
(Nothing But) Many Eyes Make All Bugs Shallow
Elizabeth Wyss
University of Kansas
Lawrence, KS, USA

ElizabethWyss@ku.edu

Lorenzo De Carli
University of Calgary

Calgary, CA
Lorenzo.DeCarli@ucalgary.ca

Drew Davidson
University of Kansas
Lawrence, KS, USA

DrewDavidson@ku.edu

ABSTRACT
Open source package repositories have become a crucial component
of the modern software supply chain since they enable developers
to easily and rapidly import code written by others. However, low
quality, poorly vetted code residing in such repositories exposes
developers and end-users to dangerous bugs and vulnerabilities at
a large scale.

Such issues have recently led to the creation of government-
backed verification standards pertaining to packages, as well as a
significant body of developer folklore regarding what constitutes
a reliable package. However, there exists little academic research
assessing the relationships between recommended development
practices and known package issues in this domain.

Motivated by this gap in understanding, we conduct a large-scale
study that formally evaluates whether adherence to these guidelines
meaningfully impacts reported issues and bug maintenance activity
across the most widely utilized npm packages (encompassing 7,162
packages with over 100K weekly downloads each), which unveiled
wide disparities across package-level metrics.

We find that it is only recommendations pertaining to a broad
notion of scrutiny that provide strong and reliable insights into
the reporting and resolving of package issues. These findings pose
significant implications for developers, who seek to identify well-
maintained packages for use, as well as security researchers, who
seek to identify suspicious packages for critical observation.

CCS CONCEPTS
• Software and its engineering→ Software libraries and repos-
itories; Software verification and validation.

ACM Reference Format:
Elizabeth Wyss, Lorenzo De Carli, and Drew Davidson. 2023. (Nothing But)
Many Eyes Make All Bugs Shallow. In Proceedings of the 2023 Workshop on
Software Supply Chain Offensive Research and Ecosystem Defenses (SCORED
’23), November 30, 2023, Copenhagen, Denmark. ACM, New York, NY, USA,
11 pages. https://doi.org/10.1145/3605770.3625216

1 INTRODUCTION
Modern software infrastructure often relies on third-party code
dependencies, known as packages, residing in open source reposi-
tories. The rapid rise of these language-based package ecosystems
highlights their widespread use and importance to the software

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
SCORED ’23, November 30, 2023, Copenhagen, Denmark
© 2023 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0263-1/23/11.
https://doi.org/10.1145/3605770.3625216

development community. The largest of such language-based repos-
itories is npm [70] for Node.js, which serves billions of weekly
downloads of more than two million unique packages, all the while
continually growing at a rate of nearly one thousand new packages
per day [20].

npm’s frontend package manager allows developers to easily
import packages into their own codebases via a simple command
line interface, which in turn has enabled wide-scale code shar-
ing, extensive code reuse, and rapid software development cycles.
Despite these advantages, this very process has also enabled the
propagation of dangerous bugs and vulnerabilities, as illustrated by
the almost three thousand common vulnerabilities and exposures
(CVEs) which have been derived from npm packages alone [6].

Attempting to avoid these problems, the software development
community surrounding npm asserts considerable claims regarding
how to select a reliable package [9, 12, 54, 61, 74], but these claims
are largely untested in empirical settings. In a similar vein, recent
national cybersecurity initiatives [1] have led the U.S. government
to issue official development standards [13], aimed at catching
vulnerabilities and other software flaws.

This paper seeks to formally evaluate whether adherence to these
guidelines meaningfully impacts the quality-driven outcomes of
packages–including reported issues and bug maintenance activity.
This particular notion of quality serves to aid users in avoiding
software defects, which may expose attack surfaces to adversaries
along the software supply chain.

We encounter several challenges in our work. A first challenge
exists in defining a representative and effective dataset for our
analysis. npm is a treasure trove of package data, but also an ex-
tremely noisy one, containing large amounts of empty and unused
packages [68]. We opt to focus on the most frequently downloaded
npm packages because they have the greatest overall impacts and
represent the most typical use cases. Packages that garner more
than 100K weekly downloads account for the majority of all pack-
age downloads in npm [68], and they are thus representative of
general repository usage. Applying this insight, we extract a wide
range of package metrics for 7,162 of the most widely-utilized npm
packages, which each boast weekly download counts ranging from
100K to 191M. Finally, we utilize the bug maintenance activity and
the issues reported against these packages to comparatively assess
proposed advice and standards.

A second challenge of this study is that different software met-
rics may measure related, overlapping aspects, and thus may not
be independent. It is important to distinguish metrics that truly
correlate with the reporting and resolving of package issues from
metrics that only appear to do so due to the effects of confounding
factors. We perform careful statistical analysis, leading to the identi-
fication of a small set of metrics which robustly and independently
correlate with issue reports and bug maintenance activity.

https://doi.org/10.1145/3605770.3625216
https://doi.org/10.1145/3605770.3625216


SCORED ’23, November 30, 2023, Copenhagen, Denmark Elizabeth Wyss, Lorenzo De Carli, and Drew Davidson

Our study offers several benefits to the software development
community. First, it critically assesses conventional guidance so
as to provide developers with empirically-backed recommenda-
tions for identifying highly maintained and reliable packages to
use in their projects. Moreover, it aids both package maintainers
and security researchers alike in identifying packages which are
under-scrutinized and thus more attractive for critical observation.

From this study, we uncover wide disparities across package-
level metrics, issue reports, and bug maintenance amongst the most
widely utilized npm packages. Our findings identify specific metrics,
which we relate to a broad notion of scrutiny, that is strongly and
independently associated with the reporting and resolving of pack-
age issues. Importantly, we also find that, when controlling for the
observed effects of our notion of scrutiny, other package metrics,
recommendations from conventional wisdom, and official standards
offer very few insights into reported issues and bug maintenance.

Not only do our findings support Linus’ Law [60], a common
software development adage which posits that many eyes make
all bugs shallow–they ultimately suggest that a better alternative
has yet to be found. Motivated by these results, we propose that
developers and security researchers alike would benefit from em-
ploying scrutiny-based metrics to select the packages that they use
and critically analyze.

Overall, the contributions of this work are as follows:
• We construct a large-scale dataset of metrics pertaining to
the most widely-utilized npm packages, which we publicly
release via the Open Science Framework [3] for further anal-
ysis, study, and replicability1

• We evaluate the effectiveness of presently suggested package
metrics and standards with respect to their impacts on the
reporting and resolving of issues across npm packages.

• We propose recommendations and metrics for identifying
npm packages that are highly scrutinized, and conversely,
packages which might benefit from additional critical obser-
vation. Measured correlation coefficients demonstrate that
packages with more contributors, forkers, and total commits
are strongly associated (+0.703 to +0.732) with increased
issue reports relative to use, as well as moderately associated
(+0.475 to +0.529) with a proportional increase in commit
activity dedicated to resolving issues.

2 BACKGROUND AND RELATEDWORK
2.1 Software Defect Detection
Related to this work is the field of software defect detection, which
seeks to characterize [24, 31, 36, 37, 40, 49, 50, 83] and discover [44,
73, 76] flaws in software, i.e. bugs. Many works [33, 51, 62, 64, 85]
utilize software metrics to predict when and where defects occur
across the lifecycle of software development, and more modern
prediction approaches often deploy machine learning [10, 56].

Some works [24, 32, 66] have employed known software defects
as a means of assessing software quality metrics. Spinellis et al. [66]
propose a general system for calculating, storing, and assessing
software quality via modular metrics, which they employ to iden-
tify key quality metrics pertaining to code complexity and software

1https://osf.io/mtrsj/?view_only=0bef73c2fb6d4363b72aa3c54fbefd22

development communities. Greiler et al. [32] investigate software
quality and identify significant relationships between known de-
fects and project ownership structures.

We differ from these works both in our choice of domain and
our overarching goal. Rather than seeking to predict where bugs
occur or assess our own software quality metrics, our focus is on
evaluating existing advice and standards which purport to impact
defects encountered by npm users.

2.2 Characterization of Package Repositories
Also similar to our work is the body of research analyzing the
properties and evolution of various package repositories [18, 29,
59, 75]. Researchers have discovered significant interdependence
between packages [22, 39, 75], particularly in npm, where 93% of
package code resides in third-party dependencies [41]. The highly-
interdependent nature of these repositories has been shown to
further propagate bugs and vulnerabilities across packages through
their direct and indirect dependencies [25, 47, 78].

Studies into the nature of package popularity [23, 24, 48, 82]
find wide download and usage disparities across packages. Within
npm, most packages are practically never downloaded by real users
(i.e. they are almost exclusively downloaded by bots and crawlers
which routinely download the entire package registry), and the
top less-than-1% of packages garner the majority of all package
downloads [68].

Other works investigate and characterize specific phenomena
discovered in package registries. Two works by Abdalkareem et
al. [7, 8] analyze the use and impacts of trivial packages, which
contain few lines of code and exhibit only very simple functionality.
Wyss et al. [77] investigate the phenomenon of package cloning
within npm, and Zerouali et al. [81] explore how npm packages
delay updating their dependencies for significant periods of time.

Expanding upon these past works, we conduct a study which
employs a broad range of key package metrics to formally assess
conventional developer wisdom and government-backed develop-
ment standards within a large sample of the most widely-utilized
npm packages.

2.3 Software Supply Chain Security
There exist numerous security challenges intrinsic to open source
package repositories and the software supply chains they enable.
Many works demonstrate how flaws in code dependencies are
leveraged to compromise the security and stability of both package
repositories and the overall process of software development [11,
16, 17, 43, 55, 57, 70, 84]. The security impacts of malicious, com-
promised, or otherwise poorly vetted dependencies encompasses
a significant body of work [15, 21, 34, 42, 58, 69, 79], and there
further exists extensive and ongoing efforts to detect malicious
and vulnerable packages through metadata and code-based sig-
nals [2, 25, 27, 28, 46, 53, 67, 68, 80].

Our work has important security implications; identifying pack-
ages, metrics, and advice which are more effectively scrutinized
helps to strengthen the integrity of the supply chain, and identify-
ing those which are less effectively scrutinized helps to prioritize

https://osf.io/mtrsj/?view_only=0bef73c2fb6d4363b72aa3c54fbefd22


(Nothing But) Many Eyes Make All Bugs Shallow SCORED ’23, November 30, 2023, Copenhagen, Denmark

0.00 0.02 0.04 0.06 0.08 0.10
Bug Maintenance Ratio

0

500

1000

1500

2000

2500

3000

3500

4000

Pa
ck

ag
es

Distribution of Bug Maintenance Ratios

Figure 1: Distribution of bug maintenance ratios across our
package dataset.

targets for critical observation. Moreover, our work benefits user ex-
perience, as well-scrutinized advice and standards aids developers
in selecting high-quality, reliable packages for their own use.

3 OVERVIEW
Our study seeks to assess whether adherence to presently recom-
mended advice and standards impacts the quality-driven outcomes
of npm packages. We first describe the methodology of our study,
including the construction of our dataset and the selection of our
target metrics for correlative analysis. Then, we describe the pro-
cesses we use to identify existing recommendations and the package
metrics we extract from such recommendations.

3.1 Methodology
For the purposes of our study, we seek to build and analyze a large-
scale dataset encompassing a wide range of recommended package
metrics for the most popular npm packages. We choose to focus our
study on the most popular npm packages–those which garner more
than 100,000 weekly downloads–for two key reasons: (i) packages
above this popularity threshold account for the majority of all npm
package downloads [68] and thus are representative of npm’s most
typical use cases; and (ii) the most highly utilized packages have
the greatest impacts on the software development community.
Dataset Construction:

At the initial time of our analysis (May 31st, 2022), we identi-
fied a total of 9,341 unique npm packages that met our popularity
threshold and thus formed our preliminary package dataset.

The npm package repository provides rich metadata for each
package in the form of a standardized package.json file, which we
employ as a source of package metrics relating to usage, dependen-
cies, versioning, size, and licensing. The overwhelming majority
(93%) of these packages declare an associated GitHub repository in
their metadata, which we extract and further employ as a source
of package metrics relating to repository usage, project workflows,
and development history.

10 7 10 6 10 5 10 4 10 3 10 2 10 1 100

Issues Per Download

0

200

400

600

800

1000

1200

1400

Pa
ck

ag
es

Distribution of Issues Per Downloads

Figure 2: Distribution of issues per downloads across our
package dataset. Note the logarithmic scale on the x-axis.

We collect additional repository-level metrics from the Open
Source Security Foundation (OSSF) Scorecards project [4], which an-
alyzes GitHub workflows to determine whether repositories engage
in development practices such as having security and code-review
policies, inventorying their code dependencies, and using known
static analysis and fuzzing tools. We successfully extracted associ-
ated GitHub repositories and collected such metrics for 8,644 of the
packages in our dataset.

In some cases, multiple packages declare the same associated
GitHub repository (for example, the lodash package, and its sub-
module, lodash.isequal, both declare github.com/lodash/lodash
as their associated GitHub repository). To avoid duplicating or
incorrectly separating out repository-level metrics across multiple
packages, we merge packages which declare the same associated
GitHub repository into a single, project-level data point for the
purposes of conducting statistical analyses. Across our dataset, we
identify a total of 1,863 packages which declare the same GitHub
repository as another package in our dataset.

We perform additional analysis on the codebases2 of packages
to identify automated testing scripts, linting scripts, and use of
built-in protections. Code-level metrics were successfully extracted
for 83% of analyzed packages, with failures resulting from code-
bases that failed to generate valid intermediate representations
needed for analysis, which typically occured due to nonstandard
environmental dependencies that could not be automatically re-
solved. A cursory analysis of failed packages revealed that they
spanned a representative range of package sizes, download counts,
development histories, and other package metrics. Thus, we believe
discarding those packages which could not be analyzed retains a
representative sample of the most popular npm packages, which is
sufficient for the aims of our study.

This process resulted in a final dataset containing complete pack-
age metrics for 7,162 npm packages spanning 5,299 unique GitHub

2Past work [71, 72] has identified that package code residing in GitHub is not always
a perfect match of package code residing in the package manager. We account for this
potential concern by obtaining all package code directly from the package manager.
We only utilize GitHub to collect metadata regarding packages and their development
histories.



SCORED ’23, November 30, 2023, Copenhagen, Denmark Elizabeth Wyss, Lorenzo De Carli, and Drew Davidson

Label Target Metrics Description

BMR. Bug Maintenance Ratio Total bug references across all commits normalized per unit commit
IPD. Issues Per Download Total GitHub issues normalized per weekly download count

Developer-Proposed Metrics

D.1. Weekly Downloads Total package downloads from npm measured per week
D.2. Dependencies Total package dependencies
D.3. Reverse Dependencies Total packages that depend on the given package
D.4. Size Physical package size, measured in bytes
D.5. Versions∗ Total available package versions
D.6. Vulnerabilities Total disclosed vulnerabilities across all package versions
D.7. License Whether package declares a license
D.8. Commits∗ Total GitHub commits
D.9. Contributors∗ Total GitHub contributors
D.10. Stars∗ Total GitHub stars
D.11. Forks∗ Total GitHub forks
D.12. Open Issues∗ Total open GitHub issues
D.13. Open Pull Requests∗ Total open GitHub pull requests
D.14. Security Policy∗ Whether repository declares a security policy
D.15. Code-Review Policy∗ Whether repository declares a code-review policy
D.16. Code Coverage Integration∗ Whether repository is integrated with popular code coverage reporting framework

NIST Guidelines Associated Metrics

N.1. Testing Framework∗ Whether package declares automated testing scripts
N.2. Static Analysis Tooling∗ Whether repository is integrated with known static analysis frameworks
N.3. Linting Framework Whether package declares automated linting scripts
N.4. Fuzzing Tooling∗ Whether repository is integrated with known fuzzing frameworks
N.5. Code Coverage Integration∗ Whether repository is integrated with popular code coverage reporting framework
N.6. Uses Strict Mode Whether package utilizes Javascript’s built-in strict mode checks
N.7. Dependency-Update Tooling∗ Whether repository is integrated with known dependency updating frameworks
N.8. Dependency Pinning∗ Whether repository inventories dependency versions at release
N.9. Code-Review Policy∗ Whether repository declares a code-review policy

∗Indicates Scrutiny-Related Metric

Table 1: Index of our dataset’s package metrics and their descriptions, separated by category.

repositories. A total index of analyzed package metrics by category,
including labels and descriptions, is presented in Table 1.

We find that many of the metrics in our dataset pertain to
scrutiny–a notion we employ to broadly refer to critical observation
and engagement with a codebase–which we investigate further in
Section 4. We note that this notion of scrutiny is subject to interpre-
tation, which we discuss in Section 5.2 For clarity of presentation,
we denote metrics we interpret as scrutiny-related in Table 1.
Target Metrics:

To characterize the effectiveness of existing recommendations,
we first identify target metrics by which wewill assess the quality of
presently recommended advice and standards. To select our target
metrics, we draw upon the body of research literature on software
quality metrics.

Such works often evaluate a software’s quality based on the
discovery of defects across its development lifecycle, which are typ-
ically extracted from official bug tracking databases, e.g. Bugzilla,
to supply ground truth for known software defects [33, 66, 83, 85].
One particular challenge inherent to our domain of npm is that

there exists no official database for tracking defects discovered
within npm packages (save for the small fraction of package vul-
nerabilities which have associated CVE numbers [6]). As such, we
employ heuristics to broadly infer package defects from the GitHub
repositories associated with those packages.

One potential source for identifying package defects is their
GitHub commit history, which we utilize to infer defects from
commit messages that contain textual references to discovered bugs.
We note numerous past works that employed similar techniques to
extract software defects from version control system logs [19, 26,
32, 65, 86]. Another potential source of package defects is GitHub
issues, which past work has also employed [24].

An additional challenge intrinsic to our domain of npm is that
fairly comparing discovered defects across packages is made diffi-
cult by vastly different levels of usage and development histories
which span asynchronously across the period of more than thirteen
years since the inception of npm. We overcome this challenge by
applying normalizations that account for such disparities in the
construction of our target metrics.



(Nothing But) Many Eyes Make All Bugs Shallow SCORED ’23, November 30, 2023, Copenhagen, Denmark

WDs Bug Maintenance Ratio Issues Per Download

Part. Avg. Med. SD Avg. Med. SD

1 0.0083 0.0 0.022 0.0018 1.6e−4 0.0087
2 0.0088 0.0 0.021 0.0012 9.3e−5 0.0048
3 0.0070 0.0 0.015 7.0e−4 4.7e−5 0.0031
4 0.0074 0.0 0.020 2.3e−4 1.2e−5 0.0011
5 0.0059 0.0 0.013 2.8e−5 1.5e−6 1.3e−4

CMTs Bug Maintenance Ratio Issues Per Download

Part. Avg. Med. SD Avg. Med. SD

1 0.0045 0.0 0.023 2.9e−5 1.7e−6 5.4e−4
2 0.0064 0.0 0.018 4.0e−5 7.1e−6 3.4e−4
3 0.0075 0.0 0.016 9.8e−5 3.0e−5 1.7e−4
4 0.0076 0.0035 0.016 3.4e−4 9.3e−5 6.7e−4
5 0.011 0.0065 0.019 0.0034 8.1e−4 0.010

Table 2: Descriptive statistics of our target metrics across partitions of our dataset. Partitions along weekly downloads are
depicted in the left table, and partitions along commits are depicted in the right table.

105 106 107 108

Weekly Downloads

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

Bu
g 

M
ai

nt
en

an
ce

 R
at

io

Bug Maintenance Ratio vs. Weekly Downloads

100 101 102 103 104 105

Commits

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

Bu
g 

M
ai

nt
en

an
ce

 R
at

io

Bug Maintenance Ratio vs. Commits

105 106 107 108

Weekly Downloads

0.00

0.05

0.10

0.15

0.20

0.25

Iss
ue

s P
er

 D
ow

nl
oa

d

Issues Per Download vs. Weekly Downloads

100 101 102 103 104 105

Commits

0.00

0.05

0.10

0.15

0.20

0.25

Iss
ue

s P
er

 D
ow

nl
oa

d

Issues Per Download vs. Commits

Figure 3: Scatter plots of our target metric distributions across partitions of our dataset, with partition boundaries denoted by
the dashed red lines. Note the logarithmic scale on the x-axes.

WDs Bug Maintenance Ratio Issues Per Download

Parts. U-result Significant? U-result Significant?

1-2 578,293.5 no 508,398 yes
2-3 510,415 no 451,681 yes
3-4 529,858 yes 378,592 yes
4-5 596,726.5 no 327,061.5 yes

CMTs Bug Maintenance Ratio Issues Per Download

Parts. U-result Significant? U-result Significant?

1-2 619,260 yes 751,107.5 yes
2-3 591,939 yes 699,025.5 yes
3-4 641,633.5 yes 736,057 yes
4-5 777,720.5 yes 921,044 yes

Table 3: Mann-Whitney U tests assessing differences in the distributions of our target metrics across partitions of our dataset.
Partitions along weekly downloads are depicted in the left table, and partitions along commits are depicted in the right table.



SCORED ’23, November 30, 2023, Copenhagen, Denmark Elizabeth Wyss, Lorenzo De Carli, and Drew Davidson

To construct a software quality metric that is adjusted for to-
tal development history, we measure the total quantity of GitHub
commits whose messages contain the word "bug" or "bugs", divided
by the total quantity of GitHub commits, which we term the bug
maintenance ratio of a package. This metrics is representative of the
overall proportion of commits dedicated to addressing bugs, with
larger values indicating a greater fraction of commits which handle
bugs. Figure 1 presents the distribution of bug maintenance ratios
across our package dataset. Most packages exhibit a bug mainte-
nance ratio between 0.0 and 0.01, and only a few hundred packages
garner bug maintenance ratios greater than 0.06, indicating that
packages generally dedicate only a small proportion of their total
commit activity to bug maintenance.

Additionally, Dey et al. [24] propose a usage-independent soft-
ware quality metric, defined as the total quantity of GitHub issues
per package download, which we utilize as an additional target
metric. This metric, which we term as issues per download, is rep-
resentative of user-provided defect reports relative to package use,
with larger values indicating higher proportions of users reporting
defects. We present the distribution of issues per downloads across
our package dataset in Figure 2. Examined packages appear to
exhibit a roughly normal distribution of issues per downloads cen-
tered around 0.00005, indicating that generally, proportionally few
package users report encountering issues to package maintainers
via GitHub.

To investigate whether our target metrics reveal interesting and
distinguishing properties of packages, we examine their distribu-
tions across partitions of our dataset by usage and development
history. We adopt a methodology similar to past work [36] that
has analyzed the distributions of software issues relative to usage:
first, we divide our dataset into a set of five equal-sized partitions,
ranging from the lowest fifth of weekly download counts to the
highest fifth of weekly download counts. We additionally create a
second set of partitions along total package commits, following the
same process. We present descriptive statistics of our target metrics
across these partitions in Table 2, and we plot the distributions of
our target metrics across these partitions–alongside the partition
boundaries–in Figure 3.

Plotted distributions reveal that both of our target metrics gen-
erally increase with total commits and decrease with weekly down-
loads. We observe greater dispersion in the values of both of our
target metrics within the lowest partition of both commits and
weekly downloads, as well as much greater dispersion in the values
of issues per downloads within the highest partition of commits.
To determine whether the distributions of our target metrics across
partitions demonstrate statistically significant differences, we con-
duct Mann-Whitney U tests, of which we present the results in
Table 3. The results of our Mann-Whitney U tests demonstrate
significant differences in the distributions of each target metric
across adjacent partitions, except for the bug maintenance ratios
across the first through third, and the fourth through fifth, weekly
downloads partitions. The statistical significance of these distribu-
tions indicates that our target metrics do meaningfully distinguish
packages across our dataset.

In tandem, our target metrics are representative of user experi-
ence and package maintenance. Higher values of issues per down-
load indicate that proportionally more package users are reporting

(and thus encountering) issues in their package usage experience,
and higher values of bug maintenance ratio indicate that a package
is dedicating proportionally more of its development history to
the maintenance of defects. As such, these target metrics enable
us to empirically assess whether existing advice and standards for
packages provide meaningful insights into user experience and
package maintenance, which we investigate via correlative analysis
in Section 4.

There is no uniform standard in qualitatively describing the
strength of correlation coefficients [35]. For our study, we refer
to the strength of measured correlations as very weak when their
magnitude is less than 0.2, weak when at least 0.2 but less than 0.4,
moderate when at least 0.4 but less than 0.6, strong when at least
0.6 but less than 0.8, and very strong at or above 0.8. Throughout
our study, we use Spearman correlations since the distribution of
many metrics is decidedly non-normal.

3.2 Existing Recommendations
Our study seeks to analyze the existing body of recommendations
regarding best practices in the use and development of npm pack-
ages, which includes both conventional developer wisdom and
official software development standards. Providing an empirical
backing from measurable impacts on our target metrics would
help to validate this existing body of folklore and standards, thus
building well-evidenced, actionable advice.
Developer-Proposed Metrics:

There exists a substantial body of developer folklore concern-
ing what constitutes a ’good’ npm package. Some past research
has also interviewed developers about their processes for selecting
third-party libraries [14, 38, 45], or proposed systems for recom-
mending third-party libraries [52]. However, the effectiveness of
developer-proposed recommendations remains largely untested
within the academic literature. We seek to bridge this gap by in-
vestigating whether package metrics derived from conventional
developer wisdom impact our target metrics.

Because npm is a rapidly evolving ecosystem, we opt to con-
duct a fresh analysis of developer-proposed metrics, which we will
compare against past research for the sake of completeness. To
identify the software development community’s proposed metrics
for evaluating packages, we query the Google search engine for
articles written by software developers detailing the processes and
metrics they utilize to select npm packages. We use the query terms
"how to choose the right npm package", "choosing high quality npm
packages", and "selecting the best npm package" to gather articles
that meet the criteria of (i) being written by software developers
and (ii) describing programatically measurable, actionable metrics.
We employ this selection criteria so that the metrics we obtain
are actively being recommended within the software development
community and can actually be calculated for the purpose of our
analysis. For each article, we extract and measure all suggested met-
rics, continuing this process until a steady state of extracted metrics
is reached which remains unchanged for three consecutive articles.
This process converged after just five articles [9, 12, 54, 61, 74].
Below, we describe the extracted metrics.

We find that developers value packages that are highly down-
loaded and depended on, have more version releases, are smaller



(Nothing But) Many Eyes Make All Bugs Shallow SCORED ’23, November 30, 2023, Copenhagen, Denmark

in size, and declare fewer dependencies [9, 54, 61, 74]. We encap-
sulate these recommendations as metrics in the form of weekly
download counts, total reverse dependencies, total version releases,
package size, and package dependencies reported by npm metadata.
We also find that developers value larger and more active GitHub
communities, particularly those which harbor greater commits,
contributors, stars, and forks, as well as fewer unresolved (open)
issues and pull requests [9, 12, 54, 61, 74]. We obtain such metrics
directly from packages’ associated GitHub repositories. Further,
we find that developers are concerned about known vulnerabili-
ties in packages [9, 12, 54, 61, 74], which we collect from npm’s
advisory database [6]. Lastly, we find that developers value proce-
dural metrics, including whether a package declares a license, a
security policy, a code-review policy, and is integrated with a code
coverage reporting framework [9, 54, 61, 74]. We obtain licensure
information from npm metadata. The presence of a security policy
is determined as whether a package’s repository declares a stan-
dardized SECURITY.md file. We detect the presence of a code-review
policy by leveraging analysis performed by the OSSF Scorecards
project [4] which determines whether a package’s GitHub reposi-
tory is configured to require code-review prior to merging a pull
request. Finally, integration with a code coverage reporting frame-
work is encapsulated as whether a package’s GitHub repository
employs CodeCov [63], the most popular code coverage reporting
application on the GitHub Marketplace [30].

Many of the developer-proposed metrics we identify are also
noted by past research on third-party library selection, including
GitHub stars, forks, contributors, commits, issues, pull requests,
releases, and licensure [14, 45], as well as download counts [38, 45]
and dependency relationships [45, 52].

We further analyze these developer-proposed metrics and assess
how they relate to our target metrics in Section 4.1.
Government-Backed Software Standards:

As part of the May 2021 U.S. Executive Order on Improving the
Nation’s Cybersecurity, The National Institute of Standards and
Technology (NIST) published official guidelines and standards for
enhancing software supply chains and their security [5], which in-
cludes recommended minimal standards for developer verification
of code [13]. NIST is an institution mandated by the U.S. govern-
ment to set effective standards, making these guidelines the most
prominent and current government-backed software standards that
directly apply to supply chain components such as npm packages.

Since these standards designate minimally recommended devel-
opment practices, it is applicable to investigate how they relate to
our target metrics. Hence, we utilize NIST’s standards to derive
high-level, associated metrics, which we employ as an additional
source of currently recommended package metrics. Below, we de-
scribe each of these standards and our associated package metrics.

NIST’s automated testing standard involves the programmatic
execution of unit tests, which we detect by identifying the presence
of unit-testing scripts declared within npm package metadata.

NIST’s standard for code-based static analysis encompasses the
usage of static analysis tools to uncover bugs, hard-coded secrets,
and other design flaws. Our associated metric utilizes analysis per-
formed by OSSF Scorecards [4] to detect the presence of known
static analysis applications in the GitHub workflows of packages.

Additionally, NIST’s standard includes linting tools, which we infer
by identifying the presence of linting scripts declared by packages.

NIST’s dynamic analysis standards involve the utilization of
fuzzing tools, code coverage reporters, and built-in programming
language protections provided to validate the execution of code. To
detect fuzzing tools, we utilize OSSF Scorecards’ [4] analysis which
identifies known fuzzing applications in the GitHub workflows of
packages. We identify code coverage reporting from GitHub work-
flow integrations with CodeCov [63]. Usage of built-in protections
is identified by scanning package code for JavaScript’s strict mode,
which provides greater dynamic checks and error reporting.

NIST’s standards for checking included software and depen-
dencies involves inventorying and monitoring included software
components, which we detect by identifying the presence of pinned-
dependencies and dependency update tools. Pinned-dependencies
are an up-to-date list of exact dependency versions published at
package release, and dependency update tools raise pull requests
for critical dependency updates, both of which we extract from
analysis conducted by the OSSF Scorecards project [4].

Lastly, NIST’s standard for code review and bug fixing encom-
passes development processes specifically designed to catch and
prevent bugs. Our associated metric identifies whether packages are
configured to require code review prior to merging pull requests,
as determined by OSSF Scorecards [4].

Section 4.2 assesses how our operationalizations of these NIST
standards correlate with our target metrics, in addition to how often
they are followed by the most popular npm packages.

4 RESULTS
This section presents the findings of our study on package recom-
mendations. Subsection 4.1 evaluates developer-proposed metrics,
and Subsection 4.2 examines NIST-recommended standards.

4.1 Developer-Proposed Metrics
Table 4 presents identified developer-proposed metrics and their
Spearman correlations with our target metrics.

We find the strongest and most reliable correlations between
our target metrics and the metrics which we relate to scrutiny. This
notion of scrutiny includes both project insiders, such as GitHub
contributors–which have a +0.520 correlation with bug mainte-
nance ratio and a +0.711 correlation with issues per download–as
well as project outsiders, such as forkers–which have a +0.475 cor-
relation with bug maintenance ratio and a +0.732 correlation with
issues per download. Additional metrics relating to this notion of
scrutiny include commits, open issues, version releases, stars, open
pull requests, and the presence of security and code-review policies,
which tend to demonstrate moderate to very strong correlations
with our target metrics.

Outside of scrutiny-related metrics, other developer-proposed
metrics have only very weak to moderate correlations with our
target metrics. Interestingly, this finding highlights an important
distinction between our notion of scrutiny and popularity. Pack-
ages with greater download counts actually tend to experience a
use-relative decrease in defect reports. This is evidenced by themod-
erately negative (-0.489) correlation between weekly downloads
and issues per download.



SCORED ’23, November 30, 2023, Copenhagen, Denmark Elizabeth Wyss, Lorenzo De Carli, and Drew Davidson

Bug Maintenance Ratio Issues Per Download

Label Developer-Proposed Metric Avg. SD Corr Adj. Corr Corr Adj. Corr

D.1. Weekly Downloads 3 480 151.01 7 597 647.21 -0.044 -0.060 -0.489 -0.773
D.2. Dependencies 2.54 5.36 +0.189 +0.008𝑥 +0.324 +0.139
D.3. Reverse Dependencies 556.65 2770.16 +0.229 -0.074 +0.251 -0.395
D.4. Size 658 096.85 4 538 186.03 +0.458 +0.170 +0.637 +0.267
D.5. Versions 42.55 135.56 +0.466 +0.100 +0.650 +0.151
D.6. Vulnerabilities 0.15 1.07 +0.130 +0.024𝑥 +0.101 -0.100
D.7. License 0.97 0.18 +0.022𝑥 -0.019𝑥 +0.016𝑥 -0.046
D.8. Commits 574.84 2375.21 +0.529 +0.170 +0.703 +0.197
D.9. Contributors 44.42 168.17 +0.520 N/A +0.711 N/A
D.10. Stars 2329.04 8805.06 +0.436 -0.007𝑥 +0.705 +0.100
D.11. Forks 354.69 2036.78 +0.475 N/A +0.732 N/A
D.12. Open Issues 46.67 188.76 +0.422 +0.065 +0.717 +0.329
D.13. Open Pull Requests 7.6 20.22 +0.330 +0.027 +0.571 +0.203
D.14. Security Policy 0.14 0.35 +0.096 +0.001𝑥 +0.058 -0.108
D.15. Code-Review Policy 0.29 0.45 +0.235 -0.020𝑥 +0.356 +0.047
D.16. Code Coverage Integration 8.93 29.03 +0.088 +0.006𝑥 +0.110 +0.008𝑥

𝑥Note: Statistically Insignificant Correlation (p > 0.05)
Table 4: Developer-proposed package metrics alongside their means, standard deviations, and Spearman correlations with our
target metrics, both raw and adjusted for confounds of scrutiny.

Adjusting for Scrutiny:
Motivated by the overwhelming impacts of metrics we relate

to scrutiny and the underwhelming impacts of other metrics, we
examine whether measured correlations meaningfully change and
reveal any additional insights if we adjust for the effects of our
notion of scrutiny by treating it as a confounding factor.

First, we identify a total set of potential scrutiny confounds,
which includes versions, contributors, stars, forks, pull requests,
security policy, code-review policy, and code coverage integration3.

We then construct Random Forest regression models trained
to predict our target metrics based on the values of our potential
scrutiny confounds, and we extract average feature importance
measures from the trained models.

This analysis revealed that contributors and forks represent the
most distinct and impactful forms of our notion of scrutiny, ac-
counting for the largest effects. Intuitively, this finding makes sense
given that contributors are representative of critical observation
of codebases by project insiders, and forks are representative of
critical observation of codebases by project outsiders. Applying
this finding, we define scrutiny-adjusted correlations as Spearman
partial correlations which control for contributors and forks as con-
founding factors. Table 4 presents the scrutiny-adjusted correlations
between developer-proposed metrics and our target metrics.

After controlling for the effects of our notion of scrutiny, developer-
proposed metrics correlate only very weakly with bug maintenance
ratio. As for issues per downloads, this scrutiny-adjustment causes
the magnitude of correlations with popularity metrics to increase
significantly. We observe a -0.773 scrutiny-adjusted correlation
between issues per download and weekly downloads, as well as
3Although commits and issues also relate to our notion of scrutiny, we exclude them
from the potential set of scrutiny confounds since they are factored into the calculations
of our target metrics, which could bias the identification of confounding factors.

a -0.395 scrutiny-adjusted correlation between issues per down-
load and reverse dependencies, which is a measure of how many
packages depend on the given package–another form of package
popularity. This finding demonstrates that defect reports relative
to use is impacted heavily by both popularity and our notion of
scrutiny, while the proportion of commit activity dedicated to bug
fixing is most impacted by our notion of scrutiny alone. Ultimately,
we find that developer-proposed metrics–outside of popularity and
our notion of scrutiny–provide very little insight into package
quality as guided by our target metrics.

4.2 NIST Guidelines
We further analyze presently suggested package metrics by assess-
ing our operationalizations of NIST’s recently proposed guidelines
concerning minimal standards for developer verification of soft-
ware [13]. Table 5 summarizes NIST’s standards and our associated
package metrics, including their prevalence across examined pack-
ages and their Spearman correlations with our target metrics.

Surprisingly, many of the most widely utilized npm packages do
not follow these instantiations of the minimal verification standards
recommended by NIST. This result reveals large gaps between the
current state of open source software development and official
minimal standards for software verification.

With respect to their effects on bug maintenance ratios and
issues per downloads, metrics associated with NIST’s standards
have very weak to moderate correlations with our target metrics.
After adjusting for the effects of our notion of scrutiny, all of these
correlations level out to very weak at best. This finding highlights
that standards such as these can serve as further representations of
of our notion of scrutiny, but they provide few additional insights
into package quality as guided by our target metrics.



(Nothing But) Many Eyes Make All Bugs Shallow SCORED ’23, November 30, 2023, Copenhagen, Denmark

Bug Issues
Maintenance Ratio Per Download

NIST Guideline Label Associated Metric(s) Avg. SD Prevalence Corr Adj. Corr Corr Adj. Corr

Automated Testing N.1. Testing Framework 0.75 0.43 74.86% -0.071 -0.029 -0.151 -0.113
Static Analysis N.2. Static Analysis Tooling 0.040 0.19 3.74% +0.105 +0.022𝑥 +0.132 +0.021𝑥

N.3. Linting Framework 0.34 0.48 34.44% +0.112 -0.025𝑥 +0.191 +0.031
Dynamic Analysis N.4. Fuzzing Tooling 0.0 0.02 0.06% +0.034 +0.016𝑥 +0.037 +0.012𝑥

N.5. Code Coverage Integration 0.12 0.32 11.64% +0.095 +0.010𝑥 +0.114 +0.007𝑥
N.6. Uses Strict Mode 0.71 0.45 71.13% +0.091 +0.028 +0.124 +0.047

Check Dependencies N.7. Dep. Update Tooling 0.30 0.46 29.55% +0.215 -0.007𝑥 +0.373 +0.151
N.8. Dep. Pinning 1.0 0.06 99.66% -0.050 -0.016𝑥 -0.060 -0.020𝑥

Code Review N.9. Code-Review Policy 0.29 0.45 28.65% +0.235 -0.020𝑥 +0.356 +0.047
𝑥Note: Statistically Insignificant Correlation (p > 0.05)

Table 5: NIST’s minimal standards for developer verification of software and associated metrics, alongside their means, standard
deviations, prevalence, and Spearman correlations with our target metrics, both raw and adjusted for confounds of scrutiny.

0.000 0.025 0.050 0.075 0.100 0.125 0.150 0.175 0.200
Issues Per Download

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

Bu
g 

M
ai

nt
en

an
ce

 R
at

io

Bug Maintenance Ratio vs. Issues Per Download

Figure 4: Scatter plot of bug maintenance ratios versus issues
per downloads across our package dataset.

5 DISCUSSION
In this section, we discuss key insights, implications, and potential
threats to validity pertaining to our findings.

5.1 Implications of Results
One key implication of our findings is that our target metrics can
aid developers and researchers alike in identifying packages that
are more attractive for use, as well as packages that potentially
benefit from additional critical observation.

Packages with larger bug maintenance ratios and issues per
downloads likely indicate highly active development communities
which are dedicated to finding and fixing bugs, while packages
with lower bug maintenance ratios and issues per downloads may
indicate a state of relative stability, or perhaps the presence of la-
tent bugs which are yet to be discovered. Meanwhile, packages
with higher bug maintenance ratios yet lower issues per downloads
likely indicate active internal development which is effective in
catching and resolving defects before they reach end-users, while

packages with lower bug maintenance ratios yet higher issues per
downloads may indicate the presence of known, but unpatched
defects. Although the overall correlation between bug maintenance
ratios and issues per downloads is moderately positive (+0.433), we
still observe a sizable spread of packages with bug maintenance
ratios that differ greatly from their issues per downloads. The dis-
tribution of bug maintenance ratios versus issues per downloads is
presented in Figure 4

Packages that are highly active in uncovering and fixing bugs
are more desirable for use, especially since we find that they tend
to be backed by larger and more active development communities
that have more resources for package maintenance, which in turn
helps to build trust between package developers and package users.
Conversely, packages with suspiciously low bug maintenance ratios
or issues per downloads could warrant deeper investigation. Our
findings on existing recommendations and our proposed notion of
scrutiny can serve to inform and prioritize which packages the npm
development community and the software supply chain community
utilize and apply additional critical observation to.

5.2 Threats to Validity
Below, we discuss potential threats to the validity of our study.
Construct Validity:

Specific details in the constructions of our metrics and opera-
tionalizations may serve as a source of noise in our results.

Our calculation of bug maintenance ratio has the potential to
miss bug fixing commits if they do not specifically mention bugs
in their commit message. Additionally, the total number of bugs
fixed in a single commit, as well as the amount of development
effort encompassed by a single commit, are both obscured from our
calculation of bug maintenance ratio, which may be relevant to a
more complete understanding of bug fixing activity.

Our calculation of issues per download likely serves as an over-
representation of issue reports, as GitHub issues not only encom-
pass true software defects, but also feature requests and sometimes
even clarifying questions posed by users.



SCORED ’23, November 30, 2023, Copenhagen, Denmark Elizabeth Wyss, Lorenzo De Carli, and Drew Davidson

Metrics which detect the presence of tooling may be incomplete,
such as our determination of static analysis, fuzzing, and code
coverage tooling, which only identify specific known frameworks,
thus likely undercounting the prevalence of such tooling.

Moreover, identifying which metrics relate to scrutiny, as well
as the notion of scrutiny itself, are subject to interpretation. For
example, we denote GitHub stars as pertaining to scrutiny since we
assume that developers generally employ some critical process for
starring repositories (which is supported by existing research [14]).
However, we do not denote weekly downloads or reverse depen-
dencies as pertaining to scrutiny because we view them as mere
measurements of popularity. Under a different interpretation, it
could be reasonably argued that GitHub stars are merely a mea-
surement of popularity, and thus are not scrutiny-related. Rather
yet, it could also be reasonably argued that all forms of popularity,
including weekly downloads and reverse dependencies, indicate
greater engagement and thus scrutiny. We propose one possible no-
tion of scrutiny and an interpretation of how the identified metrics
relate to it, but we acknowledge that other reasonable interpreta-
tions exist. Different interpretations may impact the definition of
scrutiny-adjusted correlations and thus the results of our work.

Although such sources of noise may introduce bias in the results
of our study, we believe that our metrics and operationalizations
are still representative of the abstract concepts the seek to measure,
and thus are useful objects of study.
Internal Validity:

Our study identifies significant correlations between package
scrutiny, issue reports, and bug maintenance. It is possible that the
relationships between these factors are not causative, or could be
impacted by factors outside of our study, such as code complexity
or project ownership structures, which have been noted by past
research on software quality [32, 66]. Further research is needed to
investigate causative links and control for such factors.

The developer-supplied link between npm packages and their
associated GitHub repositories introduces the potential for an in-
correct package-to-repository mapping, either due to developer
error or malicious obfuscation, which could bias our results. How-
ever, given that our dataset consists only of highly popular npm
packages, we believe the likelihood of such incorrect mappings
to be low. Also related to package-to-repository mappings is the
potential bias introduced by our decision to merge together data
points corresponding to multiple packages that declare the same
repository, thus changing the fundamental unit of our statistical
analyses to be GitHub projects rather than packages, which will
likely underreppresent package submodules across our analyses.

Additionally, some packages were excluded from our study be-
cause we could not generate complete metrics for them. Although
our package dropout rate was only 23.3%, and a cursory manual
analysis of dropout packages did not uncover significant distinc-
tions, the exclusion of those packages may bias our results.
External Validity:

Our study analyzes highly popular packages within npm, which
may impact the generalizability of our findings. Less popular pack-
ages, and other open source package repositories could differ in

terms of scrutiny, issue reports, and bug maintenance. Further re-
search is needed to investigate whether our results are generalizable
to other packages and repositories.

REFERENCES
[1] 2021. Executive Order on Improving the Nation’s Cyberse-

curity. https://www.whitehouse.gov/briefing-room/presidential-
actions/2021/05/12/executive-order-on-improving-the-nations-cybersecurity/.

[2] 2022. Mining Node.js Vulnerabilities via Object Dependence Graph and Query.
In USENIX Security 22. USENIX Association, Boston, MA. https://www.usenix.o
rg/conference/usenixsecurity22/presentation/li-song

[3] 2022. Open Science Framework. https://osf.io
[4] 2022. OpenSSF Scorecard. https://github.com/ossf/scorecard
[5] 2022. Software Security in Supply Chains. https://www.nist.gov/itl/executive-or

der-14028-improving-nations-cybersecurity/software-security-supply-chains
[6] 2023. GitHub Advisory Database. https://github.com/advisories?query=type%3

Areviewed+ecosystem%3Anpm
[7] Rabe Abdalkareem, Olivier Nourry, Sultan Wehaibi, Suhaib Mujahid, and Emad

Shihab. 2017. Why Do Developers Use Trivial Packages? An Empirical Case Study
on Npm. In ESEC/FSE 2017 (Paderborn, Germany). Association for Computing
Machinery, New York, NY, USA. https://doi.org/10.1145/3106237.3106267

[8] Rabe Abdalkareem, Vinicius Oda, Suhaib Mujahid, and Emad Shihab. 2020. On
the impact of using trivial packages: an empirical case study on npm and PyPI.
Empirical Software Engineering 25 (03 2020). https://doi.org/10.1007/s10664-019-
09792-9

[9] Nitai Aharoni. 2020. How to Choose the Right NPM Package for Your Project.
https://betterprogramming.pub/how-to-choose-the-right-npm-package-for-
your-project-c3d1cc25285e

[10] Saiqa Aleem, Luiz Fernando Capretz, and Faheem Ahmed. 2015. Benchmarking
machine learning technologies for software defect detection. arXiv preprint
arXiv:1506.07563 (2015).

[11] Anish Athalye, Rumen Hristov, Tran Nguyen, and Qui Nguyen. 2014. Package
Manager Security. Technical Report. https://pdfs.semanticscholar.org/d398/d240
e916079e418b77ebb4b3730d7e959b15.pdf

[12] Adrian Bece. 2019. Checklist for choosing an optimal npm package. https://dev.
to/adrianbdesigns/checklist-for-choosing-an-optimal-npm-package-4dpm

[13] Paul E. Black, Vadim Okun, and Barbara Guttman. 2021. Guidelines on Minimum
Standards for Developer Verification of Software. https://doi.org/10.6028/NIST.I
R.8397

[14] Hudson Borges and Marco Túlio Valente. 2018. What’s in a GitHub Star? Un-
derstanding Repository Starring Practices in a Social Coding Platform. CoRR
abs/1811.07643 (2018). arXiv:1811.07643 http://arxiv.org/abs/1811.07643

[15] Mircea Cadariu, Eric Bouwers, Joost Visser, and Arie van Deursen. 2015. Tracking
known security vulnerabilities in proprietary software systems. In SANER.

[16] Justin Cappos, Justin Samuel, Scott Baker, and John H Hartman. 2008. A look in
the mirror: Attacks on package managers. In CCS ’08. 565–574.

[17] Kyriakos Chatzidimitriou, Michail Papamichail, Themistoklis Diamantopoulos,
Michail Tsapanos, and Andreas Symeonidis. 2018. Npm-miner: An infrastructure
for measuring the quality of the npm registry. In MSR 2018. IEEE, 42–45.

[18] Filipe Roseiro Cogo, Gustavo A. Oliva, and Ahmed E. Hassan. 2021. An Empirical
Study of Dependency Downgrades in the npm Ecosystem. IEEE Transactions on
Software Engineering 47, 11 (2021). https://doi.org/10.1109/TSE.2019.2952130

[19] D. Cubranic and G.C. Murphy. 2003. Hipikat: recommending pertinent software
development artifacts. In ICSE 2003. https://doi.org/10.1109/ICSE.2003.1201219

[20] Erik DeBill. 2021. Modulecounts. http://www.modulecounts.com/
[21] Alexandre Decan, Tom Mens, and Eleni Constantinou. 2018. On the impact of

security vulnerabilities in the npm package dependency network. In MSR 2018.
[22] Alexandre Decan, TomMens, and Philippe Grosjean. 2019. An Empirical Compar-

ison of Dependency Network Evolution in Seven Software Packaging Ecosystems.
ESE 24 (2019). https://doi.org/10.1007/s10664-017-9589-y

[23] Tapajit Dey and Audris Mockus. 2018. Are Software Dependency Supply
Chain Metrics Useful in Predicting Change of Popularity of NPM Packages?.
In PROMISE’18. 66–69. https://doi.org/10.1145/3273934.3273942

[24] Tapajit Dey and Audris Mockus. 2020. Deriving a usage-independent software
quality metric. ESE 25 (2020). https://doi.org/10.1007/s10664-019-09791-w

[25] Ruian Duan, Omar Alrawi, Ranjita Pai Kasturi, Ryan Elder, Brendan Saltaformag-
gio, and Wenke Lee. 2021. Towards Measuring Supply Chain Attacks on Package
Managers for Interpreted Languages. In NDSS 2021. Internet Society.

[26] M. Fischer, M. Pinzger, and H. Gall. 2003. Populating a Release History Database
from version control and bug tracking systems. In ICSM 2003. 23–32. https:
//doi.org/10.1109/ICSM.2003.1235403

[27] Kalil Garrett, Gabriel Ferreira, Limin Jia, Joshua Sunshine, and Christian Kästner.
2019. Detecting suspicious package updates. In ICSE-NIER 2019. IEEE, 13–16.

[28] François Gauthier, Behnaz Hassanshahi, and Alexander Jordan. 2018. AFFOGATO:
Runtime Detection of Injection Attacks for Node.Js. In ISSTA/ECOOP 2018. https:
//doi.org/10.1145/3236454.3236502

https://www.usenix.org/conference/usenixsecurity22/presentation/li-song
https://www.usenix.org/conference/usenixsecurity22/presentation/li-song
https://osf.io
https://github.com/ossf/scorecard
https://www.nist.gov/itl/executive-order-14028-improving-nations-cybersecurity/software-security-supply-chains
https://www.nist.gov/itl/executive-order-14028-improving-nations-cybersecurity/software-security-supply-chains
https://github.com/advisories?query=type%3Areviewed+ecosystem%3Anpm
https://github.com/advisories?query=type%3Areviewed+ecosystem%3Anpm
https://doi.org/10.1145/3106237.3106267
https://doi.org/10.1007/s10664-019-09792-9
https://doi.org/10.1007/s10664-019-09792-9
https://betterprogramming.pub/how-to-choose-the-right-npm-package-for-your-project-c3d1cc25285e
https://betterprogramming.pub/how-to-choose-the-right-npm-package-for-your-project-c3d1cc25285e
https://pdfs.semanticscholar.org/d398/d240e916079e418b77ebb4b3730d7e959b15.pdf
https://pdfs.semanticscholar.org/d398/d240e916079e418b77ebb4b3730d7e959b15.pdf
https://dev.to/adrianbdesigns/checklist-for-choosing-an-optimal-npm-package-4dpm
https://dev.to/adrianbdesigns/checklist-for-choosing-an-optimal-npm-package-4dpm
https://doi.org/10.6028/NIST.IR.8397
https://doi.org/10.6028/NIST.IR.8397
https://arxiv.org/abs/1811.07643
http://arxiv.org/abs/1811.07643
https://doi.org/10.1109/TSE.2019.2952130
https://doi.org/10.1109/ICSE.2003.1201219
http://www.modulecounts.com/
https://doi.org/10.1007/s10664-017-9589-y
https://doi.org/10.1145/3273934.3273942
https://doi.org/10.1007/s10664-019-09791-w
https://doi.org/10.1109/ICSM.2003.1235403
https://doi.org/10.1109/ICSM.2003.1235403
https://doi.org/10.1145/3236454.3236502
https://doi.org/10.1145/3236454.3236502


(Nothing But) Many Eyes Make All Bugs Shallow SCORED ’23, November 30, 2023, Copenhagen, Denmark

[29] Daniel M German, Bram Adams, and Ahmed E Hassan. 2013. The evolution of
the R software ecosystem. In CSMR.

[30] GitHub. 2023. GitHub Application Marketplace; Code Coverage. https://github.c
om/marketplace?type=apps&query=code+coverage+sort%3Apopularity-desc+

[31] T.L. Graves, A.F. Karr, J.S. Marron, and H. Siy. 2000. Predicting fault incidence
using software change history. IEEE Transactions on Software Engineering 26, 7
(2000). https://doi.org/10.1109/32.859533

[32] Michaela Greiler, Kim Herzig, and Jacek Czerwonka. 2015. Code Ownership and
Software Quality. In MSR 2015. https://doi.org/10.1109/MSR.2015.8

[33] Philip J. Guo, Thomas Zimmermann, Nachiappan Nagappan, and Brendan Mur-
phy. 2010. Characterizing and predicting which bugs get fixed: an empirical study
of Microsoft Windows. In ICSE 2010. https://doi.org/10.1145/1806799.1806871

[34] Joseph Hejderup. 2015. In Dependencies We Trust: How vulnerable are dependencies
in software modules? Master’s thesis. Delft University of Technology.

[35] James Hemphill. 2003. Interpreting the Magnitude of Correlation Coefficients.
The American psychologist 58 (02 2003), 78–9.

[36] Israel Herraiz, Emad Shihab, Thanh Nguyen, and Ahmed E. Hassan. 2011. Impact
of Installation Counts on Perceived Quality: A Case Study on Debian. 219–228.
https://doi.org/10.1109/WCRE.2011.34

[37] J.P. Hudepohl, S.J. Aud, T.M. Khoshgoftaar, E.B. Allen, and J. Mayrand. 1996.
Emerald: software metrics and models on the desktop. IEEE Software 13, 5 (1996),
56–60. https://doi.org/10.1109/52.536459

[38] Wenxin Jiang, Nicholas Synovic, Matt Hyatt, Taylor R. Schorlemmer, Rohan
Sethi, Yung-Hsiang Lu, George K. Thiruvathukal, and James C. Davis. 2023. An
Empirical Study of Pre-Trained Model Reuse in the Hugging Face Deep Learning
Model Registry. arXiv:2303.02552 [cs.SE]

[39] Jaap Kabbedijk and Slinger Jansen. 2011. Steering Insight: An Exploration of the
Ruby Software Ecosystem. In Software Business. Springer Berlin Heidelberg.

[40] T.M. Khoshgoftaar, E.B. Allen, N. Goel, A. Nandi, and J. McMullan. 1996. Detection
of software modules with high debug code churn in a very large legacy system.
In ISSRE ’96. https://doi.org/10.1109/ISSRE.1996.558896

[41] Igibek Koishybayev and Alexandros Kapravelos. 2020. Mininode: Reducing
the Attack Surface of Node.js Applications. In RAID 2020. USENIX Association.
https://www.usenix.org/conference/raid2020/presentation/koishybayev

[42] R. G. Kula, C. D. Roover, D. German, T. Ishio, and K. Inoue. 2014. Visualizing the
Evolution of Systems and Their Library Dependencies. In IEEE VISSOFT.

[43] Trishank Karthik Kuppusamy, Santiago Torres-Arias, Vladimir Diaz, and Justin
Cappos. 2016. Diplomat: Using delegations to protect community repositories.
In NSDI 16.

[44] Filippo Lanubile and Giuseppe Visaggio. 2000. Evaluating defect detection tech-
niques for software requirements inspections. ISERN (2000).

[45] Enrique Larios Vargas, Maurício Aniche, Christoph Treude, Magiel Bruntink,
and Georgios Gousios. 2020. Selecting Third-Party Libraries: The Practitioners’
Perspective. In ESEC/FSE 2020. https://doi.org/10.1145/3368089.3409711

[46] Song Li, Mingqing Kang, Jianwei Hou, and Yinzhi Cao. 2021. Detecting Node.Js
Prototype Pollution Vulnerabilities via Object Lookup Analysis. 268–279. https:
//doi.org/10.1145/3468264.3468542

[47] Chengwei Liu, Sen Chen, Lingling Fan, Bihuan Chen, Yang Liu, and Xin Peng.
2022. Demystifying the vulnerability propagation and its evolution via depen-
dency trees in the npm ecosystem. arXiv preprint arXiv:2201.03981 (2022).

[48] Suhaib Mujahid, Rabe Abdalkareem, and Emad Shihab. 2022. What are the
characteristics of highly-selected packages? A case study on the npm ecosystem.
https://doi.org/10.48550/ARXIV.2204.04562

[49] N. Nagappan and T. Ball. 2005. Use of relative code churn measures to predict
system defect density. In ICSE 2005. https://doi.org/10.1109/ICSE.2005.1553571

[50] Nachiappan Nagappan and Thomas Ball. 2007. Using Software Dependencies
and Churn Metrics to Predict Field Failures: An Empirical Case Study. In ESEM
2007. https://doi.org/10.1109/ESEM.2007.13

[51] Nachiappan Nagappan, Thomas Ball, and Andreas Zeller. 2006. Mining Metrics to
Predict Component Failures. In ICSE ’06. https://doi.org/10.1145/1134285.1134349

[52] Phuong T. Nguyen, Juri Di Rocco, Davide Di Ruscio, and Massimiliano Di Penta.
2020. CrossRec: Supporting software developers by recommending third-party
libraries. JSS 161 (2020). https://doi.org/10.1016/j.jss.2019.110460

[53] Benjamin Barslev Nielsen, Behnaz Hassanshahi, and François Gauthier. 2019.
Nodest: Feedback-Driven Static Analysis of Node.Js Applications. In ESEC/FSE
2019. https://doi.org/10.1145/3338906.3338933

[54] Kranti Nikam. 2022. Screening NPM Packages: Best Practices. https://medium.c
om/globant/screening-npm-packages-best-practices-a24930b2624e

[55] Chinenye Okafor, Taylor R. Schorlemmer, Santiago Torres-Arias, and James C.
Davis. 2022. SoK: Analysis of Software Supply Chain Security by Establishing
Secure Design Properties. In SCORED. https://doi.org/10.1145/3560835.3564556

[56] Logan Perreault, Seth Berardinelli, Clemente Izurieta, and John Sheppard. 2017.
Using classifiers for software defect detection. In SEDE 2017.

[57] Brian Pfretzschner and Lotfi ben Othmane. 2017. Identification of Dependency-
based Attacks on Node.Js. In ARES.

[58] H. Plate, S. E. Ponta, and A. Sabetta. 2015. Impact assessment for vulnerabilities
in open-source software libraries. In ICSME.

[59] Steven Raemaekers, Arie van Deursen, and Joost Visser. 2013. The maven reposi-
tory dataset of metrics, changes, and dependencies. In MSR.

[60] Eric S Raymond. 1999. The Cathedral and the Bazaar. http://www.catb.org/~esr
/writings/cathedral-bazaar/cathedral-bazaar/ar01s04.html

[61] Alexis Regnaud. 2021. 7 Tools to Choose the Right NPM Package. https://javasc
ript.plainenglish.io/7-tools-to-choose-the-right-npm-package-7baf47259ae0

[62] Adrian Schröter, Thomas Zimmermann, and Andreas Zeller. 2006. Predicting
Component Failures at Design Time. In ISESE ’06. https://doi.org/10.1145/1159
733.1159739

[63] Sentry. 2023. Codecov.io. https://about.codecov.io/
[64] Yonghee Shin, Robert Bell, Thomas Ostrand, and Elaine Weyuker. 2009. Does

calling structure information improve the accuracy of fault prediction?. In MSR
2009. https://doi.org/10.1109/MSR.2009.5069481

[65] Jacek Sliwerski, Thomas Zimmermann, and Andreas Zeller. 2005. When Do
Changes Induce Fixes?. In MSR ’05. https://doi.org/10.1145/1083142.1083147

[66] Diomidis Spinellis, Georgios Gousios, Vassilios Karakoidas, Panagiotis Louridas,
Paul J. Adams, Ioannis Samoladas, and Ioannis Stamelos. 2009. Evaluating the
Quality of Open Source Software. Electronic Notes in Theoretical Computer Science
233 (2009). https://doi.org/10.1016/j.entcs.2009.02.058

[67] Cristian-Alexandru Staicu, Michael Pradel, and Benjamin Livshits. 2018. SYNODE:
Understanding and Automatically Preventing Injection Attacks on NODE.JS. In
NDSS.

[68] Matthew Taylor, Ruturaj Vaidya, Drew Davidson, Lorenzo De Carli, and Vaibhav
Rastogi. 2020. Defending Against Package Typosquatting. In NSS 2020.

[69] Jørgen Tellnes. 2013. Dependencies: No Software is an Island. Master’s thesis. The
University of Bergen.

[70] Ruturaj K. Vaidya, Lorenzo De Carli, Drew Davidson, and Vaibhav Rastogi. 2019.
Security Issues in Language-based Sofware Ecosystems. CoRR abs/1903.02613
(2019). arXiv:1903.02613 http://arxiv.org/abs/1903.02613

[71] D. Vu. 2021. py2src: Towards the Automatic (and Reliable) Identification of
Sources for PyPI Package. InASE. https://doi.org/10.1109/ASE51524.2021.9678526

[72] Duc-Ly Vu, FabioMassacci, Ivan Pashchenko, Henrik Plate, and Antonino Sabetta.
2021. LastPyMile: Identifying the Discrepancy between Sources and Packages.
In ESEC/FSE 2021. https://doi.org/10.1145/3468264.3468592

[73] Stefan Wagner. 2006. A literature survey of the quality economics of defect-
detection techniques. In ISESE ’06.

[74] Yasas Sri Wickramasinghe. 2021. 5 Best Practices to Choosing Third-Party NPM
Packages. https://blog.bitsrc.io/5-best-practices-when-choosing-third-party-
npm-packages-2198994357f9

[75] Erik Wittern, Philippe Suter, and Shriram Rajagopalan. 2016. A look at the
dynamics of the JavaScript package ecosystem. In MSR.

[76] Murray Wood, Marc Roper, Andrew Brooks, and James Miller. 1997. Comparing
and combining software defect detection techniques: a replicated empirical study.
In ESEC/FSE’97.

[77] Elizabeth Wyss, Lorenzo De Carli, and Drew Davidson. 2022. What the Fork?
Finding Hidden Code Clones in npm. In ICSE 2022. https://doi.org/10.1145/3510
003.3510168

[78] Elizabeth Wyss, Alexander Wittman, Drew Davidson, and Lorenzo De Carli. 2022.
Wolf at the Door: Preventing Install-Time Attacks in Npm with Latch. In ASIA
CCS ’22. https://doi.org/10.1145/3488932.3523262

[79] A. A. Younis, Y. K.Malaiya, and I. Ray. 2014. Using Attack Surface Entry Points and
Reachability Analysis to Assess the Risk of Software Vulnerability Exploitability.
In HASE.

[80] Nusrat Zahan, Thomas Zimmermann, Patrice Godefroid, Brendan Murphy, Chan-
dra Maddila, and Laurie Williams. 2022. What are Weak Links in the npm Supply
Chain?. In ICSE-SEIP 2022. https://doi.org/10.1145/3510457.3513044

[81] Ahmed Zerouali, Eleni Constantinou, Tom Mens, Gregorio Robles, and Jesus
Gonzalez-Barahona. 2018. An Empirical Analysis of Technical Lag in npm
Package Dependencies. https://doi.org/10.1007/978-3-319-90421-4_6

[82] Ahmed Zerouali, Tom Mens, Gregorio Robles, and Jesus M. Gonzalez-Barahona.
2019. On the Diversity of Software Package Popularity Metrics: An Empirical
Study of npm. In SANER 2019. https://doi.org/10.1109/SANER.2019.8667997

[83] Thomas Zimmerman, Nachiappan Nagappan, Kim Herzig, Rahul Premraj, and
Laurie Williams. 2011. An Empirical Study on the Relation between Dependency
Neighborhoods and Failures. In ICST ’11. https://doi.org/10.1109/ICST.2011.39

[84] Markus Zimmermann, Cristian-Alexandru Staicu, CamTenny, andMichael Pradel.
2019. Small world with high risks: A study of security threats in the npm
ecosystem. In USENIX Security 19.

[85] Thomas Zimmermann and Nachiappan Nagappan. 2008. Predicting defects using
network analysis on dependency graphs. In ICSE 2008. https://doi.org/10.1145/
1368088.1368161

[86] Thomas Zimmermann, Rahul Premraj, and Andreas Zeller. 2007. Predicting
Defects for Eclipse. In PROMISE ’07. https://doi.org/10.1109/PROMISE.2007.10

https://github.com/marketplace?type=apps&query=code+coverage+sort%3Apopularity-desc+
https://github.com/marketplace?type=apps&query=code+coverage+sort%3Apopularity-desc+
https://doi.org/10.1109/32.859533
https://doi.org/10.1109/MSR.2015.8
https://doi.org/10.1145/1806799.1806871
https://doi.org/10.1109/WCRE.2011.34
https://doi.org/10.1109/52.536459
https://arxiv.org/abs/2303.02552
https://doi.org/10.1109/ISSRE.1996.558896
https://www.usenix.org/conference/raid2020/presentation/koishybayev
https://doi.org/10.1145/3368089.3409711
https://doi.org/10.1145/3468264.3468542
https://doi.org/10.1145/3468264.3468542
https://doi.org/10.48550/ARXIV.2204.04562
https://doi.org/10.1109/ICSE.2005.1553571
https://doi.org/10.1109/ESEM.2007.13
https://doi.org/10.1145/1134285.1134349
https://doi.org/10.1016/j.jss.2019.110460
https://doi.org/10.1145/3338906.3338933
https://medium.com/globant/screening-npm-packages-best-practices-a24930b2624e
https://medium.com/globant/screening-npm-packages-best-practices-a24930b2624e
https://doi.org/10.1145/3560835.3564556
http://www.catb.org/~esr/writings/cathedral-bazaar/cathedral-bazaar/ar01s04.html
http://www.catb.org/~esr/writings/cathedral-bazaar/cathedral-bazaar/ar01s04.html
https://javascript.plainenglish.io/7-tools-to-choose-the-right-npm-package-7baf47259ae0
https://javascript.plainenglish.io/7-tools-to-choose-the-right-npm-package-7baf47259ae0
https://doi.org/10.1145/1159733.1159739
https://doi.org/10.1145/1159733.1159739
https://about.codecov.io/
https://doi.org/10.1109/MSR.2009.5069481
https://doi.org/10.1145/1083142.1083147
https://doi.org/10.1016/j.entcs.2009.02.058
https://arxiv.org/abs/1903.02613
http://arxiv.org/abs/1903.02613
https://doi.org/10.1109/ASE51524.2021.9678526
https://doi.org/10.1145/3468264.3468592
https://blog.bitsrc.io/5-best-practices-when-choosing-third-party-npm-packages-2198994357f9
https://blog.bitsrc.io/5-best-practices-when-choosing-third-party-npm-packages-2198994357f9
https://doi.org/10.1145/3510003.3510168
https://doi.org/10.1145/3510003.3510168
https://doi.org/10.1145/3488932.3523262
https://doi.org/10.1145/3510457.3513044
https://doi.org/10.1007/978-3-319-90421-4_6
https://doi.org/10.1109/SANER.2019.8667997
https://doi.org/10.1109/ICST.2011.39
https://doi.org/10.1145/1368088.1368161
https://doi.org/10.1145/1368088.1368161
https://doi.org/10.1109/PROMISE.2007.10

	Abstract
	1 Introduction
	2 Background and Related Work
	2.1 Software Defect Detection
	2.2 Characterization of Package Repositories
	2.3 Software Supply Chain Security

	3 Overview
	3.1 Methodology
	3.2 Existing Recommendations

	4 Results
	4.1 Developer-Proposed Metrics
	4.2 NIST Guidelines

	5 Discussion
	5.1 Implications of Results
	5.2 Threats to Validity

	References

