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Abstract. Software repositories based on a single programming language are
common. Examples include npm (JavaScript) and PyPI (Python). They encour-
age code reuse, making it trivial for developers to import external packages.
Unfortunately, the ease with which packages can be published also facilitates ty-
posquatting : uploading a package with name similar to that of a highly popular
package, with the aim of capturing some of the popular package’s installs. Ty-
posquatting frequently occurs in the wild, is difficult to detect manually, and has
resulted in developers importing incorrect and sometimes malicious packages.
We present TypoGard, a tool for identifying and reporting potentially typosquat-
ted imports to developers. TypoGard implements a novel detection technique,
based on the analysis of npm and PyPI. It leverages a model of lexical similarity
between names, and incorporates the notion of package popularity. It flags cases
where unknown/scarcely used packages would be installed in place of popular
ones with similar names, before installation occurs. We evaluated TypoGard on
both npm, PyPI and RubyGems, with encouraging results: TypoGard flags up
to 99.4% of known typosquatting cases while generating limited warnings (up to
0.5% of package installs), and low overhead (2.5% of package install time).

1 Introduction

Package managers automate the complex task of deploying 3rd-party depen-
dencies into a codebase, by transitively resolving and installing all code upon
which a given package—which the user wishes to install—depends. One of the
most common uses of package managers is in the context of large repositories of
code packages based on a single programming language. Package managers are
undeniably useful, with open, free-for-all repositories like npm for Node.js, PyPI
for Python, and RubyGems for Ruby, collectively serving billions of packages
per week. However, they also come with problems.

The open, uncurated nature of these repositories means that any developer
can upload a package with a name of their choosing. This circumstance gives
rise to typosquatting, whereby a developer uploads a “perpetrator” package that
is confusable with an existing “target” package due to name similarity. As a
result the user, intending to install the target package, may accidentally request
the confusable perpetrator package. Determining why perpetrator packages are
created is a challenging and ill-defined problem, as solving it requires inferring
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the intent of the package author. The perpetrator may wish to confuse users into
installing a malicious payload, seek to increase the visibility of their own benign
code, or create a confusable name by happenstance. A perpetrator might even
upload a placeholder package to prevent an attacker from leveraging the name.
The result is the same: users are confused into importing the incorrect package.

As part of our work, we identified known typosquatting incidents by reviewing
security advisories from npm, PyPI and RubyGems. Overall, this yielded 1,002
incidents in the last 3 years. While typosquatting campaigns routinely make the
news [24,14,16,13], discovering instances is a laborious process as no tools exist
that can warn developers or ecosystem maintainers of potential occurrences.
From the point of view of a human analyst, identifying typosquatted packages
is difficult and time-consuming, as typosquatting confuses manual inspection
by definition. The scope of typosquatting is also far-reaching, due to the inter-
dependent nature of packages: not only are the developers that make a typo
exposed to unintended code, so are package that transitively depend on it.

Undetected typosquatting has numerous detriments, both to developers who
integrate a perpetrator package, and to the end-users. An overtly malicious per-
petrator may include Trojan functionality that attacks the client [34,17]. Addi-
tionally, many package managers invoke configuration hooks bundled with the
package at install time, often manifested as shell scripts that run with the privi-
leges of the user. Multiple packages that open reverse shells when installed have
been removed from npm [4,33,35]. Even in cases where the perpetrator is not
malicious, it can confuse the user and weaken the integrity of the system. Iron-
ically, a well-intentioned perpetrator might clone a victim to keep it out of the
hands of an attacker but allow the clone to fall behind as the target is updated.

In this work, we develop TypoGard, a novel typosquatting detection tech-
nique to discover and prevent incidents of typosquatting before they can damage
the user. TypoGard can be used to detect typosquatting incidents before they
happen, or to detect possible perpetrator packages within a package repository.
TypoGard is designed to work client-side, and requires no special cooperation
on the part of repositories. We also find that our detection techniques are highly
generalizable, and show high recall across several repositories. TypoGard’s core
insight is to identify unpopular packages whose name is close, according to a
notion of lexical similarity, to the name of a popular package. It this condition
is met, TypoGard issues an alert before the package is fetched and suggests the
likely-correct victim package name. During the course of our experiments, Ty-
poGard also identified a popular and previously unknown instance of typosquat-
ting: the npm package loadsh, which was typosquatting lodash, providing an
outdated version of the code vulnerable to prototype pollution. After our report,
the npm security team confirmed our finding and deprecated loadsh.

Our work makes the following contributions:

– We present TypoGard, an enhancement to the package manager front-end
which protects users against typosquatting.

– We evaluate the performance and efficacy of TypoGard, showing that it has
a high TPR of 88.1%, while being non-intrusive.
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npm PyPI RubyGems

Packages 1,221,705 221,041 157,410

Weekly Downloads 17,872,179,641 997,624,343 154,954,144

Avg. Dep. Tree Size 57.27 4.58 9.61

Table 1: Repository statistics for npm, PyPI, and RubyGems.

– We show that, while our design is based on npm and PyPI, it generalizes
well: TypoGard achieves 99.4% TPR on RubyGems typosquatting attacks.

2 Background

2.1 Package Repositories

Package repositories are very popular: they encourage code reuse, and allow well-
vetted, expertly-written codebases to be deployed by more developers. For these
reasons, successful repositories have grown to enormous size. The first two rows
of Table 1 show the current size and weekly download counts for npm, PyPI,
and RubyGems. As the table shows, they contain hundreds of thousands (PyPI,
RubyGems) to millions (npm) of publicly available packages. The total number
of weekly downloads ranges from hundreds of millions to many billions.

Much of the complexity of package management is due to the interdependence
of packages. For example, the popular npm package webpack-dev-server (6.6M
weekly downloads) declares 33 dependencies, each requiring further packages, for
a total of 391 transitive dependencies. These packages span many development
teams, each of which may update out of step with one another.This is in line
with the general trend of code reuse in software development [32]. Given the bulk
of code existing in dependencies, it is infeasible to expect developers to manually
vet every package that they integrate into their project.

Package manager front-ends automate the complex and tedious task of fetch-
ing, configuring, and updating a package and its transitive dependencies. When
a user issues a command like npm install webpack-dev-server, the front-end
relies on the package’s metadata to build a spanning tree of the package depen-
dency graph (or dependency tree), and then installs each package. Similarly, the
command npm update updates the package dependency tree for the current set
of packages.The third row of Table 1 shows that there is significant interdepen-
dence among packages in the package managers we study.

While package managers save users a significant amount of time, they do
not help with the herculean task of vetting imported code; if anything, they
complicate it. By design, they tend to obscure the provenance of dependencies,
complicating the task for developers to decide whether to assign trust to such
dependencies.

Characterization of Package Downloads: Based on the self-reported repos-
itory download counts, we classified the popularity of packages across npm and
PyPI. Figures 1 and 2 show the distribution and dramatic imbalance of down-
loads across npm and PyPI. A majority of the packages are downloaded relatively
infrequently. The top 1% of packages in both repositories receive essentially all
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Fig. 1: Percentage of npm, PyPI, and RubyGems packages by weekly downloads.

downloads, as shown in Figure 2. Locating desired packages in this ocean of
unpopular packages without assistance is challenging.

2.2 Factors Contributing to Typosquatting

We propose that the following aspects of package repositories contribute to the
threat of typosquatting:
– The open-source nature of repositories means that any user can upload a

package, and it will be given equal trust to any other package.
– The provenance of a package is opaque to the user, and the interdependence

between packages makes their behavior difficult to vet manually.
– The distribution of packages means there are a small number of “juicy” ty-

posquatting targets, and a large number of packages from which a typosquat-
ting attack could be launched.

We now review select cases of historical typosquatting.

2.3 Historical Package Typosquatting

More than one thousand historical typosquatting attacks have been documented
[37,42,24]. However, the precise degree to which typosquatting has historically
occurred is difficult to capture, due in part to the highly subjective nature of what
constitutes typosquatting. In practice, most packages that are flagged by repos-
itory maintainers exhibit malicious functionality, and are retroactively deemed
typosquatting perpetrators by qualitative manual analysis.

As an example of the complexities of determining typosquatting and its in-
tent, consider the js-sha3 typosquatting campaign. On October 25th, 2019, 25
packages were simultaneously identified by Microsoft Vulnerability Research and
taken down by the npm security team. Upon close inspection, all those packages
were determined to have malicious intent, and all package names were close, ac-
cording to Levenshtein distance, to the victim package js-sha3. However, not all
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Fig. 2: Cumulative download distribution for npm, PyPI, and RubyGems.

names were likely to confuse the user. For example, js-sxa3 requires replacing the
“h” with an “x”. It is unlikely that a developer would misremember js-sha3 (an
implementation of the SHA-3 algorithm) as js-sxa3. A typo is equally unlikely
on a QWERTY keyboard, given the distance between “h” and “x”. As discussed
in Section 3.3, we take the stance of only flagging cases where there is strong
likelihood that name similarity may confuse the user. While this causes us to
ignore some cases (as js-sxa3 above), it has the advantage to avoid generating
an excessive number of warnings that would ultimately stem from flagging pairs
of packages with a Levenshtein distance of one. As discussed above, it is unlikely
that the packages we ignore could be confused for the correct ones.

One may also be tempted to always attempt to identify malicious intent,
regardless of typosquatting. In practice, this is currently impossible to achieve
reliably. JavaScript is a particularly difficult target to analyze, and malicious
code can be automatically obfuscated to appear syntactically indistinguishable
from benign code [18]. Furthermore, the highly dynamic nature of JavaScript
means that malicious functionality may not appear until the code is deployed.

Currently, the standard technique for removing typosquatted packages is
manual and reactive. Users who discover malicious typosquatting can file a report
to the repository maintainers, who will then investigate the claim and remove
the package. This approach does little to prevent the installation of malicious
packages and fails to protect users from the consequences. Despite these short-
comings, hundreds of package takedowns have been issued that involve package
names similar to a popular target. We believe this number to be a lower bound on
the total number of typosquatting attempts. The differential of effort favors the
attacker, which can automatically generate and upload an arbitrary number of
typosquatted variants (e.g., the 25 packages reported by Microsoft above). Many
of the reported incidents were actives for months to years before take-down.
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2.4 Consequences of Typosquatting

Attacks against end-users: The most subtle typosquatting attack is when an
adversarial uploader delivers a malicious payload as part of the dependency code,
which is subsequently used as part of a user-facing application. This impacts end-
users of the application. Two highly-publicized examples involved a malicious
payload that exfiltrated sensitive information such as credit card numbers [17]
or cryptocurrency [35]. A stealthy adversary may attempt to obscure the payload
by cloning the target package and adding the malicious functionality as a Trojan.

Attacks against developers using a package: An adversary may also target
the developer who mistakenly requests the perpetrator package at install time.
All three of the repositories analyzed here allow packages to invoke shell scripts—
running with the privilege of the user— at install time. Since packages can be
installed system-wide, the user may be the administrator, opening a vector for
an adversary to take control of the developer’s machine. A common choice for
malicious package creators is to open a reverse shell on the victim machine [36].

Degradation of functionality: Even when perpetrator does not deploy ma-
licious code, they may still hinder operations by wasting developers’ time in
diagnosing and remediating package confusion.

Latent vulnerabilities: If a perpetrator package is not detected immediately
upon installation, it may remain latent in the victim’s codebase for a significant
time. For example, developers have typosquatted a target with a payload that
is a clone of the current version of the package. While the victim experiences no
initial consequences from using the wrong package, the perpetrator may become
outdated as it does not receive the same updates as the right package.

An illustrative case is loadsh, mentioned in Section 1, which typosquats lo-
dash. loadsh does not include any malicious functionality - the perpetrator pack-
age is an exact snapshot copy of lodash version 4.17.11 (lodash is currently at
version 4.17.15). Nevertheless, the perpetrator still has a negative impact; be-
cause the perpetrator package has not been updated, its victims were effectively
using an outdated version of lodash. We confirmed that loadsh was being used
unintentionally by emailing the maintainers of packages that used loadsh. Three
loadsh-dependent package maintainers responded to our email, all of whom ac-
knowledged that they had intended to install lodash instead. Many of the pack-
ages using loadsh, including those maintained by our respondents, had been vic-
tims for over a year. In the case of this example, the older version contains known
prototype pollution vulnerabilities [41], effectively leaving victims of loadsh open
to attacks that have already been patched in lodash.

Misattribution: Even if a perpetrator replicates all of the target functionality,
it nevertheless fragments the popularity of the target package. Thus, one minor
consequence of typosquatting is that the target will not get as much credit as
they would without the perpetrator. Misattribution can be found in packages like
asimplemde on npm. In addition to typosquatting, this package contains identical
functionality to simplemde. References attributing credit to the original author
are the sole omissions from the duplicate package.
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Fig. 3: Modified package installation process with typosquatting protection.

3 Detecting Typosquatting

Motivated by the number of historical instances, the ease of execution, and the
severity of the consequences, we created TypoGard, a tool to detect typosquat-
ting in package repositories. At a high level, TypoGard compares a given package
name to a list of popular package names. If the given package name matches at
least one of the popular packages after a set of allowed transformations, or sig-
nals, then it is considered to be a typosquatting suspect and the user is alerted.

3.1 TypoGard Workflow

The primary way in which we expect TypoGard to be deployed is as a user-facing
utility that integrates with the package manager front-end. Figure 3 depicts
the workflow of TypoGard. Algorithm 1 presents the typosquatting detection
algorithm (steps 4 through 7 in the figure).

The user initiates the process by triggering a package’s installation from
the command line, e.g., npm install loadsh (step 1). The package manager
computes the dependency tree of the package (step 2), discard from the tree
the packages that are already installed (step 3), and begins installing the rest.
At this point, the workflow triggers TypoGard’s logic.

First, TypoGard considers each package queued to be installed (steps 4-5,
lines 1-3 in Algorithm 1). A package is considered suspicious if its popularity score
(Section 3.4) is below a tunable threshold Tp, and there exists a popular (popu-
larity ≥ Tp) package with a similar name (similarity is discussed in Section 3.3).
If this is the case, TypoGard flags the package and warns the user (step 5-6,
lines 4-6). If the user decides to ignore the warning, the package is installed (step
8, line 5), otherwise the process is terminated. Note that AbortInstallation() in
line 6 terminates the process for all queued packages, not just the one which was
the object of the warning. In line 7, any package which does not raise suspicion
is directly installed without prompting the user.

3.2 TypoGard Batch Analysis

While we anticipate the workflow in Figure 3 to be the most common application
of TypoGard, we also envision repository maintainers may want to periodically
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apply the same analysis in batch fashion to the entire package repository. Our
current implementation also supports this. In batch mode, TypoGard receives as
input the list of all package names, and returns a list of candidate perpetrators,
ranked by decreasing download count. Indeed, the loadsh package was identified
in this way; TypoGard’s batch analysis ranked it as the seventh most popular
candidate matching a specific signal discussed in the next subsection.

3.3 Typosquatting Signals

At its core, TypoGard relies on string similarity; however, precisely defining the
notion of similarity is challenging in this context. Initially we experimented with
Levenshtein distance, a common measure of string similarity. However, we found
that this approach is overly simplistic and fails to capture the elaborate typos
used in past typosquatting attacks.

After extensively exploring alternative approaches, we devised a typosquat-
ting detection scheme by analyzing and categorizing string transformation pat-
terns that have been used in past typosquatting attacks. We refer to the presence
of each of these patterns as a typosquatting signal. The insight behind our ty-
posquatting detection scheme is that if a pair of packages exhibits one of these
signals (i.e. one package name can be transformed in the other using one of the
identified transformations), then one package in the pair is a potential typosquat-
ting perpetrator. The signals are:
Repeated characters: the presence of consecutive duplicate characters in a
package name. For example, reequest is typosquatting request.
Omitted characters: the omission of a single character. For example, comander
is typosquatting commander and require-port is typosquatting requires-port.
Swapped characters: the transposition of two consecutive characters. For ex-
ample, axois is typosquatting axios.
Swapped words: this signal depends on the presence of delimiters in a package
name, where a delimiter is a period, hyphen, or underscore. It checks for any other
ordering of delimiter-separated tokens in the package repository namespace. For
example, import-mysql is typosquatting mysql-import.
Common typos: character substitutions based on physical locality on a QW-
ERTY keyboard and visual similarity. For example, requeat is typosquatting
request, 1odash (with the number one) is typosquatting lodash (with the letter
L), and uglify.js is typosquatting uglify-js. Users may overlook visually-similar
package names during manual analysis, especially in transitive dependencies.
Version numbers: the presence of integers located at the end of package names.
For example, underscore.string-2 is typosquatting underscore.string. Note that
underscore.string-2 was previously undiscovered and TypoGard led us to find a
latent vulnerability.

3.4 Package Popularity

In order to successfully implement TypoGard, we also necessitate a formal notion
of package popularity. This requirement stems from a fundamental belief that we
posit, which is that only unpopular packages can be typosquatting perpetra-
tors and only popular packages can be typosquatting targets. Popular packages
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Algorithm 1 TypoGard typosquatting detection.

Input: List I of packages to be installed
Input: Package graph G
Input: Popularity threshold TP

1: for each p ∈ I do
2: if Popularity(p) < TP then
3: if ∃p′ s.t. Popularity(p′) ≥ TP and Similar(p, p′) then
4: R← UserConfirm?(p, p′);
5: if R = True then Install(p);
6: else AbortInstallation();

7: else Install(p);

are, by our definition, incapable of perpetrating typosquatting attacks. Next,
we believe that there exists no incentive for an adversary to typosquat a pack-
age which receives an insignificant amount of attention. If a negligible number
of users download that package, then an even smaller number of people could
potentially misspell the name of that package and fall victim to the attack. By
this token, a package which is downloaded thousands, millions, or even tens of
millions of times per week, is a far more rewarding target.

The two main possibilities for quantifying package popularity are the number
of downloads and the number of dependents. We decided to use the number of
downloads because we believe it is a more indicative measure of true package us-
age. The public number of dependents counts only the number of other packages
that directly depend on a given package. Download count, on the other hand,
counts the number of users who have downloaded that package either directly
or indirectly through some arbitrarily long chain of dependencies.

Popularity based on download count requires the definition of a threshold
to distinguish between popular and unpopular packages. This threshold is of
crucial importance. An exceedingly low threshold results in many typosquatting
packages being considered popular, thus making their detection impossible. Con-
versely, an exceedingly high threshold may miss packages which are frequently
downloaded and are victims of typosquatting. We use a data-driven approach,
discussed in Section 4, to determine the threshold.

4 Analysis and Evaluation

In this section, we perform an in-depth analysis of TypoGard’s tunable parame-
ter, the popularity threshold, and we evaluate TypoGard’s effectiveness in flag-
ging suspicious package installs. Our goal is to answer the following questions:

1. Is it possible to determine an optimal popularity threshold? What is the
impact of varying this threshold? (Section 4.2).

2. What is the effectiveness of TypoGard’s typosquatting signals in identifying
suspicious packages? (Section 4.3).

3. How well does TypoGard generalize to ecosystems different from those for
which it was designed? (Section 4.3).

4. Is the latency introduced by TypoGard acceptable? (Section 4.4).



10 Taylor et al.

Ecosystem #packages Source

npm 259 npm Security Advisories

PyPI 18 Snyk Vulnerability DB

RubyGems 725 ReversingLabs

Table 2: Database of typosquatting perpetrator packages.

4.1 Dataset

For package data, we consider the entire package graphs for npm, PyPI, and
RubyGems. Copies of the exact datasets and download counts that were used
have been made available for review4. A high-level quantitative summary of the
repository snapshots is given in Table 1. Our dataset of known typosquatting per-
petrator packages is summarized in Table 2 and was obtained from vetted public
vulnerability report and—where possible—security advisories from ecosystem
maintainers. Since some feeds do not explicitly distinguish typosquatting inci-
dents from the rest, we reviewed such feeds and isolate entries which meet both
the following conditions: (i) the word “typosquatting” is present in the advisory;
and (ii) the language unambiguously identifies the incident as typosquatting.

4.2 Popularity Threshold

Download counts bear an obvious relationship to the popularity of a given pack-
age. Precisely understanding this relationship however requires careful analysis,
due to the fact that download counts for a package represent more than the num-
ber of people who have installed a package. Packages are regularly downloaded
by repository mirrors and bots which download all packages for analysis. Based
on estimates made by the creators of npm, a package can be downloaded up to
50 times per day without ever being installed by an actual developer [25].

Therefore, we use 350 weekly downloads as lower bound for package popular-
ity as packages with fewer than this number of downloads may have never been
downloaded by an actual user. As seen in Figure 1, a majority of packages across
all three repositories receive fewer than 350 weekly downloads. This lower bound
removes more than 90% of the packages in each repository from consideration.
As an upper bound, we consider packages with more than 100,000 downloads per
week to be unquestionably popular; packages above this upper bound make up
less than 1% of each repository and account for a vast majority of all downloads.
The analysis we describe in this section aims at finding an appropriate threshold
to separate popular packages from unpopular ones between these two bounds.
We emphasize that, in order to study generalizability, we conducted the analy-
sis on npm and PyPI first, and designed TypoGard exclusively based on these
ecosystems. We later incorporated RubyGems in order to determine whether our
analysis, and therefore TypoGard, is effective beyond npm and PyPI.

Effect of threshold on number of perpetrators: The first analysis aims
to determine how the number of typosquatting targets influences the number of
perpetrators. A package is considered to be a typosquatting perpetrator if it, or

4 https: // www. dropbox. com/ sh/ wrkz2l3njol0ecw/ AAAqbv9hN83Cfdq2CGy6bBjma

https://www.dropbox.com/sh/wrkz2l3njol0ecw/AAAqbv9hN83Cfdq2CGy6bBjma
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Fig. 4: Popularity threshold vs percent of repository typosquatting.

any package in its dependency tree, fits our definition of typosquatting. Doing
this emulates real-world conditions, as users typically would not install a pack-
age without installing its dependencies. The results of this analysis is depicted
in Figure 4. Interestingly, the curve corresponding to PyPI is fundamentally dif-
ferent from the other two. As the popularity threshold increases, the number
of popular packages decreases. With this decrease in typosquatting targets, one
would initially expect the number of typosquatting perpetrators to decrease. The
trend for PyPI is consistent with this behavior.

However, the curves corresponding to npm and RubyGems see gradual in-
creases. The number of typosquatting perpetrators grows in spite of the fact
that the number of targets shrinks. This highlights an interesting phenomenon:
a significant amount of package name similarity between popular packages. This
phenomenon causes the unintuitive increase in perpetrators seen in Figure 4. As
the threshold grows, it surpasses the weekly download count of the less popular
package, allowing the package to be considered a perpetrator. Ultimately, this
process increases the number of perpetrators as the number of targets decreases.
We believe the threshold should be set low enough to avoid flagging reasonably
popular packages as perpetrators, in order to reduce the false positive rate, and
ultimately, the number of warnings that TypoGard users will experience.

Based on the analysis above, we have chosen to select a popularity threshold
of 15,000 weekly downloads. A popularity threshold of 15,000 weekly downloads
is the lowest threshold which keeps the number of flagged typosquatting packages
reasonably low for both repositories. We estimate that 3% of the packages
on npm and PyPI, and 1.5% of the packages on RubyGems, are po-
tential typosquatting perpetrators at this threshold.

Effect of threshold on frequency of warnings: We now examine the fre-
quency with which TypoGard will intervene during the package installation pro-
cess, by flagging a package as potential typosquatting. Keeping this frequency
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Fig. 5: Popularity threshold vs % of dls containing a typosquatting package.

low is important, because frequently interrupting a developer’s workflow risks in-
curring in the phenomenon of warning fatigue [8]. Also, it is reasonable to expect
that the number of packages imported by mistake is a relatively small fraction of
the overall number of packages imported by a developer. Therefore, a very high
number of warning is likely to consist overwhelming of false positives [3].

This analysis, like the first, is transitive. Results are shown in Figure 5. With
the proposed popularity threshold of 15,000 weekly downloads, the estimated
portion of package downloads which will result in a warning from
TypoGard is approximately 0.05% for npm, 0.5% for PyPI, and 0.25%
for RubyGems. TypoGard generates on average a warning every 200 to 2000
package installs, which we consider an acceptable burden for the developer.

4.3 Typosquatting Signal Detection Rates

This section aims at estimating the true-positive rate (TPR), or sensitivity, of
TypoGard. We do so by measuring what fraction of past typosquatting perpetra-
tors would have been detected by TypoGard. We use the set of attacks detailed
in Table 2, which includes more than 1,000 instances of typosquatting.

Meaningfully evaluating the performance of a typosquatting detector is com-
plicated by the fact that typosquatting occurrences are inherently rare events
due to the sheer size of the ecosystem. For example, based on known occurrences
we can infer that there exist hundreds of perpetrators among more than one mil-
lion packages on npm. Due to this, most packages flagged by even an extremely
accurate detector will be false positives (an instance of the well-known base-rate
fallacy [3]). Rather than false positives, we believe that a good typosquatting
detector should attempt to minimize the rate at which alerts are generated (as
discussed in Section 4.2), while maximizing the true-positive rate (TPR).

First, we measured TypoGard’s TPR on our dataset of known perpetrators
(Table 2). Each package name was passed to TypoGard to simulate installation,
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resulting in successful detection of 88.1% of historical typosquatting perpetra-
tors. We further note that the observed 11.9% of false negatives is inflated by two
main factors: stochastic/exaggerated versions of our signals and combinations of
multiple signals. For example, the npm Security Team technically specifies that
ruffer-xor, bufner-xor, and bwffer-xor target buffer-xor. Furthermore,
the malicious Python package pwd was accused of typosquatting pwdhash. These
string modifications are not considered in our set of typosquatting signals, as
confusion is unlikely. Extending our signals to capture these instances would
essentially revert to a Levenshtein distance form of typosquatting detection, in-
evitably increasing false positives and presenting end users with frequent alerts.
Likewise, checking for packages which utilize multiple signals simultaneously (like
cofee-script, which targeted coffeescript) would exponentially increase the
time required to determine if a given package name is typosquatting.

Interestingly, TypoGard confirmed 99.4% of the typosquatting perpetrators
discovered by security researchers on RubyGems, despite the fact that we did
not consider any aspect of the RubyGems ecosystem while designing TypoGard.
This encourages us to conclude that the underlying algorithm generalizes well
beyond npm and PyPI (for which TypoGard was originally designed).

The analysis of the rate at which alerts are generated is likewise encour-
aging. As presented in Section 4.2, alerts can be expected on about 0.5% of
PyPI package installations, 0.05% of npm package installations, and 0.25% of
RubyGems package installation, which we believe to be sufficiently low not to
disrupt developers’ workflow, while providing protection against typosquatting.

4.4 TypoGard Overhead

The goal of our final analysis of TypoGard is to determine the temporal overhead
it imposes on the package installation process. To quantify the performance of
TypoGard, one thousand npm packages were selected at random, weighted by
popularity (to simulate the downloading pattern of an actual user). Once se-
lected, the contents of these packages were locally cached, and installation times
for each package were measured using npm’s official package manager and a ver-
sion modified to incorporate TypoGard. The official npm package manager had
an average installation time of 2.604 seconds, while TypoGard resulted in an
average installation time of 2.669 seconds, meaning TypoGard imposes an aver-
age temporal overhead of about 2.5%. We believe this result is reasonable
and the slowdown incurred by TypoGard is effectively unnoticeable.

Batch mode performance: TypoGard’s batch mode (Section 3.2) can analyze
the entire npm package set in 11 minutes. This result suggests that TypoG-
ard could be run frequently (e.g., once per day) allowing quick identification of
unknown typosquatting cases.

5 Discussion

5.1 Extensions and Customizations to TypoGard

The goal of TypoGard is to decrease the chances of an incorrect package instal-
lation due to confusion. However, it is beyond the scope of this work to model all
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of the ways in which a user might confuse package names. For example, confu-
sion may stem from misremembering a name, or hearing it incorrectly. Similarly,
the particular keyboard layout used by a developer influences typos that that
developer is likely to make when typing in the package name. Collectively, these
differences may justify personalizing the typosquatting detection scheme.

TypoGard relies on the concept of popularity. It is possible to define al-
ternative notions of popularity (e.g. using the number of dependent packages).
Exploring these is future work, but does not require major modifications.

5.2 Server-Side Protection Mechanisms

Our technique successfully detected typosquatting that was active in popular
package repositories for over a year, leading to effective remediation. Conse-
quently, we feel that TypoGard could aid server-side security teams in scanning
their entire repository to discovered latent typosquatting instances. As discussed
in Section 3, repository maintainers can run TypoGard in batch mode to iden-
tify suspicious packages that have already been uploaded. We also consider some
additional mechanisms that may help to combat the typosquatting problem.

Preemptive takedown: TypoGard could be used to check every newly up-
loaded package, effectively disallowing the existence of too-similar package names.
This approach is a natural extension to the case-insensitive and delimiter-based
naming restrictions currently in place on npm and PyPI [27,28,39]. It further
limits potential perpetrators from gaining traction and crossing the popularity
threshold, thus achieving legitimacy through the confusion of users.

Variant-insensitive package names: A repository could also map all varia-
tions of a package name to the canonical version of the package. This approach
means that the perpetrator would be unable to upload their package, since the
system would consider the name to be taken. Furthermore, it would address the
typo by suggesting the correct target. Some repositories already implement some
limited form of this behavior [39]. A potential concern with this approach is that
it crowds the set of possible names. We note that npm already incorporates a
typo-safe mechanism to allow similar package names, called scoped packages [26].
With this mechanism, package names can be declared to exist within a scope,
and will not conflict with packages with similar or identical names that exist
outside the scope. For example, versions of many popular packages deployed us-
ing TypeScript (a typed superset of JavaScript) are available under the @types/
namespace (e.g. @types/node). Scoped packages can be used to alleviate the
concern that a repository’s names may become too crowded.

5.3 Defensive Typosquatting

One tactic currently used to prevent package typosquatting is to preemptively
register confusable variants alongside the canonical package name, so that the
variants cannot fall under the control of a typosquatter. We refer to this tactic
as defensive typosquatting. We observed instances of defensive typosquatting in
both npm and PyPI. The placeholder behaviors that we observed are as follows:
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Transparent inclusion of target package functionality: One approach is to
transparently provide the functionality of the target package to the user within
the placeholder package. This can be accomplished by making the legitimate
package a dependency of the placeholder. We observed this behavior in the npm
package buynan, which (defensively) typosquats the legitimate package bunyan.
One limitation of this defense is that it is indiscernible from a case of a malicious
Trojan package; at any point a 3rd-party owner of a placeholder could change
the redirect to a malicious payload. Furthermore, a less sophisticated method
for transparently including target package functionality is to clone the code of
the target. However, if the placeholder fails to stay up-to-date with the package
it defends, it can actually expose the user to latent vulnerabilities (e.g., loadsh).

User alerts: One possible option is to make the placeholder issue an informative
alert with directions to change to the legitimate package. This approach has
been extensively used within the PyPI repository [6,5]. In this case, placeholder
packages utilize the install hook mechanism of PyPI to issue a message at install
time that directs users to the packages they likely had in mind.

Package Deprecation: One mechanism used in practice to alert users is depre-
cation. This mechanism allows a package maintainer to indicate that the package
should no longer be used. When a deprecated package is installed, the user is
presented with an alert. One limitation of this technique is that deprecation is
used for a variety of purposes, which may lead to confusion in the user.

Defensive typosquatting will continue to have a place as a stopgap mecha-
nism to protect against package name confusion, to deal with context-dependent
corner-cases that cannot be detected automatically. Nevertheless, tools like Ty-
poGard can alleviate the limitations of placing placeholder packages.

6 Related Work

Typosquatting Defenses: Tschacher’s Bachelor thesis [44] demonstrates a suc-
cessful controlled typosquatting attack. It also briefly outlines defenses based on
forbidding names similar to those of popular packages, but does not implement
or evaluate them, and does not consider involving developers in the decision.
The creators of npm and PyPI have taken basic countermeasures to combat ty-
posquatting. Both platforms have incorporated restrictions on capitalization and
punctuation-based differences [27,39]. User-led defense campaigns exist that aim
to create placeholders for potential typosquatting names [5,7]. Limitations of
these approaches are discussed in Section 5.

Domain Name Typosquatting: Domain name typosquatting has long been a
popular attack vector, allowing cybercriminals to hijack web communications [38]
and potentially emails [40] for financial gain. This is accomplished by registering
a domain name similar to a popular one. In particularly serious cases, regulations
allow ICANN to seize typosquatted domains [1]. Such legal framework does not
exist for package typosquatting, and this approach may be difficult to apply due
to the fast-evolving nature of software ecosystems. Furthermore, not all instances
of package name typosquatting come from attacks.
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Software Ecosystem Security: Most past efforts focused on vulnerabilities
of package managers themselves [10,2], or potential attack strategies enacted
by malicious packages [29]. Both analyses are orthogonal to ours, and none of
these works reviewed actual incidents or measured the extent of the problem.
Other works more specifically analyze security risks arising from the presence
of malicious packages in highly interconnected software ecosystems [21,49]. [49]
also identifies typosquatting as one of multiple possible avenues for attack, but
it provides no in-depth analysis of the phenomenon, nor describes solutions.

General Characterization of Software Ecosystems: Literature presents
many other analyses of software ecosystems. While these works present useful
information for understanding these complex objects, they do not focus on ty-
posquatting or other potential security-related issues. Examples include [19,31,47].

Mobile Ecosystems: This work has direct parallels to the work done by Hu
et al. [22] in the context of mobile applications. They search for typosquatting
applications available on the Google Play store using techniques similar those
we used in package repositories.

Another related line of work is the study of mobile application markets such
as the Google Play store [45,12,46,11]. These works are concerned with applica-
tions used by consumers, rather than packages that are specific to the language
ecosystem and used by developers. Characterizations of app markets (and de-
fenses proposed against malicious apps) are orthogonal to our work. The closest
work is in the detection of cloned applications, which has been done via code
similarity metrics [20] or behavior [15]. In contrast, our approach is based on the
package metadata and an analysis of the properties of the package repository.

Supply Chain Vulnerabilities: Others have looked at the related problem of
supply chain vulnerabilities, i.e., vulnerabilities in the open-source applications on
which a software package depends [43,9,48,30,23]. These works typically discuss
identification or impact of potential upstream vulnerabilities. While an attacker
could attempt to introduce such a vulnerability via typosquatting, analyzing this
possibility is outside the scope of our work.

7 Conclusion

Typosquatting attacks in package repositories are frequent, and can have serious
consequences—but have received little attention. In this paper, we have shown
that defending against these attacks is both practical and efficient. By comparing
the name in the requested package’s dependency tree to a list of probable targets,
our proposed solution can protect developers from typosquatting attacks. With
an average overhead of 2.5%, a warning-to-install ratio of up to only 0.5%, and
third-party confirmation of flagged packages, our solution imposes a negligible
burden on developers while protecting package creators and end users alike.
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