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Abstract—Android’s vast app ecosystem (over 2 million apps)
poses significant privacy risks, as current methods for inferring
permissions from descriptions – keyword matching, traditional
natural language processing (NLP), and recurrent neural net-
works (RNNs) – struggle with accurate inference due to impre-
cise, ambiguous, or incomplete natural language descriptions.
This gap undermines regulatory transparency and user trust,
necessitating tools that reconcile stated functionality with actual
data practices. We demonstrate that large language models like
GPT-4o, applied in a zero-shot inference setting, leverage contex-
tual reasoning to infer permissions competitively, while fine-tuned
encoders (BERT, BART) surpass state-of-the-art performance
when trained on minimally annotated datasets augmented with
paraphrases, achieving 50–70% gains in weighted and macro
F1 scores. By enabling precise permission auditing with reduced
annotation costs, our work advances scalable, adaptable solutions
for privacy compliance across resource-constrained and high-
stakes environments.

Index Terms—Mobile applications, privacy, regulation, natural
language processing, machine learning, language models, classi-
fier design and evaluation

I. INTRODUCTION

Modern mobile applications routinely collect, process, and
share vast amounts of user data – including highly sensitive
personally identifiable information (PII) such as their name,
location, biometric identifiers, device identifiers, and network
addresses [1], [2]. The aggregation of such data poses signif-
icant privacy risks, as even ostensibly anonymized datasets
can often be re-identified through linkage attacks [3], [4].
This risk escalates in domains like mobile health (mHealth),
where applications frequently handle additional sensitive PII
categories including medical histories, real-time physiological
metrics (e.g., heart rate, blood glucose), and demographic
attributes [5], [6]. Under regulatory frameworks (like GDPR
and, for some health-related information, HIPAA), this neces-
sitates strict adherence to the principle of least privilege—a
requirement complicated by the frequent mismatch between
declared app functionalities and requested permissions [7].

Mobile app privacy documentation—including descriptions
and policies—is intended to transparently disclose requested

permissions, particularly those granting access to sensitive
personal data (e.g., camera, microphone, or biometric data).
When granted, such permissions enable direct access to sensi-
tive PII [8], posing systemic privacy risks amplified by three
unresolved challenges:
1. A semantic gap in permission inference arises when the

permissions stated or implied in an app’s description differ
from those declared in its Android manifest [9]–[12]. We
focus on the ‘described’ side of this gap: predicting permis-
sions that are explicitly mentioned (e.g., “send SMS” →
SMS) or suggested by functionality (e.g., “map your route”
→ LOCATION). While some cases are direct, many require
deeper understanding of natural language semantics.

2. The labor-intensive nature of manual annotation for
permission-description pairs creates a dearth of repre-
sentative training data, with existing datasets being both
limited in scale and skewed toward frequently downloaded
categories—like messaging or entertainment—leaving crit-
ical domains like mHealth understudied. Studies show that
the fraction of users who understand permission implica-
tions can be as low as 3% [13], making crowdsourced
labeling unreliable. As a result, state-of-the-art models
generalize poorly, particularly for domains like mHealth.

3. Since Android 6.0, permissions are requested at runtime in-
stead of installation [14], but this shift has introduced per-
mission fatigue: users are frequently prompted and tend to
approve requests reflexively [13], [15]. This phenomenon—
termed consent theater [16]—undermines informed user
control by desensitizing users to privacy risks.

Users often rely on app descriptions—typically the sole
source on platforms like Google Play—to assess permission
requirements. While these descriptions should transparently
justify requested permissions under FTC guidelines [17], their
brevity and marketing-driven framing frequently obscure per-
mission risks [18]. Ensuring description-to-permission fidelity
thus demands language understanding capable of identifying
functional claims (e.g. LOCATION for “weather alerts”) while
inferring potential overreach latent in ambiguous or imprecise



phrasing. Current approaches, however, remain fundamentally
limited in capturing these subtle linguistic distinctions.

Motivated by these challenges and the urgent need for scal-
able solutions, we conduct a systematic evaluation of language
models for automated permission inference from privacy doc-
umentation, leveraging their ability to discern subtle context-
sensitive nuances of natural language [19]. Specifically, we
present three key advances, demonstrating (in Sec. IV):
(1) modern large language models (LLMs) achieve highly

accurate permission inference in zero-shot settings—up
to 18% F1 score improvements—over fine-tuned en-
coder models, establishing a new baseline in permission-
description fidelity assessment;

(2) upon incorporating paraphrase-based data augmentation,
fine-tuned encoder models substantially surpass current
state-of-the-art, achieving gains of 5 - 25% in area under
the precision-recall (PR) curve; and

(3) our augmentation strategy is useful in limited-data scenar-
ios, achieving 15% and 38% increases in area under the
receiver-operating characteristic (ROC) and PR curves,
respectively, and 55 - 82% in F1 scores across permission
categories when compared against fine-tuning using only
250 non-augmented samples.

Our contributions are rigorously validated through experiments
across three distinct LLM architectures and two benchmark
datasets, advancing mobile privacy concerns by providing (i)
an instantly deployable zero-shot solution, and (ii) a data-
efficient supervised learning paradigm suitable for models that
require high accuracy (e.g., for regulatory compliance checks).

II. RELATED WORK

Early work on description-to-permission consistency framed
the problem with traditional NLP techniques. The WHYPER
system used rule-based text matching to identify whether an
app’s description justifies each requested permission [10]. This
framework, applied to three common permissions, achieved
over 80% precision and recall, demonstrating the promise
of sentence-level NLP for this task. Building on this idea,
the AutoCog system learned a mapping between app de-
scriptions and permission lists [9]. AutoCog employed hand-
crafted features and learned a classifier to predict whether
a description supports each permission. Its evaluation on 11
permissions demonstrated an average precision of 92.6% and
recall of 92.0%. More recently, neural-network approaches
have emerged. Notably, AC-Net proposed an end-to-end neural
framework that assigns one or more permissions to individual
description sentences [11], and reported large gains (24.5%
higher accuracy) over prior methods on a dataset of 1,415 apps,
showing that learned encoders can outperform hand-crafted
features when sufficient labeled data is available.

While these prior studies used supervised learning on fixed
datasets, our work is motivated by recent advances in large
language models (LLMs) for privacy text analysis. Several
recent works apply LLMs to privacy and permission problems,
though not directly to permission-description fidelity of apps.
For instance, Rodriguez et al. [20] used ChatGPT and Llama

2 to analyze privacy policies, achieving 93% F1 on detecting
data practice disclosures in such policies. Similarly, Tang et
al. [21] devised PolicyGPT based on GPT-4 [22] to show that
LLM-based zero-shot approaches can surpass traditional clas-
sifiers on identifying privacy policies in legal texts. Oishwee
et al. [23] investigated ChatGPT’s ability to answer Android
permission questions, analyzing 1,008 StackOverflow threads
and concluding that LLMs can effectively assist developers
with permission-related issues. Another related line of work
by Alecakir et al. [24] examines LLMs for privacy/security
more broadly. However, no prior work has applied LLM
prompting to the app description–permission fidelity problem.
XLMR4MD, a Vietnamese-language dataset and LLM-based
framework for permission-description consistency, represents
the only prior work in this task using LLMs [25], albeit
without exploring data augmentation for low-resource settings.

In contrast, our work leverages zero-shot LLM prompting
to infer permissions from descriptions, outperforming task-
specific encoders by up to 18% F1. We further introduce a
paraphrase-based augmentation strategy that boosts encoder
performance by 5-25% in PR AUC, with especially significant
gains in low-resource scenarios: using only 250 training exam-
ples, we observe improvements of 15-38% in ROC/PR AUC,
and 55-82% in F1. Collectively, these contributions combine
modern NLP with novel training techniques to advance be-
yond systems like WHYPER, AutoCog, and AC-Net, while
addressing previously unexplored, practical scenarios requiring
zero-shot inference or limited training data.

III. PROBLEM FORMULATION AND DATASETS

We frame permission inference as a multi-label binary clas-
sification task where, given a sentence from an app description,
the model predicts a binary vector representing the pres-
ence/absence of 11 Android permissions (see Table I). These
permissions, derived from Android’s standardized taxonomy,
correspond to the 11 categories used by Feng et al. [11],
derived from empirical user-concerns [26].

We employ two datasets. The first, used by Feng et al. [11]
to assess the consistency of descriptions and permissions in
Android apps (AC-Net), comprises 24,726 sentences across
1,415 Android apps from the Google Play Store. Unlike other
datasets used to study consistency issues of app descrip-
tions [10], [24], [27], the AC-Net corpus provides multiple
permission-labels per sentence, making it the sole dataset
available for multi-label classification tasks. With its 11 per-
mission categories, it is also among the most comprehensive
in terms of wide coverage. However, 80% of the corpus’
sentences do not pertain to any permission category. While
this provides adequate negative samples for each category, it
leads to significant class imbalance and inadequate training
data for several categories (which we overcome using our data
augmentation strategy, described in §IV-D). We use the AC-
Net dataset for zero-shot inference as well as for training and
evaluating the fine-tuned models. Our test-set consists of 3,600
random samples (15%). The remaining data is split 80%/20%
into training and validation sets.



TABLE I: The 11 Android permission categories (and the
corresponding Android permissions) used in our multi-label
classification task, shown here with exemplar input and output.

“The app will enhance your productivity based on your current location.”

Category (Permission)
STORAGE (WRITE EXTERNAL STORAGE, GET ACCOUNTS) ✗
CONTACTS (READ CONTACTS, WRITE CONTACTS) ✗
LOCATION (ACCESS FINE LOCATION, ACCESS COARSE LOCATION) ✓
CAMERA (CAMERA) ✗
MICROPHONE (RECORD AUDIO) ✗
SMS (READ SMS, SEND SMS) ✗
CALL LOG (READ CALL LOGS) ✗
PHONE (CALL PHONE) ✗
CALENDAR (READ CALENDAR) ✓
SETTINGS (WRITE SETTINGS) ✗
TASKS (GET TASKS, KILL BACKGROUND PROCESS) ✗

Additionally, we introduce a small, curated dataset of 250
permission sentences (P250). This corpus is independently
annotated by two domain experts (one acting as an adjudicator
to resolve conflicts), with inter-annotator agreement measured
by Cohen’s Kappa κ = 0.82.1 We use this collection to (i)
assess the general applicability of our models across datasets;
(ii) conduct experiments in low-resource settings; and (iii)
study the impact of data augmentation.

IV. EXPERIMENTS AND FINDINGS

Our first experiments investigate modern large language
models (LLMs) for inferring Android permissions based on
app descriptions. We use two state-of-the-art (SOTA) gen-
erative pre-trained transformer models—GPT-4o, the flag-
ship model from OpenAI with approx. 1.8T parameters, and
its lightweight variant GPT-4o-mini, with 8B parameters—
and compare them against established encoder-based base-
lines: BERT-base (110M parameters) and BART-Large-MNLI
(406M parameters) [30]–[32]. This spectrum of model sizes
(110M to 1.8T parameters) across different generations of
models, allows us to showcase performance-efficiency trade-
offs critical for real-world deployment, where computational
constraints often favor smaller models despite potential penal-
ties in accuracy. Moreover, it helps to put the field’s method-
ological evolution in context, especially how traditional fine-
tuning compares to the modern prompting paradigm.

A. Zero-shot inference with GPT

Zero-shot inference allows models to perform specialized
tasks using only natural language instructions to guide their
reasoning (e.g., “From the given app description, determine
the set of Android permissions that the app is likely to require.’)
without task-specific training. We evaluate GPT-4o and GPT-
4o-mini with structured text prompts that comprise task guide-
lines and input sentences from the AC-Net dataset. For model
hyperparameters that control response randomness, we retain
the default values—temperature = 0.5, and nucleus sampling
(top_p) = 1—to (i) reflect how practitioners often deploy “out

1This inter-annotator agreement reflects excellent reliability and near-
perfect consensus, aligning with established benchmarks [28], [29].

TABLE II: Permission inference across 10 runs: F1 scores
(mean µ and median µ̃) for zero-shot (GPT-4o, GPT-4o-mini)
and fine-tuned (BERT, BART-Large-MNLI) models.

GPT-4o GPT-4o-mini BERT BART
Category µ µ̃ µ µ̃ µ µ̃ µ µ̃

STORAGE 0.61 0.62 0.37 0.41 0.60 0.60 0.57 0.56
CONTACTS 0.62 0.61 0.49 0.49 0.68 0.69 0.66 0.65
LOCATION 0.88 0.90 0.75 0.77 0.70 0.69 0.71 0.72
CAMERA 0.84 0.84 0.56 0.57 0.70 0.71 0.72 0.72
MICROPHONE 0.61 0.59 0.34 0.33 0.48 0.47 0.47 0.48
SMS 0.80 0.82 0.65 0.66 0.73 0.74 0.74 0.72
CALL LOG 0.57 0.58 0.45 0.47 0.45 0.41 0.59 0.62
PHONE 0.69 0.66 0.42 0.40 0.50 0.54 0.55 0.57
CALENDAR 0.82 0.82 0.44 0.45 0.76 0.76 0.77 0.78
SETTINGS 0.22 0.27 0.04 0.07 0.44 0.51 0.49 0.51
TASKS 0.37 0.39 0.05 0.09 0.35 0.35 0.44 0.44

of the box” models in security-related workflows (e.g., Carlini
et al. [33]), and (ii) ensure reproducible results through fixed
configurations associated with the model version [22].

B. Fine-tuning baselines

For comparison, we fine-tune BERT-base and BART-Large-
MNLI on the AC-Net dataset using their default tokenizers, a
learning rate of 2 × 10−5, batch size 16, and 5 epochs. All
experiments ran on NVIDIA A100 GPUs (40 GB memory),
and repeated 10 times under identical conditions to assess
the reliability and stability of results. We observe narrow
agreement between mean and median F1 scores, suggesting
minimal variability. Results—of zero-shot inference and fine-
tuning with smaller encoder models—are shown in Table II.

C. Key findings and implications

GPT-4o outperforms both fine-tuned baselines on 7 of 11
permission labels, with the largest gain observed for LO-
CATION (18% higher F1 score, see Table II). GPT-4o-mini,
however, lags significantly, achieving only 63% of GPT-4o’s
F1 score. This significant difference underscores the tradeoff
between model sizes and their zero-shot inference capability.

Both GPT variants struggle with SETTINGS and TASKS, with
GPT-4o lagging behind the fine-tuned smaller BART model by
27% and 7%, respectively. A manual error analysis suggests
that app descriptions tend to lack clear, explicit mentions
of these permissions, often requiring implicit and/or more
complex reasoning—challenges that even human annotators
faced, and that the latest LLMs fail to consistently capture.

Clearly, the latest LLMs are largely successful in permission
inference, thereby justifying the high compute cost of a model
like GPT-4o. This is unsurprising, as these models are trained
on a large number of publicly available natural language infer-
ence datasets. The challenges faced in SETTINGS and TASKS,
coupled with the relative success of the fine-tuned smaller
models, indicate that there are specific permission indicators
in the language patterns of Android app descriptions, which
are not found in general-purpose language inference. Thus, if
there is limited data and/or computational resources, or the
application is latency-sensitive, smaller models remain viable,
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Fig. 1: Comparison vs. SOTA on the original (non-augmented) AC-Net dataset

provided the performance gaps can be mitigated. Next, we
demonstrate paraphrase-based augmentation alleviating these
concerns, surpassing SOTA results on the AC-Net dataset.

D. Data Augmentation

Drawing from the above analysis, we aim to increase
the training data for the permission categories (collectively
comprising only 20% of the AC-Net corpus). To preserve
semantics, we augment data via paraphrasing with GPT-4o.
For each input sentence in category i, GPT-4o is prompted to
generate paraphrases so that each class reaches equal size.2

The augmentation yields a dataset with a 55:45 split between
permission and non-permission sentences. We then fine-tune
models and observe the results.

Fine-tuning BERT on the augmented AC-NET dataset
achieves SOTA performance, surpassing the prior AC-Net
baseline in ROC-AUC across all permission categories. No-
tably, PR-AUC—a critical metric for imbalanced datasets—
improves by 10-30% (Table IV). However, PR-AUC scores
for SETTINGS and TASKS remain lower than other categories
even after augmentation. Similar improvements over SOTA are
replicated with other BERT variants and the BART architec-
ture, confirming that the gains can be generalized.

Impact: Data augmentation yields statistically significant
improvements (p < 0.05) in recall and F1 scores across all
models, while precision improvements are either insignificant
or negligible. This aligns with security priorities, as higher
recall minimizes missed permission misuse.

With paraphrases of existing data, the models learn robust
linguistic representations, improving generalization to unseen
inputs. To quantify this, we measure prediction entropy for
the base BERT model trained on augmented versus non-

2The number of paraphrases generated for the ith category is L/ni − 1,
where L = LCM(n1, n2, . . . , nK), and nj is the number of samples in
the ith category in the original corpus. GPT-4o is prompted with: “Please
generate n paraphrases for the following sentence. Make sure each paraphrase
is different from the input sentence and from each other. Try to make them as
diverse as possible while retaining the original semantics. Return the output as
a JSON object with the key “results”, which maps to an array of paraphrases”

augmented data, showing (Table III) that augmentation leads
to lower entropy, indicating greater prediction stability.

Resource-efficient training: To evaluate the value of our
augmentation strategy in limited-data settings, we fine-tune
models on the small manually annotated dataset of 250 sam-
ples, dubbed P250 (Sec. III). After augmenting this dataset
with paraphrases (50 per sample), training on the augmented
corpus leads to substantial improvements when evaluated on
the AC-Net dataset, as shown in Fig. 2. In particular, we
observe: +15% ROC-AUC (0.91), +38% PR-AUC (0.71),
+67% weighted F1 (0.67), and +69% macro-F1 (0.69). No-
tably, SMS and TASKS show no PR-AUC improvement, likely
because baseline performance for these labels was already high
prior to augmentation, thus suggesting diminishing returns for
categories where models approach ceiling performance.

V. DISCUSSION

Our experiments demonstrate that zero-shot inference with
modern LLMs like GPT-4o establish a new baseline in
permission-description fidelity assessment, achieving up to
18% F1 score improvements over fine-tuned smaller
models (like BERT and BART-Large-MNLI) across critical
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TABLE III: BERT – Average prediction entropy: Augmented
vs. Non-augmented training

Label Augmented Non-Augmented

STORAGE 0.0659 0.1881
CONTACTS 0.0572 0.1713
LOCATION 0.0268 0.1181
CAMERA 0.0238 0.1088
MICROPHONE 0.0398 0.1231
SMS 0.0449 0.1321
CALL LOG 0.0306 0.1388
PHONE 0.0378 0.1732
CALENDAR 0.0267 0.1221
SETTINGS 0.0344 0.1574
TASKS 0.0217 0.1484

Sum of Averages 0.4096 1.5814

permission categories such as LOCATION and CAMERA. This
underscores the viability of generative AI for permission
inference without task-specific training.

While GPT-4o matches or exceeds fine-tuned baselines in
most categories, its lightweight variant, GPT-4o-mini, lags in
F1 by 13% (LOCATION, CONTACTS) to 38% (CALENDAR).
This gap reflects the inherent tradeoff between model scale
and capability: GPT-4o’s 1.8T parameters (compared to 8B
of GPT-4o-mini) generally enable more nuanced semantic
reasoning (e.g., inferring location access from phrases like
“nearby weather alerts”). Crucially, GPT-4o’s zero-shot perfor-
mance rivals dedicated fine-tuned models trained on domain-
specific data (AC-Net), validating its generalizability as a
universal permission inference tool. This delivers our first
contribution: modern LLMs obviate resource-intensive fine-
tuning while setting new benchmarks in accuracy.

Our experiments demonstrate that paraphrase-based data
augmentation enables fine-tuned LLMs to substantially surpass
SOTA baselines, achieving 5–25% gains in area under the
precision-recall (PR) curve across permission categories.
These improvements are also pronounced for high-risk labels
like LOCATION (PR-AUC: +8%) and CAMERA (PR-AUC:
+11%), where ambiguous language has been a challenge for
traditional models. Crucially, without augmentation, fine-tuned
LLMs only match SOTA performance, with no statistically
significant advancements. This substantiates our second con-
tribution: even the smaller models, when paired with strategic
augmentation, push permission inference benchmarks. With
paraphrases resolving class imbalance and data scarcity, mod-
els surpass the robustness achieved by tine-tuning.

We decisively answer a critical question in security-focused
ML: can language models achieve robust permission inference
with minimal annotated data? While training on only 250
manually annotated samples yields lackluster performance,
augmenting this limited dataset with paraphrases drives dra-
matic gains in ROC-AUC (+15%), PR-AUC (+38%), and
F1 (+55–82% across permission categories). These results
highlight our third contribution: paraphrase-based augmenta-
tion enables language models to perform effectively in low-
resource settings, vastly reducing reliance on costly manual

TABLE IV: ROC-AUC and PR-AUC: BERT vs AC-Net (aug-
mented)

ROC-AUC PR-AUC
Class BERT

(aug)
BERT
(unaug)

AC-
Net

BERT
(aug)

BERT
(unaug)

AC-
Net

STORAGE 0.966 0.942 0.942 0.736 0.652 0.655
CONTACTS 0.990 0.961 0.971 0.839 0.727 0.746
LOCATION 0.989 0.968 0.983 0.826 0.742 0.774
CAMERA 0.995 0.710 0.982 0.827 0.713 0.758
MICROPHONE 0.990 0.956 0.962 0.740 0.535 0.496
SMS 0.997 0.984 0.989 0.902 0.804 0.834
CALL LOG 0.999 0.992 0.993 0.943 0.632 0.705
PHONE 0.997 0.977 0.991 0.877 0.581 0.624
CALENDAR 0.998 0.983 0.994 0.908 0.796 0.844
SETTINGS 0.973 0.945 0.951 0.650 0.481 0.432
TASKS 0.986 0.903 0.949 0.717 0.460 0.486

Mean 0.990 0.938 0.973 0.815 0.647 0.668

annotation. For instance, the MICROPHONE label exhibits a
67% F1 gain, as paraphrases like “record audio notes” and
“capture voice memos” help the model generalize beyond
limited lexical signals. By synthetically expanding small, high-
confidence datasets, this approach mitigates the persistent cold
start problem faced by users and developers alike.

Limitations and Mitigation Strategies

We acknowledge that our experiments focus on Android per-
missions, and other ecosystems may exhibit different patterns.
Moreover, the applicability of our method may not extend to
low-resource languages. We present a short self-assessment
regarding other threats to the validity of our approach:
1) Annotation quality: Even when high-agreement (Cohen’s

κ = 0.82), annotations may introduce noise due to subjec-
tive interpretations (e.g., of vague language like “enhance
user experience”). We mitigate this by releasing our dataset
for community scrutiny.

2) Fixed decision threshold: Using a threshold of 0.5 may bias
predictions if class-specific optimal thresholds differ. We
address this by reporting threshold-agnostic metrics (ROC-
AUC, PR-AUC) alongside traditional F1 scores.

3) Class imbalance: Despite augmentation, rare permissions
(e.g., SETTINGS) may still skew macro-F1 scores. We
account for this by reporting both macro and weighted F1,
with detailed per-category results discussed in Sec. IV.

VI. CONCLUSION AND FUTURE WORK

This work addresses the challenge of automated permission
inference from app descriptions, a critical task for privacy
auditing, by rigorously evaluating zero-shot approaches using
LLMs as well as fine-tuned encoder models. Our findings
are threefold: (1) By augmenting imbalanced training data
through paraphrasing, fine-tuned models like BERT and BART
achieve state-of-the-art performance (25% PR-AUC gains),
demonstrating that linguistic diversity, not just dataset size,
determines success. (2) GPT-4o matches or exceeds fine-tuned



baselines (18% F1 improvements for sensitive permission cat-
egories like LOCATION) without task-specific training, validat-
ing the utility of zero-shot inference as a low-effort, high-accu-
racy tool for practitioners. (3) Synthetic expansion of a small
annotated dataset (250 instances) yields improvements of over
60% in F1 scores, proving that strategic augmentation—even
with relatively smaller language models—mitigates annotation
costs without compromising quality. Our work shows that
models, combined with robust data augmentation strategies,
can reliably infer permissions even under constraints like
limited model capacity or small annotated datasets.

Extensions of this research can span multiple avenues, in-
cluding real-world auditing, where models can be deployed to
detect discrepancies between inferred permissions and actual
app manifests for proactive privacy monitoring. Our work can
also be extended to conduct longitudinal evaluation of models,
as apps and their descriptions evolve. Another promising
direction is adversarial testing of model robustness, to handle
intentionally obfuscated app descriptions (e.g., “enhance user
experience” to mask data collection).
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