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Abstract. Reliable identification of encrypted file fragments is a requirement for
several security applications, including ransomware detection, digital forensics, and
traffic analysis. A popular approach consists of estimating high entropy as a proxy
for randomness. However, many modern content types (e.g. office documents, me-
dia files, etc.) are highly compressed for storage and transmission efficiency. Com-
pression algorithms also output high-entropy data, thus reducing the accuracy of
entropy-based encryption detectors.

Over the years, a variety of approaches have been proposed to distinguish en-
crypted file fragments from high-entropy compressed fragments. However, these
approaches are typically only evaluated over a few, selected data types and frag-
ment sizes, which makes a fair assessment of their practical applicability impossible.
This paper aims to close this gap by comparing existing statistical tests on a large,
standardized dataset. Our results show that current approaches cannot reliably tell
apart encryption and compression, even for large fragment sizes. To address this
issue, we design EnCoD, a learning-based classifier which can reliably distinguish
compressed and encrypted data, starting with fragments as small as 512 bytes. We
evaluate EnCoD against current approaches over a large dataset of different data
types, showing that it outperforms current state-of-the-art for most considered
fragment sizes and data types.

1 Introduction

Reliable detection of encrypted data fragments is an important primitive with
many applications to security and digital forensics. For instance, ransomware de-
tection algorithms use estimates of write-operations’ data randomness to quickly
identify evidence of malicious encryption processes [25, 33, 17, 26]. When perform-
ing digital forensic analysis of hard drives and phones, it is oftentimes important
to identify encrypted archives [16]. Finally, encryption detection is widely used in
network protocol analysis [18, 20].

A popular approach to address this problem is to estimate the Shannon en-
tropy of the sequence of interest using the Maximum Likelihood Estimator (MLE):
ĤMLE . This approach leverages the observation that the distribution of byte val-
ues in an encrypted stream closely follows a uniform distribution; therefore, high
entropy is used as a proxy for randomness. This estimator has the advantage
of being simple and computationally efficient. As non-encrypted digital data is
assumed to have low byte-level entropy, the estimator is expected to easily differ-
entiate non-encrypted and encrypted content.



While this approach remains widely used (e.g., [25, 33, 17, 26]), a number of
works have highlighted its limitations. Modern applications tend to compress data
prior to both storage and transmission. Popular examples include the zip com-
pressed file format, and HTTP compression [21] (both using the DEFLATE algo-
rithm). As compression removes recurring patterns in data, compressed streams
tend to exhibit high Shannon entropy. As a result, compressed data exhibit values
of ĤMLE that are close and oftentimes overlapping with those obtained by en-
cryption. In principle, compressed content can be identified by using appropriate
parsers. However, many security-related applications, such as ransomware detec-
tion, traffic analysis and digital forensics, generally do not have access to whole-file
information, but rather work at the level of fragments of data. In these settings,
the metadata that is required by parsers is not present or is incomplete [35]. Given
this issue, a number of works have been looking at alternative tests to distinguish
between encrypted and compressed content [30, 41, 32, 34, 23, 12, 14]. While these
works have the potential to be useful, there has been limited evaluation of their
performance on a standardized dataset. Consequently, there is no clear under-
standing of how these approaches: (i) fare on a variety of compressed file formats
and sizes, and (ii) compare to each other. The potential negative implications are
significant: the use of ineffective techniques for identifying encrypted content can
hinder the effectiveness of ransomware detectors [19], and significantly limit the
capability of forensic tools.

Our work compares state-of-the-art approaches on a large dataset of differ-
ent data types and fragment sizes. We find that, while more useful than entropy
estimates, current approaches fail to achieve consistently high accuracy. To ad-
dress this, we propose EnCoD (Encryption/Compression Distinguisher), a novel
neural network-based approach. Our evaluation shows that EnCoD outperforms
existing approaches for most considered file types, over all considered fragment
sizes. EnCoD can classify data fragments as small as 512B with 86% accuracy,
increasing to up to 94% for purely compressed data (i.e., zip, gzip) and up to
100% for compressed application data fragments (e.g., pdf, jpeg, mp3) for 8KB
fragment sizes. Overall, this paper makes the following contributions:

– We review and categorize existing literature on the topic of distinguishing
compressed and encrypted data fragments.

– We systematically evaluate and compare state-of-the-art approaches on a large,
standardized dataset including a variety of fragment formats and sizes.

– We propose a new neural-network based approach, which outperforms current
state-of-the-art tests in distinguishing encrypted from compressed content for
most considered formats, over all considered fragment sizes.

– We propose a new multi-class classifier that can label a fragment with high
accuracy as encrypted data, general-purpose compressed data (zip/gzip/rar),
or one of multiple application-specific compressed data (png, jpeg, pdf, mp3).

– We thoroughly discuss the implications of our findings, in terms of the appli-
cability of the evaluated approaches.

The rest of this paper is structured as follows: Section 2 provides background
on entropy estimation and its applications. Section 3 reviews existing approaches
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to the problem. Section 4 presents and evaluates a novel approach to the problem,
based on deep learning. Section 5 estimates the performance of the considered
approaches, discussing their strengths and limitations. Section 6 discusses the im-
plications of our findings. Section 7 discusses related work and Section 8 concludes
the paper.

2 Background

Determining the format of a particular data object (e.g. a file in permanent storage,
or an HTTP object) is an extremely common operation. Under normal circum-
stances, it can be accomplished by looking at content metadata or by parsing the
object. Things get more complicated, however, when no metadata is available and
the data object is corrupted or partly missing. In this paper, we focus on detec-
tion of encrypted content and, in particular, on distinguishing between encrypted
and compressed data fragments. We begin by examining relevant applications of
encryption detection primitives.

2.1 Ransomware Detection

Ransomware encrypts user files with the aim of making them unusable for the
user. It then presents a prompt asking the user to pay a ransom in order to receive
the decryption key. Ransomware attacks can cause significant financial damage to
organizations [3, 4, 10].

Mitigating a ransomware infection requires rapid detection and termination
of all ransomware processes. A number of approaches based on behavioral process
analysis have been proposed for this purpose [25, 33, 17, 26]. These approaches typ-
ically rely on a classifier trained on various process-related features to distinguish
benign and ransomware processes. Virtually all proposed behavioral detectors use
entropy of file write operations as one of the key features, based on the insight
that frequently writing encrypted content is a characteristic behavioral fingerprint
of ransomware. Entropy is typically estimated using ĤMLE . In several approaches
entropy is estimated on the content of individual file writes [25, 26, 17], therefore
the estimation procedure has only access to partial file fragments.

2.2 Forensics

Digital forensics oftentimes involves analysis of phone [39] or PC [35] storage that
has been corrupted, or uses an unknown format. Therefore, forensic techniques
attempt to recover data of interest (contacts, pictures, etc.) by searching for blocks
with recognizable structure. These techniques typically only have access to data
fragments, rather than whole files.

Encrypted and compressed data represent a corner case, as they exhibit a
complete lack of structure. Still, detecting such content may be important in
data recovery operations (e.g., if sensitive data is known to have been encrypted).
Distinguishing between compressed and encrypted blocks is notoriously difficult,
and some forensic approaches label data as “compressed or encrypted”, without
attempting to pinpoint which one of the two it is [16].
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2.3 Network Traffic Analysis

Network traffic analysis examines flows in/out of a network to identify security
issues. Regulations (e.g. HIPAA in the U.S.) and best practices expect sensitive
data to be encrypted in transit; therefore, entropy-based analyzers have been
proposed to ensure that all traffic leaving a monitored network is encrypted [20].
Another application is reverse-engineering of network protocols used by malware.
It has been observed [18] that malware protocols may mix encrypted and non-
encrypted content within the same message. Encryption detection primitives can
be applied to break messages into encrypted and non-encrypted fields.

In both cases above, encryption detectors have partial visibility on the data
stream and can only access fragments of data (e.g., an encrypted stream broken
into individual packets), rather than whole data objects.

2.4 Challenges

In the three domains above, the use of Shannon entropy has been proposed in order
to identify encrypted content. Entropy is used to measure the information content
of a byte sequence; highly structured data exhibit low entropy, while unstructured
data—such as a randomly distributed sequence—have high entropy. Therefore,
an entropy estimate can be used as a proxy for how close a sequence of bytes
is to being randomly distributed. Most encryption algorithms output ciphertexts
whose byte-value distributions tend to follow a uniform distribution. As a result,
an encrypted bytestream will almost invariably exhibit high entropy.

One of the most common approaches to entropy estimation is the Maximum
Likelihood Estimator ĤMLE = −

∑255
i=0 filog2(fi), where fi is the frequency of

byte value i in the sequence. The entropy range is [0 − 8]. The frequency fi of
byte value i, which is measurable, is used in place of the probability P (i) of that
value occurring, which is unknown. This approach is commonly used in some of
the applications above (e.g., [25, 20]), due to its simplicity and efficiency.

This reasoning assumes that, while encrypted data has high entropy, non-
encrypted data does not. This appears reasonable, as most relevant data types
(e.g., text, images, audio) are information-rich and highly structured. However,
this assumption does not hold true in modern computing. Modern CPUs can
efficiently decompress data for processing, and compress it back for storage or
transmission; this is oftentimes performed in real time and transparent to the user.
As a result, most formats tend to apply compression [2, 38]. Informally, a good
compression algorithm works by identifying and removing recognizable structures
from the data stream; as a result, compressed data tend to exhibit high entropy. In
practice, this fact compromises the ability of entropy-based detectors to distinguish
encrypted and non-encrypted, compressed content.

Entropy estimates for common data formats. In order to substantiate the
claim above, we computed entropy estimates using a dataset consisting of 10,000
file fragments. The dataset covers various popular file formats and AES-256-
encrypted data. We considered multiple fragment sizes, from 512B to 8KB (details
in Section 4). Figure 1 summarizes the distribution of estimated entropy values for
eight different formats with block size 2048 (some ranges truncated for clarity).
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Fig. 1. Entropy ranges for common formats (2048B blocks)

Results for other block sizes were qualitatively similar; full results are tabulated
in Appendix A. As illustrated in Figure 1, both general-purpose (zip, rar) and
domain-specific (jpeg, mp3) compression algorithms result in data which exhibits
entropy whose ranges are overlapping with that of encrypted content (enc). The
only format that can be unambiguously distinguished is png. Even so, png still
overlaps with various other formats. Interestingly, utilities that create and modify
data in zip, gzip and png format internally all use the DEFLATE algorithm for
compression: the differences in entropy are likely due to differences in file structure
and algorithm implementation.

Due to the limits of entropy estimation, the attention of the community has
been increasingly focusing on alternative measures that can more precisely es-
timate whether data follow a random distribution. However, no comprehensive
review of such approaches exists. In the next section, we review state-of-art ap-
proaches, while we evaluate and compare them in Section 5.

3 Review of Existing Techniques

This section reviews three state-of-the-art approaches to distinguishing encrypted
and compressed content: the NIST suite, χ2 and HEDGE [12]. Strictly speaking,
these approaches test the randomness of a string of bytes, and make no attempt
to determine its type. However, due to their high precision they can be used to
distinguish true pseudorandom (encrypted) sequences and compressed ones which,
while approximating a randomly generated stream, maintain structure.

The NIST suite and χ2 are standard statistical tests for identifying randomly-
distributed data. HEDGE is a recently proposed statistical approach which shows
promising results. HEDGE is a combination of a subset of the NIST tests and two
forms of χ2 tests. Note that, despite the inclusion of HEDGE, we decided to also
report separate results for NIST and χ2 due to the fact that those are designed to
be, and oftentimes are, used as standalone tests.

3.1 NIST SP800-22

The NIST SP800-22 specification [36] describes a suite of tests whose intended
use is to evaluate the quality of random number generators. The suite consists
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of 15 distinct tests, which analyze various structural aspects of a byte sequence.
These tests are commonly employed as a benchmark for distinguishing compressed
and encrypted content (e.g., [12, 14]). Each test analyzes a particular property of
the sequence, and subsequently applies a test-specific decision rule to determine
whether the result of the analysis suggests randomness or not. When using the
NIST suite for discriminating random and non-random sequences, an important
question concerns aggregation of the results of individual tests. Analysis of the
tests [36] suggests that they are largely independent. Given this observation, and
the intrinsic complexity of a priori defining a ranking between the tests, we use a
majority voting approach. In other words, we consider a fragment to be random
(and therefore encrypted) when the majority of tests considers it so. Since some of
the tests require a block length much bigger than the ones we use for our smaller
fragment sizes, we did not consider in the voting the tests that cannot be executed.

3.2 χ2 Test

The χ2 test is a simple statistical test to measure goodness of fit. It has been widely
applied to distinguish compressed and encrypted content [30, 34, 12]. Given a set
of samples, it measures how well the distribution of such samples follows a given
distribution. Mathematically, the test is defined as:

χ2 =
255∑
i=0

(Ni−Ei)
2

Ei

where Ni is the actual number of samples assuming value i, and Ei is the expected
number of samples assuming value i according to the known distribution of in-
terest. Since the distribution being evaluated for goodness of fit is the discrete
uniform distribution, ∀iEi = L/256, where L is the particular fragment length
being considered. The results of the test can be interpreted using either a fixed
threshold, or a confidence interval [12].

3.3 HEDGE

HEDGE [12] simultaneously incorporates three methods to distinguish between
compressed and encrypted fragments: χ2 test with absolute value, χ2 with confi-
dence interval and a subset of NIST SP800-22 test suite. Out of the NIST SP800-
22 test suite HEDGE incorporates 3 tests: frequency within block test, cumulative
sums test, and approximate entropy test. These tests were selected due to (i) their
ability to operate on short byte sequences, and (ii) their reliable performance on
a large and representative dataset. In the HEDGE detector the threshold of the
number of the above-mentioned NIST SP800-22 tests failed is set to 0. For the χ2

with absolute value test, the thresholds are pre-computed for each of the consid-
ered packet sizes, by considering the average and its standard deviation. For χ2

with confidence interval, the χ% interval is (χ% > 99%||χ% < 1%). For classifying
the content of a packet, HEDGE applies the three randomness tests to the input
data. Data is considered random only if it passes all tests.
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4 EnCoD: A Learning-based Approach

Past work and our own evaluation suggest that tests based on byte-value distri-
bution, such as χ2, can distinguish some encrypted and compressed content, but
have accuracy issues (ref. Section 5). Such tests, in a sense, “collapse” the entire
distribution to a single scalar value, losing information concerning the shape of the
distribution. It is therefore natural to ask if Deep Neural Networks (DNNs) can
improve such results. DNNs can consider the entire discrete distribution (modeled
as a feature vector), and can learn to recognize complex distributions [29].

In order to evaluate the potential of DNNs we designed EnCoD, a set of
two distinct neural network-based approaches for distinguishing encryption and
compression.

4.1 Model Architecture #1: Binary Classifiers

Our first model is a binary classifier trained to distinguish a single specific com-
pressed format from encrypted content. It may be used in cases where only one
compressed format is known to exist in the dataset (e.g., detecting writes of en-
crypted data performed by a potential ransomware on image files vs legitimate
writes of JPEG-compressed data). We explored several alternative architectures
for this application, and we found that the structure depicted in Figure 2a pro-
vides the best performance. The binary-classifier architecture consists of 4 fully-
connected layers with dimensions as shown in the figure. We initialize the model
weights using Glorot uniform [22]. The activation function is ReLU for the first 3
layers, followed by a softmax on the output layer. We used a batch size of 64 for
training our model. Each hyperparameter has been chosen using grid search. We
used the same procedure also for the model described in Section 4.2.

4.2 Model Architecture #2: Content-Type Detector

In many applications, a classifier may encounter more than one type of compressed
data. Furthermore, it may be important to determine the specific type being
encountered. To support these use cases, we design a content-type detector : a
multi-class classifier that can determine whether a given fragment is encrypted,
or belongs to one of multiple known compressed formats. We explored several
designs for the neural network, converging to the model depicted in Figure 2b.
Its architecture consists of 5 fully-connected layers with dimensions as shown in
the figure. We initialize model weights using LeCun normal [28]. Differently from
the binary models, this multi-class classifier seemed prone to the dying neuron
problem associated with the ReLU activation function [37]. We therefore opted
for the SelU activation function [27] for the first 4 layers, followed by a softmax
on the output layer. We used a batch size of 64 instances for training.

4.3 Fragment Dataset

We built a dataset of 200M encrypted and compressed fragments. For the
compressed data, we selected a set of formats covering common, popular content
types. To generate the encrypted data fragments, we used the AES cipher in CBC
mode implemented by the PyCryptodome library [1]. We chose AES because it is
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the most widely used and well known symmetric cipher, representative of modern
ciphers which result in byte streams consistently close to random.

In constructing the dataset, we focused on ensuring a diversity of compressed
formats, rather than compression algorithms. While algorithms such as DEFLATE
are used in multiple compression formats, they are generally used with different pa-
rameters and/or embed compressed data in different ways within the compressed
archive. Consequently, compressed archives created with different formats tend to
differ considerably from each other even when using the same underlying com-
pression algorithm. This observation is empirically confirmed by our evaluation in
Section 5. Finally, our dataset does not include data which is both compressed and
encrypted, and we ensured such data is not present in the dataset. The dataset is
comprised of the following data types:

1. AES encrypted data (enc). We used the AES implementation provided by
the Cryptodome Python library. AES was configured to use CBC mode with
256-bit keys, with a random IV generated before encrypting each file.

2. DEFLATE- and rar-compressed data (zip/gzip and rar): both DE-
FLATE and rar are de-facto standards for generic file compression. DEFLATE
is also widely used for documents (such as in the MS OFFICE file formats),
and network applications (e.g., HTTP header compression).

3. png and jpeg images: png is used for lossless image compression; it internally
uses DEFLATE, but png files present a structure that is different from that
of zip files. jpeg uses DCT-based lossy compression.

4. mp3 audio files: MP3 compressors use a psychoacoustic model to remove
inaudible frequencies from audio data, and compress the resulting data using
a lossy algorithm based on the modified-DCT transform.

5. pdf documents: PDF is an office format used for document exchange and
form filling. Internally, PDF files consist of a tree of objects that can be com-
pressed using a variety of techniques. In practice, most PDF documents contain
a large amount of compressed content, such as embedded images.

Fragment generation process. We generate fragments from a dataset of files:

– zip/gzip/rar/enc: we used various textual documents obtained from a 2020
English Wikipedia dump [8]. We created four copies of each file, each of which
was either compressed using one of zip, gzip, rar utilities (with default param-
eters), or encrypted using AES-256.

– png: we crawled 5000 png images from the web and various repositories [5].
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– jpeg: we downloaded 10,000 images from the Open Images Dataset v5 [7].
– mp3: we used the FMA dataset [6], which contains 8000 mp3 files.
– pdf: we crawled 1,000 randomly-selected papers from arXiv [9].

We split each file into fragments of 512B, 1KB, 2KB, 4KB, and 8KB. We then
selected 5M fragments for each fragment size/data type combination (this ensures
that the dataset remains balanced).

4.4 Dataset Analysis Methodology

Statistical tests (NIST, χ2, HEDGE): For each fragment size, we randomly se-
lected 10,000 compressed fragments (evenly distributed across the different com-
pressed data types) and 10,000 encrypted fragments. We then executed the tests
directly on these fragments.

EnCoD/Binary Classifiers: We separately trained and evaluated classifiers for
each fragment size. The features that are fed to our models for training/classification
are derived from the histograms of the byte values for the observed fragment size.
Each feature is the value of the probability density function at a given bin, nor-
malized such that the integral over the range is 1.

We trained the binary classifiers by randomly selecting 3M vectors from the
encrypted class and 3M vectors from the data type that we aim to distinguish.
We partitioned this dataset into 85% training, 5% development and 10% test.
Before fitting the data to the model for training, we applied a MinMax scaler to
scale the dataset from the range [0, 1] to the range [0, 2] (range selected via grid
search). Scaling helps the ML model to more easily capture minute differences in
the inputs, allowing to better distinguish among the classes and converge faster.

EnCoD/Content-Type Detector: To train the content-type detectors, for each
fragment size we randomly sampled 6M feature vectors consisting of a mix of
the considered file types. This dataset was partitioned into training, development
and test sets in the same ratios used for the binary classifiers. We also scaled the
dataset using the MinMax scaler with the same parameters used above.

5 Evaluation

In this section, we comprehensively evaluate existing approaches discussed in Sec-
tion 3, in addition to EnCoD, our novel neural network-based approach (see
Section 4). We frame the evaluation in terms of the following comparisons:

1. Binary classification: all formats. In Section 5.2, we consider the ability of
different detectors to discriminate encrypted and compressed data, regardless
of the specific compressed format. Results show that our classifier heavily
outperforms NIST, χ2-test and HEDGE for all fragment sizes.

2. Binary classification by format. In Section 5.3, we break down the per-
formance of χ2, NIST and HEDGE by compressed format. We also report the
performance of our per-format binary classifiers (see Section 4.1). The latter
perform comparably or better than other tests on all formats but one.
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3. Format fingerprinting. In Section 5.4, we evaluate the accuracy of our multi-
class classifier in labeling unknown fragments as the correct compressed format
(or as encrypted). Results show that our classifier is able to distinguish the
file type with an overall accuracy of 90% for the 2048 byte chunk size. It also
achieves high precision, especially on png, jpeg, mp3.

5.1 Implementation

We implemented the classifier described in Section 4 using the Keras Library [13]
for machine learning. For the NIST tests, we used the official implementation [15].
In order to aggregate the NIST tests results, we use the majority voting approach
described in Section 3.1. In order to label fragments as compressed or encrypted
based on χ2 results, we used the thresholds suggested in the HEDGE paper [12], as
the analysis in HEDGE is specifically aimed at producing a dataset-independent
threshold for general use. We implemented HEDGE according to the published de-
scription [12]. Finally, all experiments were conducted using the dataset described
in Section 4.

5.2 Binary Classification: All Formats

In the first part of our evaluation, we consider the binary classification problem
of determining whether a given high-entropy data fragment is compressed or en-
crypted. Given a fragment, the χ2 test, HEDGE, and the NIST test suite return
whether the fragment’s content appears random or not. Therefore, a binary clas-
sifier can be derived simply by labeling random content as encrypted. Our binary
classifier used for this evaluation is based on our multi-class classifier. The multi-
class classifier labels each fragment either as encrypted, or as one of the seven
supported compressed formats. Since in this experiment we are only interested
in distinguishing encryption and compression, regardless of the type, we combine
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all compressed type labels into one (we look at content fingerprinting accuracy in
Section 5.4). Effectively, we consider classification in two labels: (1) a macro-label
“compressed”, which is comprised of the labels {zip, rar, gzip, png, jpeg,mp3, pdf}
and (2) the label “encrypted”.

The results of this evaluation are depicted in Figure 3. All classifiers tend to
improve as fragment size increases; we discuss this phenomenon in Section 6. Our
neural network-based approach heavily outperforms all the other approaches on
all block sizes. The χ2 accuracy remains consistently low across the range of block
sizes. Results suggest that this test has an intrinsic difficulty in discriminating
non-random content which closely approaches a uniform random distribution.

5.3 Binary classification by format

In the second experiment, we consider the question of whether some compressed
formats are harder than others to distinguish from encrypted content. Such phe-
nomenon may arise due to (i) differences in effectiveness between compression
algorithms in removing redundancy (and thus structure) from the uncompressed
data; and (ii) presence (or absence) of metadata, or other structured information
interleaved with compressed data.

In order to answer this question, we break down results for the χ2-test, NIST
suite, and HEDGE test by format. We do not evaluate our multi-class classifier
in this experiment. This is due to the fact that this classifier can generate two
different types of classification errors for compressed formats: (1) mislabeling a
compressed fragment as an encrypted one; and (2) mislabeling a compressed frag-
ment of a given type for a compressed fragment of a different type. As χ2-test,
NIST and HEDGE can only generate errors of the former type, a direct comparison
is not possible.
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Instead, in this experiment we evaluate multiple binary neural network-based
classifiers (see Section 4.1). With this approach, we train one binary classifier per
compressed format. Each classifier is trained to distinguish content in that format
from encrypted content. It is important to note that, while each of these classifiers
is trained specifically on one format, the other tests (χ2, NIST and HEDGE) work
the same regardless of the format. Despite this limitation, we believe this to be
an informative analysis of the potential of learning-based approaches.

Figure 4 shows the comparison between the three approaches on 2048-byte
blocks. Overall, neural network-based classifiers tend to fare better than the other
tests, particularly on challenging formats such as zip/gzip and rar. PDF is the
only format on which the NIST and HEDGE tests outperform the neural network
classifier. Interestingly, the χ2 fares slightly better than NIST on most formats, but
its accuracy is significantly worse on formats that are typically easy to distinguish,
such as PNG. We believe this to be due to the fact that the NIST tests look at
a richer set of properties beyond byte value distribution, such as a presence of
runs and repeated sequences. HEDGE test outperform χ2 on all file types, while
outperforming NIST on most formats, beside PDF, and have similar performance
on PNG and MP3 formats. Finally, Figure 5 presents the performance of all our
binary classifiers across the range of fragment sizes. These results again show that
accuracy increases significantly as block size increases. For 8KB-blocks, accuracy
is above 85% for all types.

5.4 Format Fingerprinting

Our multiclass classifier has the ability to (1) distinguish encrypted and com-
pressed data, and (2) pinpoint the specific format compressed data belong to.
This is a significant improvement over the functionality of existing tests, that
can only distinguish encryption and compression. In this section, we evaluate the
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effectiveness of our multi-class classifier in fingerprinting the correct type of com-
pressed content. Figure 6 shows the confusion matrix for the multi-class classifier.
Results indicate that our classifier is able to pinpoint the file type with consistently
high precision for most formats, especially png, mp3, and jpeg. It performs fairly
well on the other considered compressed formats such as cmp (which contains a
mixture of zip, rar, and gzip feature vectors) but with a slightly higher rate of
misclassified instances between enc and cmp. This can be explained by the fact
that their distributions are very close, and intrinsically hard to distinguish.

5.5 Overhead

In the final part of our evaluation, we analyze the practical applicability of the
three approaches, comparing their runtime in order to understand if they can
be deployed in time-critical applications. For this test, we used a small dataset
comprised of 1000 randomly-selected compressed or encrypted samples. We ran all
three approaches (NIST, HEDGE and our binary ML model) on each sample, tak-
ing individual runtime and repeating the experiment 1000 times. Table 1 presents
the results of our evaluation. As we can see, while both mean and median runtime
for NIST tests are faster then HEDGE, our proposed binary classifier is consid-
erably faster than both. Both mean and median runtime for the ML model are
three orders of magnitude faster than both NIST and HEDGE, making it easily
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Approach Mean Median Std.dev

NIST 0.1 0.1 0.004

HEDGE 0.44 0.43 0.008

Binary Classifier 0.00046 0.00044 0.00012

Table 1. Time required by each approach to classify one sample, in seconds.

applicable to scenarios that require fast classification results such as ransomware
detection. It is worth noting that the evaluation of our ML model was carried out
by measuring the time required to predict a single sample, rather than a batch
of samples. However, our model can easily classify multiple samples in parallel by
exploiting the heavy parallelism of GPUs, further decreasing the runtime required
per individual sample.

6 Discussion of Findings

Results shown in Section 5 highlight the difficulty of discriminating compressed
and encrypted fragments. State-of-the-art statistical tests tend to fare better than
entropy measures (ref. Section 2), but their performance varies significantly de-
pending on the specifics of the compressed format and fragment size. Moreover,
such approaches can only determine whether a given fragment is encrypted with a
certain confidence, but cannot distinguish between different compressed formats.
EnCoD, the learning-based approach introduced in Section 4, tackles both these
limitations. Both per-format and multi-class classifiers outperform existing tests
on all considered file types/block sizes. Moreover, our multi-class classifier can be
used to determine the format of a given unknown fragment, even in the complete
absence of any context or information on its type.

Results show that accuracy improves consistently with increasing fragment
size. This is in a sense to be expected; all approaches considered in this paper
leverage differences between the byte value distribution of random data (which is
uniform) and that of compressed data. Perfectly estimating the byte value distri-
bution of a short data stream is generally not possible. As sequences get shorter,
the probability that the estimated distribution may not reflect the typical distribu-
tion for their content type increases. However, as the size of the sample increases,
the estimated empirical distribution approaches the underlying data distribution,
allowing us to capture any deviation from the uniform distribution. For modern
compression algorithms, these deviations are quite minor, and a 512-byte block
gives even accurate tests very little data to work with. However, when enough
data is available, it is possible to identify the class of data with high accuracy;
our learning-based classifier exceeds 90% accuracy already for 2048-byte blocks.
In general, we recommend against using any one approach as the sole guidance for
automated security decisions (e.g. dropping/allowing flows, terminating processes,
etc.). However, when integrated as part of a more complete set of features in a
larger system, our proposed classifiers can provide an additional robust feature to
use in the decision-making process.

Given the discussion above, we suspect an intrinsic bound on the accuracy
reachable by any classifier which looks purely at byte value distributions. However,
approaches attempting to parse fragments or identify recognizable structures are
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likely to incur an impractical computational cost. Moreover, it is not apparent
that any such structure is preserved for very short fragment sizes.

7 Related Work

7.1 Entropy-based encryption detection

Use of entropy estimation to detect encrypted content is common in ransomware
detection. Proposals such as RWGuard [33], UNVEIL [26], Redemption [25] and
ShieldFS [17] use entropy of written content either directly as a feature, or as part
of feature calculation. It should be noted that none of these detectors use entropy
as the sole feature for detection. However, evidence from Section 2 suggests that
they may be better ignoring entropy altogether. In the realm of digital forensics,
entropy estimation has been used to determine the type of unknown disk data
fragments. One of the most complete approaches is that of Conti et al. [16]. How-
ever, the same authors found that such estimates have limited discerning power in
distinguishing encrypted and compressed content, and aggregated the two types
under a single label.

Entropy estimation has also been applied to the real-time analysis of net-
work traffic. Dorfinger’s Master thesis [20] proposes a system for discriminating
encrypted and non-encrypted traffic, to ensure that all communications from a
target network are encrypted. Similar approaches were also proposed by Mamun
et al. [31] and Malhotra [30]. Zhang et al. proposed an entropy-based classifier for
the identification of botnet traffic [42]. All these approaches also suffer from the
limitations of using high entropy as a fingerprint of encryption. Wang et al. [41]
report positive results in using an SVM classifier to discriminate between var-
ious data types using entropy estimates. Their application scenario is different
from ours, as they consider both low-entropy (non-compressed) and high-entropy
(compressed or encrypted) formats. We only consider high-entropy formats, which
are difficult to distinguish using entropy alone.

Finally, MovieStealer [40] aims at identifying encrypted and decrypted-but-
compressed media buffers in order to break DRM. It uses an entropy test to
single out encrypted and compressed buffers from other data, and the χ2-test
to distinguish them. It requires 800KB of data to reliably identify random data,
which is far beyond the fragment size in the scenarios that we consider.

7.2 Non-entropy-based approaches

HEDGE, by Casino et al. [12], evaluates a combination of χ2-test and a subset of
NIST SP800-22 [36] to discriminate encrypted and compressed traffic. They use a
dataset which is significantly smaller than ours, and do not discuss learning-based
approaches. A limitation of this class of approaches is the fairly low accuracy, espe-
cially for small block sizes (ref. Section 5). Also, this and other similar approaches
based on statistical randomness tests (e.g., [34, 14]) cannot distinguish between
different types of compressed archives. Mbol et al. [32] investigate the use of the
Kullback-Leibler divergence (relative entropy) to differentiate encrypted files from
JPEG images. Their analysis does not investigate other formats, and assumes the
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availability of blocks of significant size (128 to 512KB) from the beginning of each
file. Especially in forensic and networking applications, uninterrupted blocks of
such size are difficult to obtain.

While the application of neural networks to the problem at hand is fairly new,
there exist some preliminary work. Ameeno et al. [11] show promising preliminary
results, however the analysis is limited in scope: it only attempts to distinguish zip
archives from rc4-encrypted data, and considers whole files (not fragments). Hahn
et al. [24] perform an exploratory analysis of machine learning models. Their
dataset is order of magnitudes smaller than ours, and they lack a comparative
analysis of statistical approaches.

8 Conclusions

Discriminating encrypted from non-encrypted content is important for a vari-
ety of security applications, and oftentimes tackled via entropy estimation. We
comprehensively highlighted the limits of this technique and reviewed the effec-
tiveness of the leading alternative approaches: χ2-test, NIST SP800-22 test suite,
and HEDGE. In addition, we proposed EnCoD, a novel neural network classifier
of our own design. In order to ensure generality of results, we created a dataset of
200M fragments covering 5 different sizes and 8 data formats.

Results show that previous state-of-the-art methods have blind spots which
result in low accuracy for certain fragment sizes/data types. However, our neural
network-based approach appears promising. Besides being able to discriminate be-
tween compressed formats (which traditional statistical tests cannot), it exceeds
90% accuracy already on fragments of only 2KB. This suggests that systems in-
corporating encrypted content detection (e.g., ransomware detectors) would be
better served by learning-based, rather than hand-crafted statistical approaches.
This finding also suggests that learning may have useful applications to other
problems in content type inference. Overall, we believe this work is an important
step forward towards reliable encryption detection.
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Appendix

A Entropy Analysis Results

Full results for the entropy analysis discussed in Section 2.4:

Chunk size: 512B

Format Min Q1 Median Q3 Max

enc 7.427 7.569 7.591 7.613 7.709

zip 7.163 7.560 7.584 7.607 7.695

gzip 7.154 7.560 7.585 7.607 7.703

rar 7.381 7.563 7.587 7.610 7.692

jpeg 3.820 7.512 7.548 7.576 7.676

mp3 0.000 7.451 7.527 7.565 7.680

png 0.000 1.070 2.605 4.549 7.572

pdf 0.000 7.453 7.534 7.574 7.676

Chunk size: 2048B

Format Min Q1 Median Q3 Max

enc 7.873 7.903 7.908 7.914 7.938

zip 7.816 7.898 7.904 7.910 7.935

gzip 7.847 7.898 7.904 7.910 7.933

rar 7.795 7.900 7.905 7.911 7.933

jpeg 5.123 7.856 7.873 7.884 7.917

mp3 0.379 7.703 7.838 7.871 7.916

png 0.000 1.312 2.815 4.752 7.808

pdf 0.000 7.820 7.875 7.893 7.930

Chunk size: 8192B

Format Min Q1 Median Q3 Max

enc 7.969 7.976 7.978 7.979 7.984

zip 7.955 7.973 7.975 7.976 7.983

gzip 7.955 7.973 7.975 7.976 7.983

rar 7.960 7.974 7.976 7.977 7.983

jpeg 5.646 7.930 7.945 7.952 7.967

mp3 0.497 7.789 7.918 7.942 7.971

png 0.014 1.451 2.963 4.852 7.914

pdf 0.010 7.903 7.953 7.968 7.981
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