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ABSTRACT
While the use of AI assistants for code generation has the potential
to revolutionize the way software is produced, assistants may gen-
erate insecure code, either by accident or as a result of poisoning
attacks. They may also inadvertently violate copyright laws by
mimicking code protected by restrictive licenses.

We argue for the importance of tracking the provenance of AI-
generated code in the software supply chain, so that adequate
controls can be put in place to mitigate risks. For that, it is necessary
to have techniques that can distinguish between human- and AI-
generate code, and we conduct a case study in regards to whether
such techniques can reliably work. We evaluate the effectiveness
of lexical and syntactic features for distinguishing AI- and human-
generated code on a standardized task. Results show accuracy up
to 92%, suggesting that the problem deserves further investigation.

CCS CONCEPTS
• Security and privacy→ Software and application security;
• Software and its engineering→ Risk management.
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1 INTRODUCTION
Modern software is written compositionally by integrating software
packages into a main codebase. Package managers—such as npm—
automate dependency management, making it trivial to import
third-party external code. The ease of integrating this external code
enormously simplifies software development but complicates soft-
ware supply chain security, i.e., the tasks of ensuring that externally-
created software, when used in one’s own code, does not generate
security risks. As the amount of external code imported into a
project grows, so does its attack surface [31].
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Figure 1: Traditional and model-based code inclusion paths

An emerging and poorly understood threat is the increasing use
of AI assistants for code generation. These assistants are based
on large language models (LLMs), such as OpenAI Codex [20] and
SalesForce’s CodeGen [24], which can readily generate code given a
high-level outline, such as a function name or comment. As use of AI
code assistants increases, so does the amount of model-generated
code in software projects (a recent study suggests that, in files
written with model assistance, up to 40% of code may be machine-
generated [17].) Models are trained on a code dataset whose char-
acteristics indirectly influence the generated code. Thus, from the
point of view of the software supply chain, models are a novel
code inclusion path, unlike traditional mechanisms based on explicit
inclusion primitives such as import and forking (Figure 1).

Model-driven code generation is powerful and disruptive, po-
tentially freeing programmers from low-level code development
and enabling them to focus on high-level tasks. However, models
also introduce potential security problems. As they learn to gener-
ate code from unvetted human-written samples, they are exposed
to supply chain risks, as they ingest enormous amounts of poten-
tially insecure source code as their training set. Evidence suggests
that models may learn to generate insecure or incorrect code and
generally perform worse—in terms of writing secure code—than
humans [27, 28]. They may also be the target of data poisoning: an
attacker may be able to affect model behaviors in specific situations
by poisoning the training set with crafted software samples [30].
Finally, AI-generated code may cause inadvertent copyright viola-
tions [14]. Thus, it is important for projects to be able to determine
whether their upstream dependencies include AI-generated code.

In this paper, we begin to consider the issue of restoring code
provenance by determining whether a code segment was generated
by an AI tool or a human.We expect that in the long term, as AI code
assistants are further integrated into the supply chain, provenance
information may be incorporated into the code generation process.
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However, we also expect that AI code identification will constitute
an important stop-gap measure until such processes solidify.

Our work is an initial exploration, asking whether simple lexical
and syntactic code features (such as ones employed for exploit de-
tection and code stylometry) can be used to distinguish human- and
AI-generated samples in ideal conditions, i.e., on a cleanly labeled
dataset and in the absence of confounding factors. We believe the
answer can point to whether the problem is solvable and provide
an initial assessment of the accuracy of AI code identification.

To answer our research question, we build a lexical and syntactic
feature extraction pipeline, we apply it to a subset of the NYU Lost-
at-C dataset [29] (which includes human- and AI-generated code
samples on a standardized task), and we evaluate the effectiveness
of a number of classification algorithms in distinguishing samples.
Results show accuracy up to 92% depending on the specific ex-
traction/classification process. These results suggest that tracking
AI code in the supply chain may be feasible and warrants further
investigation.

2 BACKGROUND
2.1 Supply Chain Security
Current software artifacts, rather than being monolithic, tend to
incorporate a variety of external code as a set of dependencies. Typ-
ically, such code implements standardized functionality that would
be time-consuming/complex to implement correctly, such as net-
work communication, file parsing, ML/AI model building, etc. Exter-
nal dependencies are normally managed with the aid of automated
tools—package managers—which take care of importing and updat-
ing external packages. This approach to software development has
significant benefits in terms of time-to-market and costs. However,
the automated nature of dependency management makes vetting
dependencies non-trivial, opening the way to supply-chain attacks.
In such an attack, a software project is compromised by an attacker
who injects malicious code into one of its dependencies. Supply
chain attacks have significant economic impact [15, 25], and the
problem of supply chain security has attracted the attention of
academia, industry, and government entities. Existing efforts in-
volving producing best-practices [2, 8], detecting and containing
attacks [7, 18, 35], and tracking provenance of dependency code [1].

2.2 AI Code Assistants
The term "AI code assistant" generally refers to an AI-based tool
used to generate code on demand. Code generation is triggered
by developer actions and based on the surrounding code and/or
comments describing the nature of the code to be generated.

Virtually all code assistants rely upon underlying large-language
models, a type of transformer model [32]—a style of neural net-
work suitable for NLP applications. The specifics of such models
are widely discussed elsewhere (e.g., [9, 12]) and will be omitted
here; briefly, such a model generates language by defining a proba-
bility distribution over sequences of words (tokens) and iteratively
predicts the most likely word (token) to follow a given sequence.
Given a large enough model size, such a model can generate re-
alistic text addressing input user requests. Models used for code
assistants (such as OpenAI Codex [20]) are trained on both unstruc-
tured text and code samples. As such, they can perform a number

Total Count Human (Control) AI (Autopilot)
Code Files 28 30
Functions 215 327
Lines of Code 3183 6716
Lines of Comments 445 337
Blank Lines 368 434

Table 1: Characterization of dataset

of useful tasks such as code completion, implementing code from
descriptions in natural language, and generating natural language
descriptions of code.

From the point of view of the software supply chain, code as-
sistants constitute a novel code inclusion path. Indeed, models do
not generate code in a "vacuum"; instead, the code they generate
is based upon—and in some cases, identical to—the code in large
amounts of training data, typically extracted by datasets of open
source code. AI-generated code thus can be arguably considered
a generalized dependency because, in a very concrete sense, it is
derived from existing open-source code. Unlike an explicit depen-
dency (e.g., an imported package), its provenance is obfuscated
and more difficult to ascertain. This creates issues, as AI-generated
code may cause inadvertent copyright violations [14] and degrade
the security of the project incorporating it [26]. More generally,
language models are known to be vulnerable to poisoning attacks
by an attacker, which may induce the generation of undesirable
content [33]. The issue of analyzing and containing such risks is
a complex one; in this work, we consider the prerequisite task of
identifying such code.

2.3 AI Content Identification
The issue under discussion is related to that of identifying AI-
generated natural language text. In the natural-language case, de-
tecting AI-generated content (e.g., student essays) has proven ex-
ceedingly difficult [19]. Therefore, the question of whether detect-
ing AI-generated code is a realistic goal is a relevant one.

Briefly, there are a few factors that we hypothesize can reduce
the scope and complexity of the problem. First, correct solutions
to specific coding tasks have a somewhat constrained structure,
which limits possible confounding factors. Second, in many cases,
the problem in practice requires determining whether a program
was generated by AI or by a small set of human programmers (for
example, in the context of a developer team or an Open-Source
project). Conversely, the more general issue of determining whether
natural-language text is AI-generated is much less structured be-
cause in many natural language tasks, there are near-infinite correct
solutions, and it is usually not possible to restrict the set of possi-
ble human authors (or to obtain extensive writing samples for all
possible human authors).

Further, we emphasize that the goal of this paper is not to propose
a solution to the problem of AI code detection but rather to assess
whether it may be, in principle, solvable and thus motivate further
research. Based on the results of Section 5, we believe this is the
case.
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3 DATASET
Our dataset consists of 58 C source code files based on the NYU
Lost-at-C dataset [29], of which 28 were produced by a human and
30 by a mixture of AI code assistants (we obtained the dataset from
the authors of the original study). These are based on a standard-
ized programming assignment consisting of an implementation of
a "shopping list" using a singly linked list in C. The assignment
requires completing 12 functions implementing the overall task.

The assignment includes a set of instructions, the main program
file, a "list.c" file, and all other supporting files and documents
necessary for developing the program. The "list.c" file was the raw
template file that was needed to be modified for the task. This file
included comments as directives for the developers, and the same
comments were used as prompts for querying AI code suggestions.

Human-generated code (originally labeled "Control") was ob-
tained from a sample of NYU students from different academic
levels who had a prior background in coding in C. AI-generated
code (originally labeled "AutoPilot") was entirely generated by the
OpenAI Codex models integrated into a coding assistant. Three
code model variants offered by OpenAI were used. Each model,
code-cushman-001, code-davinci-001 and code-davinci-002
was used to produce ten solutions (each solution including all func-
tions necessary to implement the assignment). The parameters
applied to generate the code were varied across samples to produce
a set of diverse solutions.

In our work, we classified source code at the function level. Each
sample used in the analysis consists of a function implementation
from either the human or AI. Note that because of the process used
to create the dataset, any such function is either entirely created by
a human or an AI code assistant. The dataset also contains a set of
source files (originally labeled "Assisted") generated by allowing de-
velopers to use help from a code assistant to complete the task. We
did not use these functions, as they are likely to intermingle human
and AI-generated expressions within the same functions. While po-
tentially useful, separating these contributions would likely require
novel stylometric segmentation techniques [16], which are outside
the scope of this use case and we leave them as future work. Table 1
characterizes the data used in our analysis.

3.1 Dataset Limitations
Our dataset is small, both in terms of the number of samples and
diversity of programming tasks. We remark that using a small
dataset for a classification problem can pose adverse effects; these
are chiefly related to the confidence with which results can be
generalized (external validity). While we believe these limitations
are acceptable for our initial exploration of the problem, we elabo-
rate potential implications of this issue in Section 6.2 ("Threats to
Validity").

4 METHODOLOGY
Our approach is based on the generation of two classes of features:
simple lexical features, and syntactic features. We discuss both of
them in the following.

Feature name Description
ln(numkeyword/length) Log of the number of occurrences

of do, else-if, if, else, switch, for,
while, divided by length of function
in characters (each keywords gen-
erates a distinct feature)

ln(numword/length) Log of the number of word tokens,
divided by length

ln(numComments/ length) Log of the number of comment
lines, divided by length

avgLineLength Average line length in characters
stdDevLineLength Standard deviation of line length in

character
Table 2: Lexical features used in our work (originally pro-
posed by Caliskan-Islam et al. [11])

4.1 Lexical Features
We consider lexical features as they represent a reasonable base-
line for the performance of any algorithm in our problem domain.
Lexical features are self-evident and easy to compute; indeed, sig-
nificant differences in such features may be identifiable by direct
observation. In short, any proposed feature for AI-generated code
identification should perform at least as well as lexical features to
justify their use. In our work, we use a subset of the lexical feature
set proposed by Caliskan-Islam et al. for code stylometry [11]. The
features are listed in Table 2.

We use the features to train and evaluate four different classi-
fication algorithms. Specifically, we evaluate the performance of
Random Forest Classifiers (RFC), Support Vector Machine (SVM),
kNearestNeighbour (KNN) and XGBoost (XGB). We choose this mix
of classifiers based on the following considerations. SVM and KNN
are mature non-tree based algorithms that work well on simple
classification tasks; while RFC and XGBoost, as they are variations
of ensemble tree-based classifiers, generally provide good gener-
alization and performance even on fairly difficult tasks. Thus, this
mix allows us to empirically measure the performance of a range of
approaches. For each classifier, we perform stratified 5-fold cross-
validation and report accuracy and F1 scores; results are presented
in Section 5.2 and discussed in Section 6.

4.2 Syntactic Features
Our syntactic features are extracted from abstract syntax trees
(ASTs). ASTs are a tree-based representation of source code, which
typically retain enough information to execute or compile a pro-
gram but abstract away low-level syntactic details such as spaces,
comments, etc. ASTs are also a more convenient analysis target
than source code, as they can be processed easily and efficiently
using standard tree-based algorithms. For these reasons, ASTs are
commonly used in program classification tasks, such as code sty-
lometry [11] and malware detection [21, 23]. Figure 2a-b shows a
simple program and the corresponding AST. At a high level, our
approach generates program features by generating generalized
ASTs from source code, computing relative n-gram counts from se-
rialized ASTs, and training a classifier on such AST-based features.
The rest of this section details each step.
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Figure 2: Overview of classification based on syntactic features

Generalized Type Description of Parsed Count
Arithmetic Operator Operators responsible for carrying out mathematical computations such as "%", "+", "-" 10
Bracket All the brackets, round, square and curly brackets such as "(", ")", "[", "]", "{", "}" 6
Comment Any comment in the source code 1
Condition A conditional construct being invoked 1
Condition Keyword All the keywords that express a condition such as, if, for, while 4
Condition Statement Statements that follows and define a condition keyword, such as "For Statement", "If Statement" 3
Constant Declarator Keywords that declares a constant in the code such a "Const" and "Struct" 2
Arrow Operator Arrow Operator as defined in C "->" 1
Dot Operator Dot Operator as defined in C "." 1
Control Declarator Keywords that control the flow of the source code like "break" and "continue" 3
Control Statement Statements that follow and define a control declarator 4
Declarator Entities declaring functionality in the code not defined otherwise, such as "array_declarator", "ab-

stract_point_declarator"
8

Table 3: Representative examples of generalized AST node types. The "Count" column details the number of distinct AST node
types aggregated within each category. Note that we define 37 generalized node types; the remaining 27 are omitted for brevity.

4.2.1 Generating Generalized ASTs. Creating ASTs requires pars-
ing the source code (ref. Figure 2a) and constructing a corresponding
tree representation (Figure 2b). ASTs can be generated in different
ways and encode different information depending on their purpose;
different parsing strategies generate trees with different properties.
Regardless of the details, however, the original program structure is
generally preserved in the tree structure, and in the metadata asso-
ciated with tree nodes. Note that our approach works irrespective
of the specifics of tree generation, as it only assumes the availability
of a tree-like structure representing the original program.

Programs written with AI assistants generally consist of a mix
of human- and AI-written code. Thus, we do not perform the clas-
sification task at the whole-program level. Instead, we extract and
classify individual functions. Once the AST for a source file is gen-
erated, we extract the subtree representing each function. Function
extraction can be implemented as a simple tree traversal.

After extracting function subtrees, we generalize node types.
This is necessary due to the specifics of the feature generation
process (ref. Section 4.2.2). As our features consist of relative fre-
quencies of sequences of AST node types, the feature vector size
is exponential in the number of distinct node types. In turn, if left
unchecked this issue leads to a sparse, high-dimensional feature

space which limits the performance of many classification algo-
rithms. In order to avoid this issue, and in line with past work [21,
23], we preemptively reduce the feature space by reducing the num-
ber of possible AST node types. We do so by merging node types
with the same abstract meaning in more general categories. For
example, the parsing library we used (see Section 5.1) produced else,
for, if, while as separate node types, but as they are all conditional
keywords we grouped them together in a generalized node type
Condition Keyword. With this approach, we reduced the 102 node
types defined by the parsing library into 37 generalized types. Table
2 presents examples of relevant generalized node types.

Using our new generalized categories we translated the original
ASTs into new ASTs that preserved the same syntactic meaning
and workflow but with less syntactical entities. These generalized
ASTs were then used to create 𝑛-gram feature vectors.

4.2.2 Generating n-gram Feature. ASTs represent structured infor-
mation that cannot be directly fed to traditional classifiers, which
work on feature vectors. It is necessary to vectorize ASTs, a process
which must be done carefully as it inevitably results in loss of in-
formation. It is thus important to choose an approach that retains
as much information as possible about the tree’s original structure.
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Value of 𝑛 Possible 𝑛-grams (37𝑛)) Considered N-grams
N = 2 1369 185
N = 3 50653 519
N = 4 1874161 1135

Table 4: Comparison between possible n-grams and useful
n-grams extracted

A popular approach to AST vectorization entails the generation of
𝑛-gram based features.

With this approach, an AST is turned into a sequence of nodes
(e.g., by performing a depth-first traversal and listing all encoun-
tered nodes). A sliding window of a given size n is then moved over
the node sequence, and counts of every possible 𝑛-node sequence
are generated. Such 𝑛-node sequences are termed n-grams. Finally,
absolute 𝑛-gram counts are normalized to relative frequencies by
dividing them by the overall number of 𝑛-grams in the sequence
(Figure 2c). In our work, we evaluate values of 𝑛 between 2 and 4.

Note that generated feature vectors represent the relative fre-
quency of every possible 𝑛-node combination. As mentioned earlier,
this results in feature vectors with 𝑡𝑛 dimensionality, where 𝑡 is the
number of distinct node types (37 in our approach). Even with the
generalization approach described in Section 4.2.1, this still leads
to impractical dimensionality, particularly as 𝑛 increases. Thus, we
apply a second dimensionality reduction heuristic, by dropping
all 𝑛-gram combinations that never appear in any sample. This
approach is reasonable because program structure is defined by
syntactic constraints; for example, a function parameter node can-
not appear outside a function declaration. Thus, a large majority of
𝑛-gram combinations in practice never appear in correct programs;
the 𝑛-gram frequencies representing these combinations are always
0 and can be safely dropped. We apply this technique for values
of 𝑛 greater than 2. Table 4 details the dimensionality reduction
achieved by this strategy.

With this method, we produced a 𝑛-gram feature vector for ASTs
representing every function in the original dataset. Every function
that was coded in a programming language was thus translated as
a feature vector to be fed to a classifier.

4.2.3 Building the Classifier. The last step is to build a classifier
model that can discriminate between human- and AI-generated
samples. As discussed in Section 4.2 we had already created 𝑛-gram
feature vectors which store the frequency of occurrence of each
𝑛-gram in the source code file.

Conceptually, vectorized ASTs define an 𝑟 × 𝑐 matrix 𝑆 where 𝑟
(#rows) is the number of samples, and 𝑐 (#columns) is the cardinality
of the reduced feature set. 𝑆 is coupled with a vector of labels
𝐿, of length 𝑟 , with each entry being a scalar representing who
generated the sample (either human or AI). 𝑆 and 𝐿 can be directly
used to build a classifier. We use the same set of classifiers used
for evaluating lexical features (ref. 4.1): Random Forest Classifiers
(RFC), Support Vector Machine (SVM), kNearestNeighbour (KNN)
and XGBoost (XGB). We follow the same strategy as for the lexical
features, performing 5-fold cross-validation. Results are presented
in Section 5.3 and discussed in Section 6.

Classifer performance - lexical features
Type Accuracy F1 Precision Recall

Avg Sd Avg Sd Avg Sd Avg Sd
KNN 0.74 0.02 0.80 0.02 0.75 0.01 0.84 0.03
SVM 0.70 0.03 0.78 0.02 0.69 0.02 0.90 0.04
RFC 0.79 0.04 0.83 0.03 0.81 0.04 0.85 0.03
XGB 0.77 0.03 0.82 0.02 0.79 0.03 0.84 0.04

Table 5: Accuracy and F1 scores of all classifier, using lexical
features. Mean (Avg) and standard deviation (Sd) are com-
puted across cross-validation folds.

5 EXPERIMENTAL RESULTS
In this section, we describe our implementation of the methodology
described in Section 4, and experimentally evaluate it. Our original
research question is whether, within the constraints of our case
study, it is possible to reliably distinguish human- and AI-generated
code. The results suggest that, on our dataset, syntactic features
allow classification with relatively high accuracy.

5.1 Implementation
We implement lexical feature generation using simple text-processing
scripts. For syntactic features, we implement AST generation using
the Tree-Sitter library and its Python bindings [6]. Internally, our
implementation converts Tree-Sitter tree structures to Networkx
graphs [3]. Node type generalization and feature generation are
directly performed on this representation (specifically, node type
sequences are generated in depth-first pre-order). We use scikit [4]
to build classifier models and implement the evaluation harness.
Each type of classifier (RFC, SVM, KNN, XGB) has classifier-specific
hyperparameters. We used the default configuration for those; as
we are conducting a case study on a limited dataset, tuning the
classifiers to our data risks overestimating the achievable accuracy.
Overall, our implementation consists of 4830 lines of Python code.

5.2 Classification using Lexical Features
The goal of this part of our work is to evaluate how accurately
classifiers based on lexical features were able to classify whether the
sample data was generated by AI or human. In each experimental
scenario, we measure accuracy, F1 score, precision and recall of a
given model when operating on the lexical feature set of Table 2.
Given the relatively small size of our dataset (consisting overall in
542 samples), there is a concrete risk of overfitting. To mitigate
this risk, in all experiments, we perform 5-fold cross-validation.
We then report the mean and standard deviation of our metrics for
each experiment. Table 5 reports results for the KNN, SVM, RFC
and XGB classifiers.

5.3 Classification using Syntactic Features
Our next goal is to evaluate classifier performance on syntactic fea-
tures. This section presents results produced by each combination
of classifier/choice of 𝑛-gram length. We use the same experimen-
tal design of Section 5.2, performing 5-fold cross-validation in all
experiments. Tables 6-9 present results for the KNN, SVM, RFC and
XGB classifiers respectively.
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KNN performance - syntactic features
𝑛-gram Accuracy F1 Precision Recall
length Avg Sd Avg Sd Avg Sd Avg Sd

2 0.72 0.02 0.80 0.01 0.70 0.02 0.93 0.02
3 0.73 0.03 0.81 0.02 0.71 0.02 0.95 0.03
4 0.73 0.02 0.81 0.01 0.70 0.02 0.95 0.03

Table 6: Accuracy and F1 scores of K-Nearest Neighbor (KNN)
classifier by 𝑛-gram length.

SVM performance - syntactic features
𝑛-gram Accuracy F1 Precision Recall
length Avg Sd Avg Sd Avg Sd Avg Sd

2 0.80 0.02 0.85 0.02 0.80 0.04 0.91 0.03
3 0.83 0.03 0.87 0.02 0.83 0.03 0.91 0.01
4 0.85 0.02 0.88 0.02 0.84 0.03 0.92 0.02

Table 7: Accuracy and F1 scores of Support Vector Machine
(SVM) classifier by 𝑛-gram length.

RFC performance - syntactic features
𝑛-gram Accuracy F1 Precision Recall
length Avg Sd Avg Sd Avg Sd Avg Sd

2 0.88 0.01 0.90 0.01 0.89 0.01 0.91 0.01
3 0.88 0.02 0.90 0.01 0.89 0.01 0.91 0.02
4 0.87 0.02 0.90 0.01 0.89 0.03 0.91 0.02

Table 8: Accuracy and F1 scores of Random Forest (RFC)
classifier by 𝑛-gram length.

XGB performance - syntactic features
𝑛-gram Accuracy F1 Precision Recall
length Avg Sd Avg Sd Avg Sd Avg Sd

2 0.89 0.02 0.91 0.02 0.90 0.02 0.91 0.01
3 0.89 0.02 0.91 0.02 0.90 0.03 0.92 0.03
4 0.88 0.03 0.91 0.02 0.89 0.03 0.93 0.02

Table 9: Accuracy and F1 scores of XGBoost (XGB) classifier
by 𝑛-gram length.

5.4 Classification using Combined Features
As both lexical and syntactic features show some discerning power,
a relevant question is whether combining the two sets of features
can be beneficial. Thus, we evaluate the classifiers with the highest
accuracy/F1 scores (RFC and XGB) on feature sets combining the
two. Results are presented in Table 10 and 11.

5.5 Take-aways
At a high level, syntactic features appear to lead to higher classi-
fier performance than lexical ones. This is somewhat unsurprising,
as lexical features characterize simple textual properties that are
largely unrelated to the programming task at hand. It is worth point-
ing out, however, that lexical features still carry some information;

RFC performance - syntactic + lexical features
𝑛-gram Accuracy F1 Precision Recall
length Avg Sd Avg Sd Avg Sd Avg Sd

2 0.90 0.02 0.92 0.01 0.89 0.07 0.95 0.17
3 0.90 0.02 0.92 0.02 0.90 0.08 0.96 0.14
4 0.90 0.02 0.92 0.02 0.88 0.08 0.96 0.14

Table 10: Accuracy and F1 scores of Random Forest Classifier
(RFC) classifier by 𝑛-gram length.

XGB performance - syntactic + lexical features
𝑛-gram Accuracy F1 Precision Recall
length Avg Sd Avg Sd Avg Sd Avg Sd

2 0.91 0.02 0.92 0.01 0.90 0.02 0.95 0.01
3 0.92 0.00 0.93 0.00 0.91 0.01 0.96 0.01
4 0.90 0.01 0.92 0.01 0.89 0.01 0.95 0.02

Table 11: Accuracy and F1 scores of XGBoost (XGB) classifier
by 𝑛-gram length.

as evidenced by the XGB classifier getting a mean accuracy of 0.79
and F1 score of 0.83 using these features (Table 5).

Classifiers based on syntactic features report overall better per-
formance, but there are still some important caveats. Overall, accu-
racy results for the KNN classifiers remain at or below 0.73. SVM
fares better (accuracy up to 0.85), and tree-based classifiers achieve
the highest performance, with mean accuracy and F1 score well
above 0.80 in all cases. This is consistent with the literature, as
tree-based classifiers have proven particularly effective in program
classification tasks [21, 23], likely in light of their good generaliza-
tion properties and their adaptability to complex class boundaries.
Similar considerations apply to F1 scores. Finally, combining lexical
and syntactic features leads to a modest improvement.

Overall, we also note that the several models also exhibit some-
what significant standard deviation in some performance metrics
across folds. We suspect that this issue may derive from the small
size of our codebase and relative lack of diversity in samples. This
points to the fact that the availability of a suitably large dataset is
important for further progress on this classification task.

Interestingly, we also found that performance metrics do not
always consistently increase as the 𝑛-gram size; a modest negative
trend is even observed for some classifiers. Intuitively, a larger 𝑛
value preserves more structure of the original tree, as it enables
feature vectors to "track" larger tree substructures. Based on these
results, it appears that bigrams (𝑛 = 2) may encode an amount of
information which is sufficient for most classifiers, and longer 𝑛-
grams do not result in any noticeable advantage. We further discuss
the high-level implications of our findings in Section 6.

6 DISCUSSION
6.1 Implications
While we expect that in the long term, tools will be available to
track the provenance of AI-generated code, automatic identification
of AI-generated code will provide an important stop-gap measure
until such tools are in place. Furthermore, it will provide useful
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functionality in case such provenance is purposefully hidden (e.g.,
an employee using AI assistants even in contexts where company
policy forbids it).

In this respect, our results suggest that it may be possible to
distinguish AI- and human-generated code using syntactic features
(possibly integrated with lexical ones) with high enough accuracy
to be useful. While our work is limited to a specific programming
task, there are two reasons why we think it has direct practical
relevance. First, not all code written in a project is security-critical;
indeed, it may be sufficient to identify AI-generated code within
the implementation of specific tasks (such as cipher code, code that
parses network input, etc.). Second, our pipeline only requires AST
generation and parsing; AST generation/manipulation tools are
widely available for a variety of programming languages and thus
easily deployable.

Finally, we note that we have not considered the issue of an
adversary attempting to obfuscate the provenance of AI-generated
code; we leave this issue as future work.

6.2 Threats to Validity
There are inherent limitations in using a small dataset for classifi-
cation problems. Our sample size is small, both in terms of code
samples and variety of human authors (28) and AI models (3, with
varying parameters across different samples). This can result in is-
sues such as overfitting, and somewhat high variance in the results.
Furthermore, the original dataset was based on a fixed program
template and implements a specific assignment in C. Having a more
diverse dataset would reduce such issues, and enable the models
to find more meaningful patterns in the data. On the other side,
this dataset has several desirable characteristics: is immediately
available, provides fully correct ground truth labels, and avoids
confounding factors that may bias the results (e.g., different tasks
for humans and AI). In other words, our approach favors internal
validity over external validity (generalizability), which we believe
is acceptable for an initial exploration. Furthermore, as outlined in
Sections 2.3 and 6.1, distinguishing between AI and a restricted set
of human developers on a specific programming task may actually
be representative of a realistic application of the technique.

It should be noted that internal validity issues may still arise.
For example, AI-generated files contained fixed prompts and are
constrained to generate functions for all prompts, while human
programmers were allowed to leave function bodies empty (e.g., if
they decide they do not need a particular utility function). If not
done carefully, classification may latch on such factors, rather than
on genuine characteristics of the code. To mitigate this threat, we
carefully reviewed both the source files and the set of features and
excluded any content (e.g., function with empty bodies, which were
exclusively present in human-generated code) and features that may
model irrelevant differences between human- and AI-generated
source files.

6.3 Relevance of AI Code Detection
Traditionally, software security issues have been mitigated via de-
tection at the code level. In this respect, it may appear that whether
the originator of a vulnerability is a human or an intelligent agent
should not matter. There are two main reasons why we believe this

is not true. First, detecting security issues is not always possible or
trivial; as such, vulnerabilities may remain latent in the code for an
extended period of time, and even be context-dependent. For this
reason, in recent years, much of the academic and industry focus
in supply chain security has focused on tracking and verifying the
provenance of code [5, 34], so that broad conclusions can be reached
from reputation and characteristics of the code and maintainers.
Identifying the AI origin of a code segment falls within the view
that the provenance of code should matter as much as the output
of vulnerability detection tools.

Second, the threat model stemming fromAI code may actually be
different from that of human developers and thus require different
mitigation. For example, recent work shows that models under-
pinning code assistants may be vulnerable to poisoning attacks,
whereby the model learns to generate vulnerable code in the pres-
ence of specific contextual triggers [30]. Thus, until these threat
models are better understood, it is important to take into account
the AI origin of code when assessing its security implications.

6.4 Future Work
The main issue currently hampering progress in AI code detec-
tion is the availability of data. Thus, aggregating—and if necessary
producing—large datasets of high-quality, labeled human and AI
samples is paramount. Such datasets should ideally include a diver-
sity of developers, AI models, and tasks.

Further, there remains a large design space to be explored. The
two main directions along which our work could be expanded are
(i) identification on a broader set of tasks; and (ii) exploration of
a broader set of detection algorithms. In regards to (i), we plan to
explore a greater variety of task-specific detectors, while identifying
specific classes of tasks that are more likely to be security critical.
We also plan to evaluate code generated by a variety of models
beyond the ones in our current dataset. In regards to (ii), we plan
to evaluate a broader set of features, including lexical, syntactical,
and layout-related ones [11].

7 RELATEDWORK
Supply Chain Security. Supply chain security issues generally

originate from the injection of malicious and/or vulnerable code in
software projects. Malicious code takes many forms [31]. One line
of work within the community has focused on identifying malicious
packages; we discuss here a selection of recent works. Seifyia et al.
propose a technique for identifying malicious npm packages using
a number of package features [7]; Vu et al. investigate malware
detection techniques for the PyPI ecosystems [18]. Another line
of work focuses on containment. Wyss et al. propose a capability
system for install-time scripts [35], while Christou et al. propose
a general permission system for native JavaScript libraries [13].
These approaches are useful as part of a defense-in-depth strategy
to contain attacks, but alone cannot guarantee security. For that,
it is important to ensure that any external code incorporated in a
software artifact is tracked and periodically vetted. There exist nu-
merous solutions and guidelines from commercial and government
entities. For example, Project Sigstore focuses on code signing and
verification [5]; and NIST has produced best-practices for contain-
ing security risks [8].
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The approaches discussed above largely focus on human-guided
processes for software design and code inclusion. AI-generated code
foster novel threat models, including programmatic generation of
insecure code and/or vulnerability to data poisoning attacks. Our
work’s goal is to shine a light on this new threat model and explore
the feasibility of identifying AI-generated code.

AI Code Assistant and Security. AI code assistants are a recent
development, however, their rapid adoption has prompted a flurry
of research on this topic. Perry et al.’s large-scale user study [27]
found that participants who have access to an AI code assistant
wrote significantly less secure code than human who did not. On a
smaller user sample, Pearce et al. [26] similarly found that a code
assistant may generate insecure code in code completion sugges-
tions. It is worth noting, however, that Sandoval et al., in a different
experimental setting, found no significant differences—security-
wise—between human- and AI-generated code [28]. Finally, on a
related topic, Wan et al. have demonstrated practical dataset poi-
soning attacks against neural code search [33]. This is concerning,
particularly in light of recent work that postulates that poisoning at-
tacks against large language models can be made undetectable [22].

Overall, existing work shows that the relationship between AI
code assistants and security is nuanced and still poorly understood.
This suggests that AI-generated code identification is an important
capability, to enable tracking the provenance of such data and
highlight potential issues.

Code Classification and Stylometry. Source-code, AST-based fea-
tures are commonly used for code classification tasks; oftentimes
these tasks involve distinguishing malicious and benign programs.
Our classification pipeline (n-gram frequencies fed into a model)
is based on the works of Fass et al. [21] and Hansen et al. [23],
which use a similar approach to tell apart malicious and benign
human-written JavaScript code. We found this both effective and
convenient to implement. Indeed, it only requires AST generation
and parsing; tools implementing this functionality are available for
a wide variety of programming languages.

A related area is that of code stylometry, whose goal is to identify
the developer originating a given segment of source code [11] or
binary [10]. The problem is closely related to AI-vs-human classifi-
cation, and indeed our choice of syntactic features can be seen as
a subset of the stylometry feature set of Caliskan-Islam et al. [11].
Evaluating the effect of further features (such as for example layout-
based features) is an interesting direction for future work.

8 DATA RELEASE
Code/data for this work is accessible on the OSF digital science
platform at
https://osf.io/46nva/?view_only=9110c4a94f0a4b4591f14fdd976deeca.
The same material is also available at https://github.com/ldklab/
scored23_release.
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