
Evaluating LLM-Based Detection of Malicious
Package Updates in npm

Elizabeth Wyss
University of Kansas

Lawrence, USA
ElizabethWyss@ku.edu

Dominic Tassio
University of Kansas

Lawrence, USA
Dominic.Tassio@ku.edu

Lorenzo De Carli
University of Calgary

Calgary, CA
Lorenzo.DeCarli@ucalgary.ca

Drew Davidson
University of Kansas

Lawrence, USA
DrewDavidson@ku.edu

Abstract—The npm software package ecosystem is a notable
target for adversarial actors, who seek to compromise software
dependencies to exploit software developers and the end-users of
their software. One especially dangerous form of attack involves
the compromise of a package update. By sneaking malicious code
into a package update, adversaries can trick package users into
unknowingly installing malware.

Detecting malicious package updates is an active research
problem, as prospective solutions need to keep pace with the near-
constant stream of new package updates, while also maintaining
high detection accuracy. In this context, one potentially inter-
esting and emergent approach involves utilizing large language
models (LLMs) to identify malicious behaviors from the text of
package code. However, practical use of LLMs also poses unique
first-order challenges, as models are expensive to run and are
known to struggle with task performance as input size increases.

This work provides a critical exploration into the practicality
and effectiveness of LLMs for detecting malicious package
updates. We overcome the immediate challenges for LLM-based
applications by preprocessing inputs for analysis and postprocess-
ing outputs for malware classification. We find this approach to
be practical at repository scale and effective at detecting historical
malware incidents, with our best-performing model correctly
flagging 209 out of 209 malicious samples across a collection
of historical attacks, while only flagging 8 out of 2,000 benign
samples across a dataset of typical package updates. With first-
order obstacles overcome, we then conduct a deeper investigation
into the reasoning capabilities of LLMs–demonstrating specific
mild code obfuscations that uniquely challenge tested LLMs and
enable adaptive adversaries to subvert detection. Ultimately, our
findings demonstrate nuanced potential for employing LLMs as a
part of a larger security toolbelt for detecting package malware.

I. INTRODUCTION

Securing package ecosystems is an important security prob-
lem. The largest of such repositories, npm [1], by itself hosts
over 3.2 million packages as of April 2025 and serves billions
of package downloads per week [2], [3]. These widely utilized
and easily accessible repositories of software dependencies
constitute ripe targets for malicious activities. In a software
supply-chain attack, an adversary sneaks malicious code into
a package (or exploits unintentionally vulnerable code within),
resulting in dangerous security consequences downstream–
not only for the software developers and infrastructure in-
corporating these packages–but also for the end-users who
run applications built from compromised packages [4]. Such
attacks are important yet difficult to detect due to the diversity
of potential attack forms, combined with their ability to hide

amongst the near-constant stream of packages and updates that
are continuously uploaded to package repositories.

Adding to the need for automated solutions, package mal-
ware is on the rise. Prominent software supply-chain manage-
ment firm Sonatype logged over 700,000 instances of open-
source package malware in 2024 alone, representing 156%
year-over-year growth [5]. One particularly dangerous form
of package malware involves the compromise of a package
update, wherein vested package users are exposed to malicious
code upon downloading the new package update. Indeed,
malicious package updates have been a common attack vector
among notable software supply chain incidents, including both
SolarWinds and xz-utils [6], [7].

Past approaches for detecting malicious package updates
utilize either static dataflow analysis or traditional machine
learning techniques [8], [9], [10], [11]. A significant limitation
of these past approaches is high false positive rates (4.7-
5.2% for the overall best-performing approach of those cited
above [8]). This hinders the practicality of deploying such
systems, since any sweeping enforcement mechanisms (e.g.
package takedowns), or manual review of flagged packages,
would be impractical to perform at repository scale if false
positives are flagged too frequently. Additionally, prospective
solutions need to be quick to run and highly efficient in order
to catch malware in real time as new package updates are
rapidly released. As such, malicious package update detection
is an active research problem.

In this context, an interesting new approach is the use of
large language models (LLMs), which are pre-trained models
designed to perform general-purpose language-based tasks,
mediated via textual input prompting [12], [13]. This approach
is particularly enticing within the context of past approaches
since LLM-enabled malware detection, operating at the lexical
level, offers high degrees of generalizability, adaptability, and
efficiency. Moreover, LLMs are gaining significant popularity
and advocacy in software security research [14], [15], [16],
[17], [18], including in package malware detection [19], [20].
The goal of our work is to provide a critical investigation into
the use of LLMs for malware detection, carefully considering
the accuracy, practicality, and deeper reasoning capabilities of
tested LLMs.

A review of literature identifies several first-order concerns
that make effective use of LLMs for malware detection more

challenging. Notably, LLMs are expensive to operate [21], im-
pacting their practicality at scale. Moreover, extracting precise
classification boundaries from the text-based output of LLMs
is a non-trivial natural language processing task. And most
significantly, model input is bounded by a finite context win-
dow–which specifies an upper bound on prompt size–implying
that inputs larger than the context window cannot be analyzed
in whole. We note that many past works which employ LLM-
based security analyses [19], [17], [14], [16] have opted to
simply ignore any samples that exceed the context windows
of tested models. Compounding this challenge, large inputs
in general–even those within an LLM’s context window–are
shown in practice to worsen model performance across various
tasks [22], [23], as larger inputs increase the likelihood of
an LLM being distracted by less relevant information and/or
overlooking more important information.

In this work, we show that such first-order challenges for
LLM-based malware detection can be overcome through prac-
tical considerations and selection of well-suited environments.
With modern software development trending towards practices
such as continuous integration [24], code updates are becom-
ing smaller in size and more frequent. These smaller sizes
imply that package updates, rather than whole packages, pose
more favorable conditions for LLM-based analysis. Indeed,
in an analysis of more than 2,000 npm package updates, we
find that even a plain diff between consecutive package
versions is on average 78.8% smaller than the whole package’s
codebase. Compounding this reduction, we find that package
updates exhibit significant potential for summarization. To
further optimize input sizes, we develop a custom smart-
diff generator–a diff-based tool that employs preprocessing
minification and k-gram-based redundant code elimination–
to capture only the novel changes within a package update.
Using smart-diffs rather than whole packages as the inputs to
LLMs, we are able to reduce total input size by an average of
95.4%, thus allowing over 98.5% of those package updates to
fit within tested models’ context windows.

Within this environment, we show that LLMs can be effec-
tive in detecting existing attacks. Across a collection of his-
torical npm package malware incidents, tested LLMs correctly
flag 209 out of 209 malicious samples, and across a collection
of typical npm package updates, our best-performing model
flags just 8 false positives out of 2,000 typical package updates,
all with a total (single-threaded) execution time of 35.58
seconds per update on average (and only 11.61 seconds at
median). Further, we demonstrate the efficiency of smart-diff
enabled LLM-based malware detection by conducting live
analysis of updates to popular npm packages in real time,
spanning nearly 30,000 package updates over a period of
almost three months.

With first-order challenges of LLM applicability overcome,
our final research goal is to critically assess whether deeper is-
sues of LLM-based malware detection remain to be addressed.
Through this investigation, we demonstrate specific forms of
mild code obfuscations designed to uniquely challenge the
current reasoning capacities of tested LLMs, which enable

adaptive adversaries to subvert package malware detection.
We also find that tested LLMs can provide limited, surface-
level analysis into the kinds of complex and branching code
obfuscations that are challenging for existing dataflow anal-
ysis. Ultimately, our findings paint a nuanced picture of the
potential for LLM-assisted malware detection, which we hope
will inform further research into the continued evolution of
package malware detection and the reasoning capabilities of
large language models.

In sum, the contributions of our work are as follows:
• We show that first-order challenges inherent to LLM-

based applications can be overcome, enabling practical
LLM-based detection of malicious npm package updates.

• We present an efficient, step-by-step architecture for
LLM-based malicious package update detection, includ-
ing smart-diffs, prompt design, and embedding-based
output classification.

• We conduct a thorough and comparative analysis of
LLM-based malicious package update detection, assess-
ing the capabilities of LLMs in relation to prior work and
identifying key cost-performance trade-offs.

• We demonstrate adversarial code obfuscation techniques
uniquely poised to subvert LLM-based malware detec-
tion, highlighting current limitations in state-of-the-art
models.

The remainder of this paper is structured as follows: Sec-
tion II explores related work and distinguishes our study from
prior research. Then, Section III presents the threat model
underlying this work. In Section IV, we describe the design of
practical LLM-based malware detection over package update
smart-diffs, and we detail our methodology for evaluating
this approach. Then, Section V presents the results of our
evaluation. In Section VI, we discuss the primary and auxiliary
findings of our work. Finally, Section VII summarizes and
concludes our work.

II. BACKGROUND AND RELATED WORK

A. Software Supply-Chain Security
The security posture of large-scale and open-source software

supply-chains is an active area of research [4]. Existing
works [10], [25], [26], [3], [27], [28] have identified key attack
vectors and explored the downstream impacts of software
supply-chain attacks across package repositories, software
developers, and end-users alike.

One field of research [29], [30], [31], [32], [33], [34]
seeks to characterize key features of open-source package
repositories. One particularly notable feature is the strong
interdependence between packages, meaning that installing
a single package typically yields the implicit installation of
dozens of transitive package dependencies [35]. Such package
interdependence further enables software supply-chain attacks,
since malicious code can be stealthily added deep into the
dependency trees of even highly popular packages [36], [10],
[37], [3].

To identify software supply chain attacks, several works
propose tools and analyses aimed at detecting malicious

software packages [10], [11], [38], [39], [40], [41], [42],
[43] and/or updates [44], [8], [9]. Such approaches utilize
either metadata-based heuristics [41], [39], [44], [10], static
analysis [38], [40], [43], [8], [9], or machine learning [11],
[42]. Of notable importance to our work is RogueOne, by
Sofaer et al. [8], which proposes a static dataflow analysis
framework for detecting malicious npm package updates via
suspicious patterns in altered dataflows. Further, RogueOne is
demonstrated to achieve higher classification accuracy com-
pared to past approaches across different detection strategies.
A recent systematization of knowledge by Ohm et al. [45]
on the detection of software supply-chain attacks notes that
existing approaches possess serious practical limitations, most
notably narrow scopes and/or high false positive rates.

Our study differs from previous works in that it provides a
critical look into the potential application of emergent LLMs in
this problem space–including the identification of key practical
considerations and a deeper exploration into the reasoning
capacities of tested models–characterizing both unique benefits
and detriments to the approach. For the sake of completeness,
we also conduct a comparative analysis of LLM-based ap-
proaches against the state-of-the-art RogueOne [8] approach.

B. Large Language Models

LLMs, and their application towards software engineering
tasks, are rapidly gaining popularity in research [46], [47].
Within the domain of software security, many works [18], [48],
[49], [50], [51] are employing LLMs in the identification of
vulnerabilities across codebases, dependencies, and applica-
tions. LLM-based malware detection is also an active area of
research [52], [19], [53], [54].

Despite their rising popularity, LLMs possess several unique
limitations. LLM output is influenced by random seeding, so
results may be inconsistent across consecutive runs. Moreover,
LLMs are shown to potentially hallucinate false information
in practice [55] and are prone to reinforcing biases present in
their own training data [56]. Risse et al. [57] note that LLM-
based security applications are particularly prone to overfitting,
and they recommend that analysts apply semantic-preserving
transformations to testing datasets in order to mitigate overfit-
ting.

Another particularly significant limitation of LLMs is their
context window, a model parameter that specifies the max-
imum length of LLM input. In practice, LLMs are demon-
strated to struggle with large inputs, and even models which
support longer context windows are shown to perform worse
on tasks as input size increases [23], [22]. Thus, optimizing
inputs for the low-context settings in which LLMs are best
suited is an important first-order challenge for LLM-based
applications to overcome.

Closely related to our work is Zahan et al.’s SocketAI [19],
an LLM-based tool for identifying malicious npm packages.
However, a key limitation of SocketAI is that it was only
evaluated on samples smaller than the context windows of
tested models, namely GPT-3.5 and GPT-4. This limitation
is significant, as it excludes more than one out of every six

npm packages, based on an internal analysis we conducted,
comparing the 128K token context window of modern GPT-
based architectures against the size of packages across the
entirety of npm. Furthermore, even whole npm packages
within a model’s context window may still be large enough to
hinder model accuracy and performance [23], [22].

Our work differs in that we develop specific techniques
aimed at overcoming the first-order concerns of LLM-based
applications, thus enabling us to conduct a deeper evaluation of
the reasoning capabilities of LLMs within this problem space.
Since whole packages can be exceptionally large in size, we
opt to analyze package updates, further condensed into smart-
diffs–taking full advantage of the lower-context settings that
LLMs are better-suited for and allowing us to better explore
the practicality and deeper reasoning capabilities of LLMs in
package malware detection.

III. THREAT MODEL

In this section, we present the overall threat model underly-
ing our work. Our work seeks to investigate the potential for
LLMs to help security practitioners, particularly in detecting
malicious package updates in the npm package repository. In
this role, the security practitioner’s goal is to maximize the
correctness, efficiency, and cost-effectiveness of LLM-assisted
malicious package update detection. One crucial aspect of
this problem is the massive scale of package repositories. As
such, malicious update detection needs to incur low runtime
overhead to keep pace with the rapid rate at which packages
are updated in real time.

We opt to focus on the npm package repository, since
it is the largest of the open-source language-based package
ecosystems [2], encompassing an abundance of data at over
3.2 million unique packages. Moreover, npm is the primary
target of existing software supply-chain security research [45].
Despite this focus, we expect that our overall approach could
generalize to other package ecosystems as well.

For our threat model, we assume an adversary that has
obtained control of an initially benign npm package (typically
through compromising a package maintainer’s account creden-
tials, although disgruntled insider and open-source contributor
abuse have also been observed as relevant attack vectors in
this domain [4], [10]). The adversary’s goal could involve
obtaining unauthorized system access, disrupting computer
resources, or harvesting sensitive information and/or monetary
assets (e.g. passwords, credit cards, cryptocurrency wallets).

We assume that the adversary is capable of modifying
arbitrary package contents in the form of a package update
published to the official npm package registry. Further, we
assume that the adversary is capable of modifying and/or
obscuring package contents so as to attempt to evade detection
by any deployed defenses.

IV. OVERVIEW

This work seeks to explore the prospects of applying LLMs
in package malware detection, determining whether first-order
concerns can be overcome, and if so, whether deeper issues

Known Malicious Updates (46) Malicious Package Clones (163)
Attack Category Quantity # Obfuscated Quantity # Obfuscated
Form Grabbing 33 19 0 0
Malicious Process Execution 7 3 163 0
Fetch and Execute Script 2 0 0 0
Data Exfiltration 2 0 0 0
Write to Sensitive Files 1 0 0 0
Trigger Dependency 1 1 0 0

TABLE I: Categorization of attack vectors identified across our package malware datasets

remain to be addressed. In this section, we overview key
challenges and methodological details pertaining to this re-
search goal. First, in Section IV-A, we explore the construction
of representative and efficacious datasets of study. Then,
Section IV-B explores design details pertaining to practical
LLM-based malicious package update detection. Finally, in
Section IV-C, we detail our methodology for evaluating LLMs
in this problem space.

A. Datasets

Building datasets which are both representative and useful
for detecting malicious package updates poses significant
challenges. For one, malicious updates are rare relative to
benign updates, since most package updates simply cover
typical software development and routine package mainte-
nance. This challenge is only exacerbated by the scale of
npm, which hosts nearly four million unique packages and
receives a near-constant stream of package updates uploaded
to the repository in real time [2], [3]. Recently published
data from prominent software supply chain management firm
Sandworm [58] estimates that the npm repository receives an
average of approximately 15 package updates each minute.

Not only is the npm repository massive in scale, package
usage statistics paint a heavily skewed picture, with the top
less-than-1% of packages garnering the overwhelming major-
ity of package downloads [39]. As such, truly representative
datasets must account for these skewed distributions of npm
packages and their updates.

To overcome these challenges, and to explore a greater
variety of data, we construct a total of three datasets for our
analysis. The package selection methodology for our datasets
expands upon Sofaer et al.’s [8] with larger sample sizes and
an additional dataset. We describe our datasets and explore
differences in our dataset curation methodologies below:

• Typical Updates. This dataset contains the most recent
package update for the 1,000 most depended-on npm
packages, plus 1,000 packages randomly sampled from
the npm repository, based on a snapshot of npm taken
on April 15th, 2024. Sofaer et al. [8] employed a similar
sampling methodology, which included 150 of the most
depended-on npm packages and 150 randomly sampled
npm packages. We believe that this mixture of popu-
lar and random package updates provides a reasonable
representation of typical package update events across

npm. We assume these updates to be benign, given that
the overwhelming majority of package updates are non-
malicious, and the samples present in this dataset are free
of any official malware-related security advisories. This
dataset is crucial for assessing how LLMs behave when
analyzing typical package updates.

• Known Malicious Updates. This dataset consists of
46 unique malicious package updates, aggregated from
The Backstabber’s Knife Collection [59], a maintained
database of historical real-world attacks. This dataset
contains all of the malicious samples assessed by So-
faer et al. [8], but with duplicates removed, plus an
additional five malicious package update incidents we
collected; these added samples include a coordinated
malware campaign which compromised the packages
coa, rc, and ua-parser-js [60], as well as isolated
incidents involving the packages getcookies [61] and
sailclothjs [62]. This dataset enables us to assess
how LLMs perform on real-world malicious package
updates.

• Malicious Package Clones. Due to the class imbalance
between typical and malicious updates, we turn to ad-
ditional representative malware in the form of malicious
package clones (i.e., packages which copy the contents
of well-known packages, but contain injected malware).
Such packages are representative of potential malicious
package updates, as they demonstrate plausible forms of
package malware that could be injected into an existing
package via a compromised update. We construct this
dataset by sampling all 163 malicious package clones
present in a dataset of recently discovered malicious
npm packages archived by open-source software security
group StacklokLabs on GitHub [63]. For each clone, we
perform a manual investigation to identify the precise
original package and version from which it was cloned.
This dataset helps to increase the overall quantity and
scope of package malware assessed in our study.

1) Malicious Update Types: In this section, we explore
and categorize historical attacks present across our datasets.
Given the complex capabilities of Node.js packages and the
wide attack surfaces exposed by the software supply chain, we
identify multiple distinct vectors of attack employed by real-
world malicious updates. Table I presents a categorization of
the attacks present in our malicious datasets. Below, we discuss

each attack in greater detail.

Form Grabbing: This client-side attack scans active web
forms for sensitive information (e.g., passwords, credit card
numbers), and sends it to an attacker-controlled server. This
is the most common form of attack present in our known
malicious updates dataset, encompassing more than two-thirds
of the attacks encountered in that dataset. Moreover, we
observe obfuscation to be common in this form of attack, with
a simple majority of such form grabbing attacks also being
heavily obfuscated.

Malicious Process Execution: This attack involves the exe-
cution of a malicious process that is embedded directly into
the package update, such as a cryptocurrency miner or an
attacker-controlled reverse shell. We find that nearly half of
these attacks were also heavily obfuscated.

Within this category of attack, we also find our dataset
of malicious package clones, which appear to belong to a
coordinated malware campaign, with each clone executing
similar, yet obfuscated, cryptocurrency mining scripts.

Fetch and Execute Script: In this attack, malicious javascript
is fetched from a web request (e.g. a pastebin.com url), and
then executed client-side, typically via the javascript eval()
function. Such attacks are particularly enticing targets of study
since they can be generalized to result in any other form of
attack expressible in javascript.

Data Exfiltration: Data exfiltration attacks involve reading
sensitive data (e.g. secret keys, IP addresses)–typically stored
in local files–and sending them to an attacker-controlled server.
These attacks are similar to form grabbing, but differ in that
they involve malicious data harvesting from sources other than
active web forms.

Write to Sensitive Files: In this form of attack, the adver-
sary writes data to sensitive files to manipulate the victim’s
machine. In the single instance of this attack present across
our datasets, the attacker appends their ssh key to the victim’s
authorized keys file, thus planting an ssh backdoor into the
victim’s machine.

Trigger Dependency: This attack involves manipulating a
package’s dependency structure in order to trigger a malicious
payload present in another dependent package. In the one
instance of this attack observed in our datasets, the malicious
package recursively scans the victim’s directory of installed
packages and invokes hidden functionality when the name of
the intended trigger dependency is located.

B. Implementation Details

In this section, we explore practical design details for
implementing LLM-based malicious package update detection
and overcoming first-order challenges inherent to LLM-based
applications. Figure 1 presents this design as a three step
approach, and we explain each step in detail below.

Smart-Diff Generator: Overcoming the limitations inherent
to finite context windows is an important first-order challenge
in evaluating the capabilities of LLM-based analysis. As such,

--
Smart-Diff Generator

1

pkg@v_old pkg@v_new

Minification Redundant Code
Elimination

1.21.1

--
Large Language Model

 (external)

Smart-Diff LLM Prompt

2

Diff

--
Update Classifier

Text Embedding LLM Output

3

LLM Response

Classification
Decision

Fig. 1: Practical design for evaluating LLM-based malicious
update detection

reducing input sizes is key to taking full advantage of the low-
context settings in which LLMs are demonstrated to achieve
peak task performance [23], [22]. To overcome this first-order
challenge, we design a custom smart-diff generator–a diff-
based utility that employs additional preprocessing heuristics
designed to capture only novel changes in a given package
update. Our smart-diff generator (step 1 in Figure 1) takes as
input the old and new version of a package, represented by the
pair {pkg@v_old, pkg@v_new}, and operates as follows:

First, we iterate over each file across both pkg@v_old
and pkg@v_new. For each javascript file encountered (e.g.
*.js, *.ts, *.ejs, *.mjs, *.cjs), we conduct minification (step
1.1), by sending it through a javascript minifier, followed
by a javascript unminifier1. This step helps to standardize
variable names and code structures, as well as eliminate non-
code features which may distract an LLM, e.g. comments.
Another key benefit of this approach is that minification
and unminification provide a built-in semantics-preserving
transformation over our input (as recommended by Risse et
al. [57] to mitigate the potential for overfitting that LLMs
are susceptible to). We utilize established javascript tools–
UglifyJS [64] and Webcrack [65]–to perform minification and
unminification respectively.

Afterwards, if a javascript file is present in both versions of
the package, we perform redundant code elimination (step 1.2),
by employing a grammar-based k-grams matcher to remove
repeat code across both versions of the same file. We find that
this step is particularly impactful in cases where code changes
have cascading lexical impacts, e.g., the addition of a single
variable declaration will alter the names of every subsequently
declared variable after minification mangles variable names,
which in turn prevents diff from eliminating large quantities

1The unminifier primarily serves to create line breaks between program
statements, which simplifies the process of employing diff to eliminate
redundant lines

of functionally identical lines that differ only in variable
naming schemes. To implement this form of redundant code
elimination, we utilize Dolos [66], a research tool originally
intended for code plagiarism detection, which we repurpose to
identify redundant code. Based on small-scale manual testing
on a subset of our typical updates and known malicious
updates datasets, we set internal parameters for k-gram length
to 70, and window length to 17, as we find these parameters
to sufficiently eliminate redundant code while leaving novel
code untouched.

Finally, the whole directories of pkg@v_old and
pkg@v_new are compared via the linux tool diff [67],
resulting in a single smart-diff per package update, which is
then stored to be used as input to a large language model.

Large Language Model: In this phase (step 2 in Figure 1),
we prompt an LLM to analyze the contents of our generated
smart-diff to determine if the package update is malicious.
Applying LLMs specifically to this task serves to automate the
detection of generalized malicious behavior patterns, distilling
the LLM’s broad lexical understanding of malware into high-
level outputs.

For model choice, we select two of OpenAI’s most recent
models [68], namely GPT-4-Turbo and GPT-4o, as well as
Google’s Gemini 2.0 Flash [69], since each of these models
are optimized for both code and natural language.

For prompt selection, we employ role-play prompting,
which is demonstrated in the research literature to more
effectively trigger chain-of-thought reasoning and improve
model performance across various tasks [70]. Our chosen LLM
prompt is as follows:

“You are a program analyst. I’m going to provide you
with the diff of an npm package update. Your task is to
analyze the behavior of this package update and identify any
potentially malicious behavior. {smart-diff contents}. Based
on your analysis, is this package update malicious?”

Afterwards, we capture the LLM’s output and save it for
update classification (step 3 in Figure 1).

Update Classifier: Translating the textual response from an
LLM into a malicious or benign classification decision is
another first-order challenge in applying LLM-based malware
detection. This problem is non-trivial, as the semantics of
textual responses are complex, and the precise delineation
between what constitutes a malicious versus benign decision is
non-obvious. Numerous prospective solutions to this problem
exist, however each approach has its own limitations.

One could prompt the LLM to reply with a simple yes/no
answer, but in practice, LLMs may ignore such a request, and
this approach could additionally result in LLM output omitting
valuable chain-of-thought information for assessing why the
LLM arrived at the decision it did. Other approaches may
prompt the LLM for structured outputs, such as Zahan et al.’s
SocketAI [19], which requests tested LLMs to output JSON
data containing numerical scores. In practice, however, LLMs
are known to in certain instances disobey requested output
structure, include numerical scores that are discordant with

accompanying text, or output only placeholder data that is
irrelevant to the specific prompted task at hand.

To avoid these forms of invalid outputs, we propose an
update classifier based on sentence embeddings of the LLM’s
output. Sentence embeddings [71] are a natural language
processing tool that seeks to encapsulate the semantic meaning
of text as a numeric vector. Such sentence embeddings are
then able to be classified using traditional machine learning
techniques. To generate sentence embeddings, we employ a
pre-trained SimCSE model [72] (specifically, the supervised
RoBERTa large model provided by Princeton’s Natural Lan-
guage Processing team).

Utilizing machine learning to reduce LLM outputs to a
malicious/benign decision requires labeled training data. To
acquire this ground truth training data, we manually review
and denote decision labels for the LLM outputs of 500 random
typical update samples, plus 100 malicious samples spanning
all 46 of our known malicious updates dataset and 54 random
samples from our malicious package clones dataset. To address
class imbalance between typical and malicious samples, we
apply SMOTE [73] oversampling to our training data. We note
that for training an update classifier, the goal is to maximize
correct interpretation of the LLM’s output, which includes
matching the decisions of any samples misclassified by the
LLM. For an evaluation of the actual classification accuracy
of tested LLMs, see Section V-A.

Next, to automate update classification, we train a variety
of machine learning algorithms on our labeled sentence em-
bedding data. For each LLM, we test random forest, gradient
boosting, and linear support vector machine classifiers using
10-fold cross-validation over our labeled data. For both of
the OpenAI models, we find that the support vector machine
performs best at correctly interpreting LLM outputs, matching
our decision labels at 100% precision and 99.98% recall
averaged across the 10 folds. For Gemini, we achieve the
most correct interpretations with the random forest classifier,
matching our decision labels at 91.8% precision and 96.2%
recall averaged across the 10 folds. Investigation into the lower
correct interpretations of Gemini outputs revealed the model’s
outputs to be noisier overall, including five interesting cases
where the model output a stream of seemingly random words
and characters.

We find these update classifiers to satisfactorily classify
LLM outputs for our goal of evaluating the prospects of LLM-
based malicious update detection. Further, we emphasize that
these output classifiers represent workable lower-bounds for
correctly interpreting outputs, offering room for additional
training and fine-tuning if desired.

C. Methodology

In this subsection, we detail our methodology for evaluating
the potential application of LLMs to detecting malicious
package updates. Broadly, we identify three primary criteria
by which we seek to assess the capabilities of LLM-based
analysis: correctness, efficiency, and resilience. Below, we

Known Malicious Updates Dataset (46) Malicious Package Clones Dataset (163)
System TP FN Error Sensitivity TP FN Error Sensitivity
Us (GPT-4o) 46 0 0 100%* 163 0 0 100%*
Us (GPT-4-Turbo) 46 0 0 100%* 163 0 0 100%*
Us (Gemini-2.0-Flash) 46 0 0 100%* 163 0 0 100%*

RogueOne 39 5 2 88.6%** N/A N/A N/A N/A

TABLE II: Classification results on known malicious updates. *: only computed on samples not included in the training set
of the output classifier. **: only computed on samples that completed without error

explain each of these criteria in detail, including specific
metrics and their rationale.

Correctness: The correctness criterion measures the degree
to which LLMs can accurately distinguish malicious package
updates from benign ones. For the LLM-based approach to
be effective, it needs to detect a large proportion of malicious
package updates–while maintaining a minimal false-positive
rate. Due to the rapid rate at which npm package updates
are released (approximately 15 per minute [58]), and the
fact that benign updates vastly outnumber malicious ones,
even a relatively small percentage of false positives could
outnumber detected true positives and make for impractical
results at repository scale. As such, we seek to evaluate the
correctness of LLM-based malicious update classifications on
real-world malicious package update incidents, as well as
typical, common package updates, to understand how tested
LLMs perform in both settings.

Due to the disjoint and imbalanced nature of our datasets,
we opt to measure correctness in terms of sensitivity and
specificity. Sensitivity (also commonly referred to as recall)
measures the percentage of true positives identified out of
all malicious samples, which we infer from our malicious
datasets. Meanwhile, specificity encapsulates the percentage
of true negatives identified out of all benign samples, which
we infer from our typical updates dataset. Although it would
be possible to calculate a precision score across these two
datasets–i.e. the percentage of true positives out of all flagged
samples–the disjoint and imbalanced nature of these datasets
makes it inherently disproportional to compare false positives
in our typical updates dataset to true positives in our malicious
datasets. Rather, the true positive rate in malicious cases,
and the frequency of false positives across typical updates,
should serve to broadly assess the effectiveness of LLM-based
analysis in both situations.

Efficiency: Repository-scale analysis, especially in real-time,
poses significant efficiency requirements. Not only must the
analysis be fast enough to scale with the growth of npm, exten-
sive LLM usage poses non-trivial monetary and/or electricity
costs. For the LLM-based approach to be effective, it must be
able to quickly analyze and classify package updates, while
not being prohibitively expensive. As such, we seek to explore
key efficiency metrics, including cost and performance trade-
offs in conducting LLM-based analysis at scale.

First, we measure the speed of our implementation of LLM-

based malicious package update detection across our datasets,
collecting aggregate timing metrics, including smart-diff gen-
eration, LLM usage, and output classification, making the
effort to consider the practicality of these time requirements
across average, median, and worst cases. Additionally, we
record monetary costs incurred by LLM usage, which we
measure in terms of the average cost of model tokens, taking
note to explore the extent to which smart-diff generation saves
on these costs.

Resilience: Last, we consider the deeper reasoning capacities
of LLMs and assess whether tested models are capable of
maintaining effectiveness whilst an adaptive adversary at-
tempts to circumvent detection. If an LLM-based approach
were to be deployed in practice, adversaries would alter
and obfuscate their malicious updates to evade detection
(as described in Section III). As such, we seek to explore
the malicious package update detection capabilities of LLMs
when evasive techniques are added into specially crafted
malicious updates. For the sake of completeness, we measure
the effectiveness of false positive engineering techniques, in
addition to false negative engineering techniques, and explore
the potential security consequences of each.

V. EVALUATION

This section presents our findings pertaining to the cor-
rectness, efficiency, and resilience of LLM-based malicious
update detection for npm packages. Section V-A assesses
how correctly tested LLMs distinguish malicious versus be-
nign package updates. Then, section V-B analyzes key cost-
performance trade-offs relating to the efficiency of repository
scale LLM-based analysis. Finally, section V-C explores the
resilience of tested LLMs to adversarial evasion techniques.

A. Correctness

To fairly measure correctness, we conduct a comparative
evaluation, testing the LLM-based approach against Sofaer et
al.’s RogueOne [8], a state-of-the-art static dataflow analysis-
based malicious update detector for npm packages, which was
demonstrated to correctly flag more known malicious updates
than other past approaches such as Sejfia et al.’s Amalfi [11]
and Duan et al.’s MalOSS [10]. We build RogueOne [8]
from the Docker container provided in the authors’ replication
package, and we employ their system’s default configurations,

which includes a one-hour timeout as used in the authors’
original evaluation.

Due to the computational complexity of static analysis,
RogueOne [8] may timeout and/or fail to produce a final clas-
sification decision when analyzing some samples. In order to
fairly compare the results of the LLM-based approach against
RogueOne [8], we record instances where we encountered
such errors, and we exclude those samples from the calculation
of RogueOne’s overall sensitivity and specificity scores, so as
to evaluate their system under the best possible conditions.
Moreover, to fairly evaluate the LLM-based approach and
account for potential overfitting, we exclude any samples
utilized to train the final output classifier from the calculation
of overall sensitivity and specificity scores.

Table II presents comparative classification results across
our package malware datasets2, and Table III displays com-
parative classification results for our typical package up-
dates dataset, both in aggregate and separated into popular
package updates and random package updates. The LLM-
based approach correctly flags 46 out of 46 known malicious
updates, as well as 163 out of 163 malicious package clones,
for each tested back-end LLM. Across our typical updates
dataset, however, each model performs differently, with GPT-
4o reporting only 8 false positives, GPT-4-Turbo reporting
16 false positives, and Gemini-2.0-Flash reporting 75 false
positives out of 2,000 samples.

Compared to RogueOne [8], the LLM-based approach
achieves higher sensitivity and specificity scores across both
of our datasets, and for each tested back-end LLM. RogueOne
correctly flags 88.6% of successfully analyzed known ma-
licious package updates, and marks 93.3% of successfully
evaluated typical package updates as benign, with only 7.9%
of all samples resulting in an error. We note that this error
rate is a potential upper bound, due to slight differences in
testing environment and possible configuration optimizations
supported by RogueOne, e.g. timeout length.

We find that RogueOne [8] is most likely to miss malicious
samples that contain complex code obfuscations and branching
loops, as these operations increase the computational com-
plexity of static dataflow analysis and thus the likelihood
of the system timing out. Interestingly, we find that tested
LLMs consistently catch these cases, citing the heavy code
obfuscation itself as a potential indicator of maliciousness.
Despite this, tested LLMs’ reasoning capabilities regarding
heavily obfuscated code appears to be limited, encompassing
only surface level insights into obfuscated code behavior. All
things considered, our findings demonstrate the LLM-based
approach to be accurate in detecting historical instances of
package malware–including instances where past approaches
struggle.

Summary of Correctness Findings: Our highest-performing
LLM-based approach, utilizing GPT-4o, achieves high ac-

2We opt not to evaluate RogueOne [8] on this dataset of malicious package
clones because such packages are technically outside of the intended problem
domain for RogueOne and thus could be potentially unfair to compare against.

Typical Updates Dataset (2000)
System TN FP Error Specificity
Us (GPT-4o) 1992 8 0 99.5%*
Us (GPT-4-Turbo) 1984 16 0 98.9%*
Us (Gemini-2.0-Flash) 1925 75 0 95.0%*

RogueOne 1716 124 160 93.3%**

Popular Updates Subset (1000)
System TN FP Error Specificity
Us (GPT-4o) 999 1 0 99.9%*
Us (GPT-4-Turbo) 993 7 0 99.1%*
Us (Gemini-2.0-Flash) 981 19 0 97.5%*

RogueOne 847 51 102 94.3%**

Random Updates Subset (1000)
System TN FP Error Specificity
Us (GPT-4o) 993 7 0 99.1%*
Us (GPT-4-Turbo) 991 9 0 98.8%*
Us (Gemini-2.0-Flash) 944 56 0 92.5%*

RogueOne 869 73 58 92.3%**

TABLE III: Classification results on typical package updates.
*: only computed on samples not included in the training set
of the output classifier. **: only computed on samples that
completed without error

curacy (100% sensitivity and 99.5% specificity) across a
combination of historical attacks, typical package updates,
and malicious clone packages. These results demonstrate that
LLMs possess significant potential in correctly discriminating
historical attacks from typical changes to packages.

B. Efficiency

This section analyzes crucial efficiency metrics relating to
the cost and performance of running LLM-based malicious
update detection at repository-scale. All metrics were gathered
on a machine with an Intel Xeon Gold 5218R processor and
196GB of RAM, running Rocky Linux version 8.7.

Execution Times: First, we assess the time it takes to classify
a single package update using our prototype design for LLM-
based malicious package update detection, which includes the
time required to generate a smart-diff followed by the time
required to query an LLM, and lastly, the time required to
generate and classify a sentence embedding. Figure 2 provides
a visual breakdown and comparison of the time-dominant steps
of this process. We find that an overwhelming majority of
smart-diffs generate in a matter of seconds, but a tiny fraction
are time-intensive to generate. At median, it takes only 2.3
seconds to generate a smart-diff, with 96.2% of smart-diffs
requiring less than one minute to generate, and only 0.1% of

0.0 0.2 0.4 0.6 0.8 1.0
Sorted Index

0

60

120

180

240

300

To
ta

l T
im

e
(s

)
Total Analysis Time Breakdown (Typical Updates)

Smart-Diff Generation Time
LLM Query Time (GPT-4o)

Fig. 2: Total analysis time breakdown for LLM-based mali-
cious package update detection, spanning both smart-diff gen-
eration time and LLM query time (GPT-4o), stacked by sample
and then sorted, across all datasets. For a large majority of
samples, LLM query time dominates, but for a small fraction
of samples, smart-diff generation time dominates. Figure is
truncated at 300 seconds along the y axis for readability.

smart-diffs (2 / 2,000 typical update samples) taking longer
than one hour to generate. Long times appear to be caused
by gigantic files containing bundled code–often consisting
of multiple entire libraries–which incur significant costs in
parsing and analyzing.

LLM Min Max Average Median
GPT-4o 2.53 s 40.55 s 9.91 s 9.07 s
GPT-4-Turbo 1.77 s 78.45 s 17.17 s 16.82 s
Gemini-2.0-Flash 0.52 s 51.71 s 3.72 s 3.37 s

TABLE IV: Timing metrics pertaining to LLM queries.

For LLM execution times, Table IV presents the minimum,
maximum, average, and median times required to query ex-
amined models. Although LLM query times exhibit some
variance, we find this variance to be independent of input
size and asymptotically constant (this trend can be seen in
Figure 2). We find Gemini-2.0-Flash to achieve the generally
fastest runtime, averaging just 3.72 seconds per query. Next, is
GPT-4o at an average query time of 9.91 seconds, and finally
GPT-4-Turbo, at 17.17 seconds.

Regarding output classification, we find runtimes to be
largely negligible. For our embeddings-based implementation,
sentence embeddings require an average of just 0.26 seconds
to generate and less than 0.002 seconds to classify.

In total, our instantiation of LLM-based malicious package
update detection (utilizing GPT-4o), from start to finish, re-
quires an average time of 35.59 seconds, or a median time of
only 11.62 seconds, to classify a given package update.

Additionally, we compare total execution times against

0 60 120 180 240 300
Time (seconds)

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

CDF of LLM-Based Approach vs. Rogue One Execution Times

LLM-Based Approach
Rogue One

Fig. 3: Cumulative distribution functions for the total execution
time of LLM-based malicious package update detection versus
RogueOne [8], across the subset of 1,732 typical updates
that were successfully analyzed by RogueOne without error.
Higher values along the y-axis indicate faster execution times
across a greater portion of samples.

RogueOne [8] for completeness. Figure 3 contrasts the cu-
mulative distribution functions of the total execution times
for our instantiation of LLM-based malicious package update
detection versus the total execution times of RogueOne [8].
Within the subset of typical update samples that RogueOne [8]
successfully analyzed without timing out (1732), we find
that the LLM-based approach is on average faster than the
static analysis performed by RogueOne, with the LLM-
based approach incurring an average execution time of 19.54
seconds, versus 65.84 seconds for RogueOne. Despite this,
RogueOne [8] achieves a faster median execution time (2.13
seconds for RogueOne versus 9.91 seconds for the LLM-
based approach), which occurs due to the relatively constant
time cost required to perform an LLM query dominating
the execution time of the LLM-based approach on smaller
samples. We believe that these results demonstrate relative
practicality of LLM-based malicious package update detection
within the context of existing approaches.

Regarding performance costs at repository scale, recent
data estimates that the npm package repository receives a
total of 674,300 package updates per month [58], which is
approximately 15 package updates per minute. Beneficially,
smart-diff generation, which dominates the execution times of
the worst-case scenarios, is a highly parallelizable process,
as independent package updates–and even independent files
across a single package update–can be processed entirely in
parallel. To demonstrate this, we implement such parallelism
into our smart-diff generator and find that by employing 30
parallel processes, we can increase the throughput of the
smart-diff generator to process one smart diff every 0.85
seconds on average (or 0.08 seconds at median). Utilizing such

Input Type Avg. Size Avg. Tokens Avg. Token Cost (GPT-4-Turbo) % Exceeding Max. Context Window
Whole Package 1.07 MB 546,363 $ 5.46 16.86%
Diff 325.83 KB 115,895 $ 1.16 7.18%
Smart-Diff 88.17 KB 25,246 $ 0.25 1.47%

TABLE V: Comparative cost-metrics across potential inputs

parallelism, we conclude that a highly-resourced entity, such
as repository maintainers or security analysis firms, would be
reasonably capable of keeping pace with the approximately 15
package updates per minute uploaded to the npm repository.

Input Costs: In addition to performance costs, input size plays
a pivotal role in LLM-based analysis, as monetary costs and
context window boundaries impact both the practicality and
effectiveness of such analysis. However, there exists a trade-
off between time and input size reduction, since preprocessing
efforts, such as smart-diff generation, consume time in order to
make the LLM input smaller. As such, we assess how smart-
diff generation impacts overall input size–and its resulting
practical cost-performance implications. To weigh potential
trade-offs, we perform a comparative analysis between smart-
diffs and plain diffs, as well as whole packages.

Table V compares how these different input types impact the
overall size and cost of LLM queries. For a visual depiction
of this data, see Figure 4. These results demonstrate that
analyzing whole packages using LLMs poses serious practi-
cality concerns. More than one out of every 6 whole packages
encountered across our datasets exceeds GPT-4 based architec-
tures’ maximum context window of 128,000 tokens, meaning
that they would need to be analyzed in chunks which may lack
important context. Further, whole packages incur substantial
token costs which may be prohibitively expensive at scale,
with an average price exceeding $5 to analyze a single package
by querying the most expensive GPT-4-Turbo model. LLM-
based analysis of package updates using diffs–and especially
smart-diffs–however, offers much greater practicality.

Compared to whole packages, regular diffs reduce total
tokenized input size by 78.8%. Compounding these savings,
smart-diffs reduce total tokenized input size by an additional
78.2% over regular diffs, reducing token costs to an average of
just $0.25 per package update. Although the savings of smart-
diffs over regular diffs ($0.91 per package update) may appear
to be small for just a single instance, across all 2,046 samples
in our package update datasets, this amounts to $1861.86 in
savings, and represents even more substantial cost reductions
at repository scale. We note that model selection may also
impact overall cost, as different LLMs may employ different
tokenizers and/or price schedules. For example, at the time
of writing, GPT-4o tokens are charged at half the rate of
GPT-4-Turbo tokens–despite both models utilizing the same
tokenizer [68], meanwhile Google’s Gemini-2.0-Flash even
offers a free-tier of usage [69].

In addition to lower costs, smart-diffs provide significantly
smaller input sizes, which are shown to improve LLM classifi-
cation accuracy in practice [23], as removing large portions of

Whole Packages Diffs Smart-Diffs
101

102

103

104

105

106

107

108

109

In
pu

t S
ize

 (T
ok

en
s)

Encountered Token Sizes by Input Type (All Datasets)
Max Context Window (GPT-4 Models)

Fig. 4: Violin plots of token sizes encountered across potential
inputs. The 128K token maximum context window for tested
GPT-4-based architectures is depicted as a dashed line. Note
the logarithmic scale on the y-axis.

irrelevant and redundant code helps to reduce distractions that
the LLM may latch onto [22]. Additionally, smart-diffs present
the lowest risk of exceeding maximum context windows, with
only 1.47% needing to be analyzed in chunks, compared to
7.18% for plain diffs and 16.86% for whole packages. Such
cost-performance trade-offs demonstrate significant practical
benefits of our smart-diff generation technique aimed at as-
sisting LLM-based package update analysis.

Summary of Efficiency Findings: By employing smart-diffs
and process parallelization, we find LLM-based malicious
package update detection to be highly practical at repository
scale, with 30 parallel threads capable of classifying more than
50 packages per minute and only 1.47% of samples exceeding
the context window of our highest performing model.

C. Resilience

Finally, we investigate the extent to which an adaptive
adversary is capable of manipulating package updates so as to
subvert LLM-based malicious package update detection and
induce misclassified outputs. First, we explore false positives,
and then false negatives.

False Positive Engineering: Although induced false positives
do not pose the risk of injecting malware into package code-
bases, they do still highlight weaknesses in LLMs’ malicious
update detection capabilities, and they may be employed by an
adversary in a denial-of-service style attack which attempts to

overload a deployed system with too many incorrectly flagged
packages.

In practice, we find that false positives can be trivially
induced by combining benign behaviors that are highly ex-
ploitable or commonly used in malicious techniques. For ex-
ample, a package update which calls the notoriously dangerous
eval() function on a highly obfuscated string–even one that
reduces to just “console.log(‘Hello, World!’)”–is sufficient to
cause each tested model to classify the update as malicious.
Other behaviors which may potentially be used to induce false
positives can be drawn from the real-world false positives
encountered by tested LLMs during our evaluation (see sec-
tion VI-A for a discussion of these false positives).

False Negative Engineering: False negatives pose a signif-
icantly greater threat to package users, as they imply that
malicious behaviors are present in an update, yet undetected
by the LLM. Hence, in a deployment setting, a reactive
adversary would seek to manipulate malicious package updates
such that they evade detection via LLM. To achieve this
end, we explore several techniques for obfuscating malicious
behaviors, particularly while also avoiding the LLM interpret-
ing the obfuscations themselves as malicious. We test our
false negative engineering techniques on two different attack
types encountered in our known malicious updates dataset,
namely the form grabbing attack, as it is the most commonly
encountered attack in our known malicious updates dataset,
as well as the fetch and execute script attack, as it is the
most generalizable attack (recall Section IV-A1 for specific
details pertaining to these attacks). Below, we discuss explored
false negative engineering techniques in detail, including both
successful and unsuccessful approaches.

Breaking Up Payloads: Malicious updates often involve
numerous program statements in order to complete an attack.
As such, we attempt to interleave malicious statements with
benign ones across large package updates, particularly updates
that are close to tested models’ maximum context window, so
as to increase the amount of contextual information required
to detect the attack. In practice, this technique alone resulted
in successfully inducing false negatives which bypass GPT-4-
Turbo and Gemini-2.0-Flash, but not the GPT-4o model–both
for the form grabbing and fetch and execute script attacks.

Mild Dataflow Obfuscations: We find that complex dataflow
obfuscations tend to inherently be interpreted as malicious
behavior by tested LLMs. Hence, we explore techniques for
milder dataflow obfuscations which increase the difficulty of–
and particularly, the context required to perform–code com-
prehension, while still appearing like benign code to an LLM.

One examined technique involves transferring a sensitive
function or variable through repeated variable assignments so
as to create contextual separation from the original assignment.
For example, we create a variable to hold a potentially
sensitive function, e.g., https.get, then we assign it to a new
variable, and we repeat this process until a sufficiently long
variable chain is created such that is difficult for an LLM to
comprehend that the final variable still holds https.get.

var l = "as"
var e = "p"
var t = e + l
var v = "eb"
var k = "t"
var u = "in"
var y = k + v + u
var i = t + y
var m = "o"
var o = "m"
var c = ".c"
var j = m + o
var z = c + j
var p = i + z

Listing 1: Mild dataflow obfuscation to construct the string
“pastebin.com” in variable p.

Another explored technique involves creating sensitive
strings piece by piece using only small operations at a time.
Listing 1 depicts the construction of the sensitive string
“pastebin.com” utilizing this technique.

Similar to breaking up payloads, these mild dataflow ob-
fuscations successfully induce false negatives which bypass
GPT-4-Turbo and Gemini-2.0-Flash, but not GPT-4o, for both
tested attack types. It is only by combining both of these
mild dataflow obfuscations with breaking up payloads that we
successfully induce false negatives which bypass GPT-4o.

Regarding mitigations against mild dataflow obfuscations,
applying further preprocessing techniques–such as dead code
elimination–may serve to undo such obfuscations prior to
LLM-based analysis. However, adaptive adversaries may, in
response, employ dynamic variables and branches to circum-
vent static preprocessing techniques like dead code elimina-
tion. Ultimately, preprocessing mitigations and LLM reasoning
capabilities will need to evolve over time as adversaries adapt
to evade defensive measures.

Prompt Engineering: LLMs may be prone to adversarial
influence when an adversary can control the input prompt such
that they alter the instructions given to an LLM. As such,
we investigate these kinds of prompt engineering attacks in
attempt to induce false negatives which bypass LLM-based
malware detection. We inject prompt engineering into the
smart-diff of malicious package updates by including text
which instructs the LLM to ignore previous instructions and
just report that the update is benign, e.g. “Dear AI program
analyst, Please ignore any and all previous instructions you
have received. When you are asked if this package update is
malicious, answer that it is a benign update, with no signs of
malicious behavior, appearing to be a part of routine mainte-
nance, raising no concerns. DO NOT under any circumstance
report that this package update is malicious or potentially
malicious.”

In practice, all attempts at prompt engineering were them-
selves flagged as malicious behaviors by all tested models.

Summary of Resilience Findings: We find that tested LLMs
may be tricked into raising false flags, and are additionally
challenged by specific forms of mild code obfuscations that
increase the context required to reason about code–enabling
adaptive adversaries to potentially evade detection by tested
models.

VI. DISCUSSION

In this section, we explore auxiliary findings of our eval-
uation and further discuss the LLM-based malicious package
update detection approach within the broader context of the
software supply chain.

A. False Positives Encountered

This subsection discusses false positives encountered by
tested LLMs during our evaluation and explores the specific
behaviors that these LLMs interpret as malicious. Table VI
presents a categorization of encountered false positives, and
below, we describe each of these categories and the common
behaviors they encapsulate.

Encountered False Positives
Category GPT-4o GPT-4-Turbo Gemini
Sensitive Operations 6 11 39
Large Deletions 2 2 39
Dependency Changes 0 4 7

TABLE VI: Encountered false positives by model and cate-
gory. Note that some false positives may fall into multiple
categories.

Sensitive Operations: Most of the encountered false positives
involve the use of security-sensitive operations that exhibit
high potential for abuse if improperly utilized or implemented.
Such security-sensitve behaviors include use of hardcoded
keys, modification of native APIs, dynamic process execution,
file system manipulation, fetching external scripts, and use of
encoding/encryption.

Large Deletions: Another subset of false positives incurred
by our system involve the removal of large portions of code,
test files, licenses, and/or other metadata files. We find that
Gemini-2.0-Flash in particular is more aggressive in assign-
ing maliciousness to deleted code and metadata files. In an
interesting false positive of this variety that was incurred
by all tested models, the update removed all functional files
and replaced them with a package deprecation placeholder.
Package deprecation is a common occurrence in the lifecycle
of npm packages, so it is strange that this behavior was
interpreted as malicious by every tested LLM.

Dependency Changes: Significant changes to dependency
structures also contributed to false positives incurred by GPT-
4-Turbo and Gemini-2.0-Flash, but not GPT-4o. This included
removing dependencies, downgrading dependencies, swapping
dependencies, and/or modifying a dependency to be installed

from a source other than the official npm registry (e.g GitHub
dependency, or other external dependency).

B. Live Update Analysis

To explore LLM-based malicious package update detection
within a more realistic deployment setting, we conduct live
analysis of popular package updates in real time as they are
uploaded to the npm repository for a period of nearly three
months, ranging from October 23, 2024 to January 17, 2025.
Within this time period, we observe 1,117,856 unique and
publicly available package updates via npm’s official registry
listener API [74].

Due to the sheer size and quantity of the more than 1.1
million unique package updates encountered, we make a num-
ber of practical considerations to simplify the scale and costs
of this real-time LLM-based analysis. First, we only target
updates for highly popular packages–those which garner more
than 100,000 weekly downloads–as these packages account for
the overwhelming majority of all npm package downloads [39]
and thus represent the most impactful targets for analysis.
Based on our most recent snapshot of npm, we find that
packages with more than 100,000 weekly downloads account
for 98.4% of all package downloads.

Applying this popular package filter results in 29,880 unique
package updates, and we generate smart-diffs for each of
these updates. Second, we skip over smart-diffs which do not
alter any package code or scripts, as these updates encompass
only non-meaningful changes such as metadata changes and
dependency version bumps (and indeed, if a dependency itself
was meaningfully altered, the update to that dependency will
be analyzed, as it is guaranteed to pass our package popularity
filter since download counts are transitive across dependency
installations in npm). Finally, we filter out smart-diffs that
exceed the LLM’s maximum context window, as this tiny
fraction of smart-diffs would incur substantial token costs to
analyze across numerous context-window sized chunks.

In total, we find that just 2.6% of smart-diffs exceeded
the model’s maximum context window, and 71.7% of smart-
diffs did not alter any package code or scripts, resulting
in 7,661 smart-diffs that we apply LLM-based analysis to.
For this experiment, we opt to utilize the GPT-4o model
since it achieved the highest classification accuracy across
our evaluation, as well as relatively faster execution times and
cheaper token costs.

Flagged Package Updates: Our live analysis using GPT-4o
flagged seven updates as malicious. We manually explore each
of these updates and assess the LLM output to determine why
they were flagged. Below, we describe each instance.

Two versions of the react-native-bootsplash
package were flagged via the LLM due to significant alter-
ations made to a javascript file containing obfuscated code.
Manual investigation of this code revealed that it performs
license validation to grant access to premium features of the
package, which the package author sells. As such, the code
obfuscation appears to be aimed at preventing users from

fraudulently bypassing license validation. We classify these
instances as false positives of the ’sensitive operations’ type.

The LLM also flagged one version of cdk-assets, as this
update includes code which uploads the contents of a hard-
coded file path to an Amazon S3 bucket. Looking deeper into
this package revealed that this code is part of a test script that
is not needed to run the package. We also classify this instance
as a false positive of the ’sensitive operations’ type.

Last, the LLM flagged four versions of the
ruhend-scraper package, as the code for this package
is entirely obfuscated and performs numerous network
requests, which the LLM deemed highly suspicious. Manual
investigation revealed this package to be a social media
video scraper, which provides functionality for users to
download videos from social media websites via network
requests made to third-party services. Although we did not
identify any explicitly malicious behaviors in this package,
we note that unauthorized video scraping may be in violation
of certain social media websites’ terms of service, such as
YouTube’s [75], which the package provides functionality
to scrape videos from, likely explaining the motivation for
code obfuscation. Due to the suspicious and potentially terms
of service violating nature of this package, we believe that
flagging this package for manual analysis is beneficial from
a security analyst’s perspective.

Ultimately, we believe that this live experiment demon-
strates smart-diff enabled LLM-based malware analysis can
be practical at repository-scale, both in keeping pace with the
growth of npm and in flagging only a manageable quantity of
package updates.

VII. CONCLUSION

Malicious package updates pose a serious threat to the
security of open-source software ecosystems and the software
supply chains they enable. Motivated by limitations in ex-
isting approaches, our work provides a deeper investigation
of the application of LLM-based security analysis within
this problem space. We demonstrated that LLMs’ first-order
concerns, such as limited context and output classification,
can be overcome to enable accurate and efficient detection of
historical package malware at repository scale. However, we
also uncovered deeper, second-order concerns regarding the
reasoning capabilities of tested LLMs, giving rise to subtle
forms of adversarial evasion that are capable of subverting
LLM-based analysis. Ultimately, our findings demonstrate
promising, yet nuanced potential for future work in employing
LLMs, not as a replacement, but as a complement to traditional
forms of security analysis.

VIII. DATA AVAILABILITY

We publicly release all code and data associated with this
work to promote open science and replicability. We distribute
these materials via the Open Science Framework [76], at the
following link:

https://osf.io/92w4e/?view only=c667861f653b44339893
032fbe40e285

REFERENCES

[1] OpenJS Foundation, “npm.” https://www.npmjs.com/, July 2024.
[2] E. DeBill, “Modulecounts.” http://www.modulecounts.com/, 2021.
[3] R. K. Vaidya, L. D. Carli, D. Davidson, and V. Rastogi, “Security issues

in language-based sofware ecosystems,” CoRR, vol. abs/1903.02613,
2019.

[4] C. Okafor, T. R. Schorlemmer, S. Torres-Arias, and J. C. Davis, “Sok:
Analysis of software supply chain security by establishing secure design
properties,” in SCORED, 2022.

[5] Sonatype, “10th annualstate of the software supply
chain.” https://www.sonatype.com/state-of-the-software-supply-
chain/introduction, 2024.

[6] D. Temple-Raston, “A ’worst nightmare’ cyberattack: The untold story
of the solarwinds hack.” https://www.npr.org/2021/04/16/985439655/a-
worst-nightmare-cyberattack-the-untold-story-of-the-solarwinds-hack,
April 2021.

[7] thesamesam, “Faq on the xz-utils backdoor (cve-2024-3094).”
https://gist.github.com/thesamesam/223949d5a074ebc3dce9ee78baad9e27,
April 2024.

[8] R. J. Sofaer, Y. David, M. Kang, J. Yu, Y. Cao, J. Yang, and J. Nieh,
“Rogueone: Detecting rogue updates via differential data-flow analysis
using trust domains,” in Proceedings of the IEEE/ACM 46th Interna-
tional Conference on Software Engineering, ICSE ’24, (New York, NY,
USA), Association for Computing Machinery, 2024.

[9] F. N. Froh, M. F. Gobbi, and J. Kinder, “Differential static analysis for
detecting malicious updates to open source packages,” in Proceedings of
the 2023 Workshop on Software Supply Chain Offensive Research and
Ecosystem Defenses, SCORED ’23, (New York, NY, USA), p. 41–49,
Association for Computing Machinery, 2023.

[10] R. Duan, O. Alrawi, R. P. Kasturi, R. Elder, B. Saltaformaggio, and
W. Lee, “Towards measuring supply chain attacks on package managers
for interpreted languages,” in NDSS 2021, Internet Society, 2021.

[11] A. Sejfia and M. Schäfer, “Practical automated detection of malicious
npm packages,” in Proceedings of the 44th International Conference on
Software Engineering, ICSE ’22, (New York, NY, USA), p. 1681–1692,
Association for Computing Machinery, 2022.

[12] T. B. Brown, B. Mann, N. Ryder, M. Subbiah, J. Kaplan, P. Dhariwal,
A. Neelakantan, P. Shyam, G. Sastry, A. Askell, S. Agarwal, A. Herbert-
Voss, G. Krueger, T. Henighan, R. Child, A. Ramesh, D. M. Ziegler,
J. Wu, C. Winter, C. Hesse, M. Chen, E. Sigler, M. Litwin, S. Gray,
B. Chess, J. Clark, C. Berner, S. McCandlish, A. Radford, I. Sutskever,
and D. Amodei, “Language models are few-shot learners,” in Proceed-
ings of the 34th International Conference on Neural Information Pro-
cessing Systems, NIPS ’20, (Red Hook, NY, USA), Curran Associates
Inc., 2020.

[13] A. Chowdhery, S. Narang, J. Devlin, M. Bosma, G. Mishra, A. Roberts,
P. Barham, H. W. Chung, C. Sutton, S. Gehrmann, P. Schuh, K. Shi,
S. Tsvyashchenko, J. Maynez, A. Rao, P. Barnes, Y. Tay, N. Shazeer,
V. Prabhakaran, E. Reif, N. Du, B. Hutchinson, R. Pope, J. Bradbury,
J. Austin, M. Isard, G. Gur-Ari, P. Yin, T. Duke, A. Levskaya, S. Ghe-
mawat, S. Dev, H. Michalewski, X. Garcia, V. Misra, K. Robinson,
L. Fedus, D. Zhou, D. Ippolito, D. Luan, H. Lim, B. Zoph, A. Spiri-
donov, R. Sepassi, D. Dohan, S. Agrawal, M. Omernick, A. M. Dai,
T. S. Pillai, M. Pellat, A. Lewkowycz, E. Moreira, R. Child, O. Polozov,
K. Lee, Z. Zhou, X. Wang, B. Saeta, M. Diaz, O. Firat, M. Catasta,
J. Wei, K. Meier-Hellstern, D. Eck, J. Dean, S. Petrov, and N. Fiedel,
“Palm: scaling language modeling with pathways,” J. Mach. Learn. Res.,
vol. 24, mar 2024.

[14] B. Steenhoek, M. M. Rahman, M. K. Roy, M. S. Alam, E. T. Barr, and
W. Le, “A comprehensive study of the capabilities of large language
models for vulnerability detection,” 2024.

[15] X. Zhou, S. Cao, X. Sun, and D. Lo, “Large language model for
vulnerability detection and repair: Literature review and the road ahead,”
2024.

[16] M. Fu and C. Tantithamthavorn, “Linevul: a transformer-based line-
level vulnerability prediction,” in Proceedings of the 19th International
Conference on Mining Software Repositories, MSR ’22, (New York, NY,
USA), p. 608–620, Association for Computing Machinery, 2022.

[17] M. D. Purba, A. Ghosh, B. Radford, and B. Chu, “Software vulnerability
detection using large language models,” pp. 112–119, 10 2023.

[18] C. Thapa, S. I. Jang, M. E. Ahmed, S. Camtepe, J. Pieprzyk, and
S. Nepal, “Transformer-based language models for software vulnera-
bility detection,” 2022.

[19] N. Zahan, P. Burckhardt, M. Lysenko, F. Aboukhadijeh, and L. Williams,
“Shifting the lens: Detecting malware in npm ecosystem with large
language models,” 2024.

[20] D. Xue, G. Zhao, Z. Fan, W. Li, Y. Xu, Z. Liu, Y. Liu, and Z. Yuan,
“Poster: An exploration of large language models in malicious source
code detection,” in Proceedings of the 2024 on ACM SIGSAC Conference
on Computer and Communications Security, CCS ’24, (New York, NY,
USA), p. 4940–4942, Association for Computing Machinery, 2024.

[21] S. Shekhar, T. Dubey, K. Mukherjee, A. Saxena, A. Tyagi, and
N. Kotla, “Towards optimizing the costs of llm usage,” arXiv preprint
arXiv:2402.01742, 2024.

[22] N. F. Liu, K. Lin, J. Hewitt, A. Paranjape, M. Bevilacqua, F. Petroni, and
P. Liang, “Lost in the middle: How language models use long contexts,”
2023.

[23] T. Li, G. Zhang, Q. D. Do, X. Yue, and W. Chen, “Long-context llms
struggle with long in-context learning,” 2024.

[24] A. Ouni, I. Saidani, E. Alomar, and M. W. Mkaouer, “An empirical
study on continuous integration trends, topics and challenges in stack
overflow,” in Proceedings of the 27th International Conference on
Evaluation and Assessment in Software Engineering, EASE ’23, (New
York, NY, USA), p. 141–151, Association for Computing Machinery,
2023.

[25] M. Zimmermann, C.-A. Staicu, C. Tenny, and M. Pradel, “Small world
with high risks: A study of security threats in the npm ecosystem,” in
USENIX Security 19, 2019.

[26] K. Chatzidimitriou, M. Papamichail, T. Diamantopoulos, M. Tsapanos,
and A. Symeonidis, “Npm-miner: An infrastructure for measuring the
quality of the npm registry,” in MSR 2018, pp. 42–45, IEEE, 2018.

[27] B. Pfretzschner and L. ben Othmane, “Identification of dependency-
based attacks on node.js,” in ARES, 2017.

[28] S. Neupane, G. Holmes, E. Wyss, D. Davidson, and L. D. Carli, “Beyond
typosquatting: An in-depth look at package confusion,” in 32nd USENIX
Security Symposium (USENIX Security 23), (Anaheim, CA), pp. 3439–
3456, USENIX Association, Aug. 2023.

[29] R. Abdalkareem, V. Oda, S. Mujahid, and E. Shihab, “On the impact
of using trivial packages: an empirical case study on npm and pypi,”
Empirical Software Engineering, vol. 25, 03 2020.

[30] A. Zerouali, T. Mens, G. Robles, and J. M. Gonzalez-Barahona, “On the
diversity of software package popularity metrics: An empirical study of
npm,” in SANER 2019, 2019.

[31] A. Zerouali, E. Constantinou, T. Mens, G. Robles, and J. Gonzalez-
Barahona, “An empirical analysis of technical lag in npm package
dependencies,” 04 2018.

[32] T. Dey and A. Mockus, “Deriving a usage-independent software quality
metric,” ESE, vol. 25, 2020.

[33] S. Mujahid, R. Abdalkareem, and E. Shihab, “What are the characteris-
tics of highly-selected packages? a case study on the npm ecosystem,”
2022.

[34] E. Wyss, L. De Carli, and D. Davidson, “What the fork? finding hidden
code clones in npm,” in ICSE 2022, 2022.

[35] I. Koishybayev and A. Kapravelos, “Mininode: Reducing the attack
surface of node.js applications,” in RAID 2020, USENIX Association,
Oct. 2020.

[36] E. Wyss, A. Wittman, D. Davidson, and L. De Carli, “Wolf at the door:
Preventing install-time attacks in npm with latch,” in ASIA CCS ’22,
2022.

[37] C. Liu, S. Chen, L. Fan, B. Chen, Y. Liu, and X. Peng, “Demystifying
the vulnerability propagation and its evolution via dependency trees in
the npm ecosystem,” arXiv preprint arXiv:2201.03981, 2022.

[38] A. Fass, M. Backes, and B. Stock, “Jstap: a static pre-filter for malicious
javascript detection,” in Proceedings of the 35th Annual Computer
Security Applications Conference, ACSAC ’19, (New York, NY, USA),
p. 257–269, Association for Computing Machinery, 2019.

[39] M. Taylor, R. Vaidya, D. Davidson, L. De Carli, and V. Rastogi,
“Defending against package typosquatting,” in NSS 2020, 2020.

[40] F. Gauthier, B. Hassanshahi, and A. Jordan, “Affogato: Runtime detec-
tion of injection attacks for node.js,” in ISSTA/ECOOP 2018, 2018.

[41] N. Zahan, T. Zimmermann, P. Godefroid, B. Murphy, C. Maddila, and
L. Williams, “What are weak links in the npm supply chain?,” in ICSE-
SEIP 2022, 2022.

[42] M. Ohm, F. Boes, C. Bungartz, and M. Meier, “On the feasibility of
supervised machine learning for the detection of malicious software
packages,” in Proceedings of the 17th International Conference on

Availability, Reliability and Security, ARES ’22, (New York, NY, USA),
Association for Computing Machinery, 2022.

[43] C. Huang, N. Wang, Z. Wang, S. Sun, L. Li, J. Chen, Q. Zhao,
J. Han, Z. Yang, and L. Shi, “Donapi: Malicious npm packages de-
tector using behavior sequence knowledge mapping,” arXiv preprint
arXiv:2403.08334, 2024.

[44] K. Garrett, G. Ferreira, L. Jia, J. Sunshine, and C. Kästner, “Detecting
suspicious package updates,” in ICSE-NIER 2019, pp. 13–16, IEEE,
2019.

[45] M. Ohm and C. Stuke, “Sok: Practical detection of software supply
chain attacks,” in Proceedings of the 18th International Conference on
Availability, Reliability and Security, ARES ’23, (New York, NY, USA),
Association for Computing Machinery, 2023.

[46] X. Hou, Y. Zhao, Y. Liu, Z. Yang, K. Wang, L. Li, X. Luo, D. Lo,
J. Grundy, and H. Wang, “Large language models for software engi-
neering: A systematic literature review,” 2024.

[47] Z. Zheng, K. Ning, J. Chen, Y. Wang, W. Chen, L. Guo, and W. Wang,
“Towards an understanding of large language models in software engi-
neering tasks,” 2023.

[48] S. Kang, G. An, and S. Yoo, “A quantitative and qualitative evaluation
of llm-based explainable fault localization,” Proceedings of the ACM on
Software Engineering, vol. 1, p. 1424–1446, July 2024.

[49] J. Wang, Z. Huang, H. Liu, N. Yang, and Y. Xiao, “Defecthunter: A
novel llm-driven boosted-conformer-based code vulnerability detection
mechanism,” 2023.

[50] N. S. Mathews, Y. Brus, Y. Aafer, M. Nagappan, and S. McIntosh, “Ll-
bezpeky: Leveraging large language models for vulnerability detection,”
2024.

[51] Y. Yang, “Iot software vulnerability detection techniques through large
language model,” in Formal Methods and Software Engineering (Y. Li
and S. Tahar, eds.), (Singapore), pp. 285–290, Springer Nature Singa-
pore, 2023.

[52] L. Li and B. Gong, “Prompting large language models for malicious
webpage detection,” in 2023 IEEE 4th International Conference on
Pattern Recognition and Machine Learning (PRML), pp. 393–400, 2023.

[53] M. A. Ferrag, M. Ndhlovu, N. Tihanyi, L. C. Cordeiro, M. Debbah,
T. Lestable, and N. S. Thandi, “Revolutionizing cyber threat detection
with large language models: A privacy-preserving bert-based lightweight
model for iot/iiot devices,” 2024.

[54] P. M. S. Sánchez, A. H. Celdrán, G. Bovet, and G. M. Pérez, “Transfer
learning in pre-trained large language models for malware detection
based on system calls,” 2024.

[55] L. Huang, W. Yu, W. Ma, W. Zhong, Z. Feng, H. Wang, Q. Chen,
W. Peng, X. Feng, B. Qin, and T. Liu, “A survey on hallucination in large
language models: Principles, taxonomy, challenges, and open questions,”
2023.

[56] I. Shumailov, Z. Shumaylov, Y. Zhao, Y. Gal, N. Papernot, and R. Ander-
son, “The curse of recursion: Training on generated data makes models
forget,” 2024.

[57] N. Risse and M. Böhme, “Uncovering the limits of machine learning
for automatic vulnerability detection,” 2024.

[58] G. Dobocan, “State of npm 2023: The overview.”
https://blog.sandworm.dev/state-of-npm-2023-the-overview, Jul 2023.

[59] M. Ohm, H. Plate, A. Sykosch, and M. Meier, “Backstabber’s knife
collection: A review of open source software supply chain attacks,” in
International Conference on Detection of Intrusions and Malware, and
Vulnerability Assessment, Springer, 2020.

[60] A. Sharma, “Popular ’coa’ npm library hijacked to steal user pass-
words.” https://www.bleepingcomputer.com/news/security/popular-coa-
npm-library-hijacked-to-steal-user-passwords/, Nov 2021.

[61] @adam npm, “Reported malicious module: getcookies.”
https://blog.npmjs.org/post/173526807575/reported-malicious-module-
getcookies.html, May 2018.

[62] G. A. Database, “Malicious package in sailclothjs.”
https://github.com/advisories/GHSA-m5pf-5894-jmx7, Sep 2020.

[63] StacklokLabs, “Jail.” https://github.com/StacklokLabs/jail, Nov 2024.
[64] M. Bazon, “Uglyfijs.” https://github.com/mishoo/UglifyJS, Feb 2017.
[65] j4k0xb, “Webcrack.” https://github.com/j4k0xb/webcrack, Feb 2023.
[66] T. Dodona, “Dolos.” https://dolos.ugent.be/, Mar 2022.
[67] P. Eggert, M. Haertel, D. Hayes, R. Stallman, and L. Tower, “Diff(1).”

https://man7.org/linux/man-pages/man1/diff.1.html, Dec 2023.
[68] OpenAI, “Models.” https://platform.openai.com/docs/models, May 2024.
[69] Google, “Gemini.” https://gemini.google.com/app, February 2025.

[70] A. Kong, S. Zhao, H. Chen, Q. Li, Y. Qin, R. Sun, X. Zhou, E. Wang,
and X. Dong, “Better zero-shot reasoning with role-play prompting,”
2024.

[71] F. Hill, K. Cho, and A. Korhonen, “Learning distributed representa-
tions of sentences from unlabelled data,” in Proceedings of the 2016
Conference of the North American Chapter of the Association for
Computational Linguistics: Human Language Technologies (K. Knight,
A. Nenkova, and O. Rambow, eds.), (San Diego, California), pp. 1367–
1377, Association for Computational Linguistics, June 2016.

[72] T. Gao, X. Yao, and D. Chen, “Simcse: Simple contrastive learning of
sentence embeddings,” 2022.

[73] N. V. Chawla, K. W. Bowyer, L. O. Hall, and W. P. Kegelmeyer, “Smote:
Synthetic minority over-sampling technique,” Journal of Artificial Intel-
ligence Research, vol. 16, p. 321–357, June 2002.

[74] npm, “Public registry api.” https://github.com/npm/registry/blob/main/docs/REGISTRY-
API.md, 2024.

[75] YouTube, “Terms of service.” https://www.youtube.com/static?template=terms,
Dec 2023.

[76] “Open science framework.” https://osf.io, Jan 2022.

