters of a cipher implementation. This operation
is computationally intensive because it requires executing all
ciphers supported by ALIGOT on every possible interpretation
of the input and output parameters, of which there are many.
For example, the matching operation on the malware traces
detailed in § V requires 2.33 seconds/candidate. The second
observation is that in practice not all uses of encryption may
be of interest to the analyst. For example, if the analysis is
targeted at decrypting the malware’s network communications
(as previously proposed in [7]), only encryption candidates
whose output is sent on the network should be considered for
matching. Similarly, if the analysis targets a ransomware the
analyst may be only interested in encryption of local files.

Based on these two observations, we further modify the
ALIGOT algorithm to enable considering only candidate
encryption instances whose output is used for a particular
purpose, thus achieving a reduction (quantified in § V) in the
number of candidates that must undergo the expensive match-
ing operation. In particular, we found that an approach that
works well is to infer such purpose from the type of system
calls that make use of the encrypted output. This requires an
overhaul of the way ALIGOT proceeds in analyzing the traces,
which we outline in the rest of this section.

A. System call tracing

First, to deploy our optimization scheme the sandbox
recording the malware execution traces must be modified
to also extract the system calls of interest, along with each
call’s input parameters. Our current implementation supports
selecting system calls used to send data over the network.
In particular, we support the following calls from the Win-
dows WSA API: WSASend, WSASendTo, send, sendto,
TransmitFile, and InternetWriteFile. It should be
noted that modern OS APIs may offer many different ways to
send data over the network; although this set of system calls

is sufficient for the malware we evaluated we make no claim
that it is complete.

The overhead of capturing these calls is negligible compared
to that of generating the instruction trace; an analysis of our
execution traces from three malware families shows that one
system call of interest is issued every ∼140K instructions.

Algorithm 4 High-level operations in KALI

Input: An instruction trace T
Input: A location l in T
Output: A set E of encryption instances

1: T ′ ← T1, ..., Tl; . Truncate trace
2: R← DETECT LOOPS(T ′); . ref. Algorithm 3
3: C ← BUILD LOOP CHAINS(R);
4: for each Loop chain G ∈ C do
5: Outputs← OUT (G);
6: for each Instruction i ∈ T ′LAST (G)+1...T

′
l do

7: Outputs← Outputs \DEF (i);
8: if Outputs ∩ USE(T ′l ) = ∅ then
9: C ← C \ {G};

10: E ← ∅;
11: for each Remaining loop chain G ∈ C do
12: k ← MATCH(G); . match G against known ciphers
13: if k 6= ⊥ then . Check if a match has been found
14: E ← E ∪ (G,K);

B. Encryption candidate filtering
While ALIGOT receives as input an instruction trace T

which it analyzes in its entirety, KALI receives as input an
instruction trace T—including both machine instructions and
system calls of interest—and the location l of a system call
within T . It then truncates the trace at that system call, and
only processes candidate encryption instances whose output
is used by the system call. The locations of system calls of
interests are obtained by a simple pre-processing step.

Algorithm 4 describes the overall KALI algorithm. It makes
use of a few simple auxiliary functions: DEF (i) (USE(i)) re-
turns the set of memory locations written (read) by instruction
i. LAST (G) returns the location of the last instruction in a
loop chain G within T . OUT (G) returns the output parameters
of a loop chain G. Informally, the output of a loop chain G is
defined as all memory locations written by loops in G which
are not reused as input by other loops in G.

Lines 1-3 detect loops, assemble them in chains, and in the
process compute input and output parameters for each chain.
Then, lines 4-9 verify whether the output of each candidate
chain overlaps with the input of the system call of interest.
Care must be taken to ensure no other instruction overwrites
the candidate’s output before it is used by the system call (lines
5-7). Lines 10-14 match the candidate’s inputs and outputs
against known encryption ciphers, returning positive matches.

Note that in our current implementation the KALI algorithm
must be run separately for every system call of interest;
however the set of encryption candidates and their outputs
can be memoized so that they are only computed once.
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Fig. 1: Comparison of execution times and memory utilization for ALIGOT and KALI

Malware Execution
time [s]

Max trace
length [insn]

Cipher

Sality 872 17770293 RC4
Ramnit 414 2355323 RC4
ZeroAccess 1617 9094518 RC4

TABLE I: Details of the traces generated by each malware

V. EVALUATION

In this section, we compare time and memory occupation
for ALIGOT’s and KALI’s loop detection steps, using as inputs
instruction traces of various sizes from three different malware
families. Results show that the optimizations described in
§ III are necessary in order to process traces of realistic size.
Overall, KALI decreases processing times by up to 4 orders
of magnitude and memory occupation by up to 2 orders of
magnitude in in the loop detection step.

Furthermore, we analyze an implementation of KALI’s
classification step which can isolate encryption executions
used to generate networking data; this filtering step results in
up to a 70% reduction in the number of candidate encryption
instances that must be further analyzed.

A. Implementation and datasets

The evaluation of ALIGOT is based on the code published
by its authors [11]. Our implementation of KALI consists
of a fork of ALIGOT’s Python code which implements our
improvements; we implemented the Kolpakov/Kucherov algo-
rithm in a separated C++ codebase which is then called by the
KALI code. Our implementation of Kolpakov/Kucherov inter-
nally uses Angelos Molfetas’s code for s-factorization [12],
however we replace the suffix array construction step with
one due to Yuta Mori [13], which is significant more space-
efficient for large alphabet sizes.

The instruction traces used to evaluate ALIGOT and KALI
were generated by running binaries from three different mal-
ware families (Sality [14], Ramnit [15] and ZeroAccess [1]) in
a sandbox. The sandbox is based on the Cuckoo software [16],

which we modified in order to use PIN [17] to capture machine
instruction traces. We only traced instructions from malware
binary (or injected process), and not library code. Table I
details the input traces specifying for how long each malware
binary executed, the maximum trace length across all threads,
and the cipher being used. We run all the experiments in this
section on a MacBook Pro laptop equipped with 16GB of
RAM and a 4-core Intel Core I7 processor running at 2.9GHz.

B. Evaluation of loop detection step

This section compares the performance of ALIGOT and
KALI loop detection steps, focusing in particular on scalability.
In order to do so we extracted random subtraces of various
lengths from the traces detailed in Table I and we fed them
as input to both algorithms, measuring execution times and
memory occupation. In particular, we generated subtraces of
length 100, 1000, 10000, 100000 and 1000000. For each of
the first two cases, our evaluation set consist of 1000 different
traces; for the remaining three, we used smaller sets of 100
traces each, in order to bound experiment time. For the same
reason, we cap execution time for each run to two hours.

Results concerning execution times are presented in Fig-
ure 1(a), while results on memory utilization are presented in
Figure 1(b) (note the use of log scale on all axes). Results for
ALIGOT on traces of length 100000 and 1000000 are missing
because the algorithm times out in most runs—in particular,
of the 100 traces of length 100000 that we considered, only
5 were completed within the 2 hours time bound. Further
analysis of the timed-out runs reveals an average completion
rate (in terms of instructions processed at termination) of 20%.

Analysis of the 100-, 1000- and 10000-instruction runs
evidences two significant issues affecting ALIGOT. The first is
a superlinear increase in running time and memory occupation
depending on trace size, which confirms the results of the
complexity analysis presented in § II. The second is a high
variability in processing times, which are strongly dependent
on the structure of individual traces. Briefly, this depends on
the fact that traces containing high density of loops enable



Malware #instructions
(total)

#insn (truncated
traces)

#candidates
(truncated traces)

#candidates (af-
ter filtering)

Avg processing
time

Sality 68M 880079 2136 1696 2.30s
Ramnit 13M 119310 341 110 2.82s
ZeroAccess 19M 8504 4 3 <0.01s

TABLE II: Impact of trace truncation and candidate filtering

the algorithm to quickly confirm pending loop candidates and
shorten the instruction history that must be considered. In
contrast, traces containing long straight-line code sequences
force the algorithm to maintain a long history and instantiate
large numbers of bogus candidate loops. A significant implica-
tion is that malware can force worst-case complexity (making
analysis impractical) by executing the right instruction mix.

Results for KALI show reduced time and memory require-
ments compared to ALIGOT on large traces: the algorithm
completes in under three minutes in all cases, with a maximum
memory consumption of 2.7GB. In particular, average com-
pletion times (memory utilization) for ALIGOT and KALI on
the 10000-instruction case are respectively 2337s (1331MB)
and 0.32s (32MB). ALIGOT is slightly faster on very short
traces, likely due to the slow file-based interface between
the KALI Python code and our C++ Kolpakov/Kucherov
implementation, whose overhead is high for small inputs (as
future work we plan to upgrade the implementation to a
more efficient Python wrapper). Another desirable result of
KALI is that the particular choice of trace has only a small
effect on running times, and negligible effect on memory
consumption. Furthermore, excluding the 100- and 1000-
instruction trace cases (where the overhead discussed above is
likely to dominate), both time and memory show a clear linear
dependence on trace size. Overall, these results encourage
us to conclude that KALI’s redesigned loop detection step
succeeds in improving efficiency and scalability of ALIGOT.

C. Evaluation of candidate filtering strategy

In this section, we evaluate the impact of the candidate
filtering strategy described in § IV on the efficiency of the
encryption analysis process. Such impact is twofold. First, the
fact that traces are truncated at the point where a system call
of interest occur (line 1 in Algorithm 4) implies a reduced
workload on the loop analysis process (lines 2-9) which
generates encryption candidates (i.e. loop detection and loop
chain construction). Second, candidates generated from the
truncated traces are further filtered, and only candidates whose
output is received by system calls of interest is retained.

To evaluate both effects, we performed loop detection and
loop chain construction both with and without filtering. The
filtering step used in this experiment determines the set of
system calls as follows: first, it finds all instances of network
system calls within the traces (ref. to § IV for a list). Then, it
retains network system calls whose output matches the content
of network packets generated by the malware.

Results are shown in Table II. For each malware, it presents
the overall number of instructions across all traces and the

Malware Loop detec-
tion

Loop chain
building

Matching

Sality 11.98s/198MB 478s/2124MB 4064s/364MB
Ramnit 2.00s/284MB 415s/1047MB 310s/1124MB
ZeroAccess 0.19s/145MB 2.97ss/569MB 0.02s/15MB

TABLE III: Time and memory requirement for KALI’s steps

number of instructions actually analyzed due to truncation
(columns 2 and 3). It also shows the number of encryption
candidates in the truncated traces (column 4) and the number
of candidates retained after filtering (column 5). For the
candidates that are processed, we show the average per-
candidate processing time in the matching step (column 6).
While in our evaluation trace, truncation brings an orders of
magnitude reduction in the number of instruction that must be
processed, we caution against generalizing this observation. In
fact, it is likely to depend on the fact that the malware samples
being considered attempt to contact their botnet shortly after
infection and other malware families may behave differently.
Candidate filtering brings a significant reduction of the number
of candidates—between 20% and 71% in our traces. Overall,
results show the filtering step to be beneficial, since processing
of each candidate may require up to several seconds.

D. Aggregate time and memory requirements of KALI

This section profiles the overall execution times of KALI
on our input traces, breaking them down by individual steps.
Results are summarized in Table III; each row refers to the
analysis of traces generated by a different malware family.
Individual columns show execution time and highest mem-
ory consumption for the main steps in the algorithm: loop
detection (line 2 in Algorithm 4), loop chain construction
and filtering (lines 3-9) and candidate matching (lines 10-14).
As can be seen, KALI completes the analysis of real-world
malware traces in practical time and memory. Results also
confirm that—without KALI’s optimizations—loop detection
would constitute a significant bottleneck in the algorithm.

VI. RELATED WORK

A. Encryption reverse engineering

Works in this category are perhaps the closest to KALI.
They attempt to identify cleartext corresponding to malware-
encrypted content. Lutz [18] uses dynamic analysis to identify
the location of decrypted buffers in memory. It makes no
attempt to identify the specific cipher being used, and assumes
encryption algorithms are implemented as discrete functions,
which may not be true in obfuscated code. Dispatcher [19]



and ReFormat [20] use a similar approach and like the work
by Lutz do not determine the ciphers being used. Lestringant
et al. [21] propose an approach based on static analysis, which
does not target obfuscated malware code. Zhao et al. [22]
use dynamic taint analysis to identify procedures performing
encryption; however the boundaries of such procedures may
not be available in obfuscated code. CryptoHunt [23] is a
approach partly based on ALIGOT, but uses symbolic loop
mapping to map encryption candidates to ciphers, leading to a
potentially more precise matching step. As it reuses ALIGOT’s
loop detection, KALI optimizations apply to this work too.

B. Encrypted content labeling

The goal of these techniques is to label encrypted content
for the purpose of associating network activity with specific
malware families. They either require previous understanding
of the cipher being used, or ignore it. ProVex [24] identifies
encrypted malware traffic by applying a battery of decryption
algorithms to network messages, and then performing a prob-
abilistic analysis on decrypted content. CoCospot [25] works
similarly but use features which are not affected by encryption.
Cisco appliances can identify malware traffic regardless of
encryption [26], using non-payload-related features.

C. Identification of encryption activities

The purpose of works in this category is to identify and
block encryption-related program behavior which is frequently
associated with ransomware infections, using high-level be-
havioral features. Their goal is orthogonal to ours of precisely
characterizing malware uses of encryption. Unveil [27] gen-
erates fake honeypot users whose files are then monitored to
identify ransomware-like activity. Similarly, CryptoDrop [28]
and HelDroid [29] identify and block ransomware by using
a set of indicators such as file manipulations and display of
ransom requests. Yang et al. [30] propose an approach which
uses a combination of static and dynamic analysis to identify
Android ransomware. Finally, PayBreak [31] stores keys used
by ransomware, enabling decryption of locked files.

VII. CONCLUSIONS

This paper presented KALI, an algorithm for detection of
cryptographic functions in obfuscated malware code. KALI
is based on the popular ALIGOT algorithm, but deploys
a number of optimizations which significantly decrease the
execution time, enabling its application to large instruction
traces which are typically generated by sandboxed malware
executions. As such, it can provide a powerful and practical
tool to the analyst, potentially sparing the complex and time-
consuming manual process of encryption reverse-engineering.
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