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Abstract

npm, a package manager for code written for Node.js, is a core

component of the software supply chain, and a critical piece of soft-

ware infrastructure. By selecting and importing code using npm,

software developers can quickly build complex software products

that would be extremely expensive to develop from scratch. How-

ever, “with great power comes great responsibility”, and the npm

ecosystem is a frequent target for attacks, which aim at injecting

malicious code in packages.

In this paper, we take a look at an understudied internet-based

attack surface in npm packages: URLs hardcoded within package

code. The presence of such URLs—while often necessary—create

risks as package behavior may dependend on data - and even code -

retrieved from online endpoints. Unless care is taken to ensure such

endpoints remain under control of the package authors, package

functionality and security may at later point be compromised.

Our analysis of the presence of URLs in the npm ecosystem

reveals that problematic URL usage is a present threat, albeit one

which is primarily localized within unpopular packages that are

infrequently maintained.

CCS Concepts

• Software and its engineering → Open source model; • Secu-

rity and privacy→Web application security; • Human-centered

computing → Open source software.
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1 Introduction

npm [4] is a package registry for JavaScript, and one of the largest

language-based software ecosystems available online. Many de-

velopers rely on it to integrate third-party libraries and tools into
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their projects. Together with similar registries for other languages

(e.g., PyPI for Python, RubyGems for Ruby), it constitutes a key

component of the open source software supply chain: a set of ecosys-

tems allowing developers to build software quickly by integrating

pre-existing functionality. This style of compositional software de-

velopment has signi�cant economic bene�ts, but also problematic

security implications [24, 29]. These involve supply chain attacks,

where threat actors inject malicious code into the dependencies

of popular packages [24]; and more generally, the presence of vul-

nerable code that may be exploitable [12, 26]. Furthermore, npm

packages typically de�ne large dependency trees as they them-

selves use functionality from other packages. Thus, the impact

of a compromised or vulnerable package can have far-reaching

e�ects [12].

In this paper, we look at an attack surface within npm packages,

which has rarely received scrutiny: that of packages utilizing hard-

coded URLs within their code. "Hardcoded URLs" here refers to

packages sending and/or receiving data or code from URLs which

are statically de�ned within the code itself. This may entail posting

to/receiving data from hardcoded URLs, or even pulling and execut-

ing code from online sources. Such practices, while often necessary

to interact with internet endpoints (e.g. web service APIs), intro-

duce security risks, as malicious actors can commandeer and/or

exploit hardcoded URLs to inject malicious payloads or redirect

users to phishing websites. Without proper validation mechanisms,

developers may unknowingly introduce vulnerabilities into their

applications. The core issue is that hardcoded URLs expose npm

code to the age-old internet issue of link rot [30]: online content may

become inaccessible, or be compromised. Worse still, an expired

domain may become available and be acquired by questionable or

malicious actors, who can then control the content accessed by a

package [19]. Assessing the presence of URLs within open source

npm packages is thus a relevant source of threat intelligence, and

can assist in formulating secure coding guidelines.

Performing such an analysis at a meaningful scale requires an-

alyzing the entire npm ecosystem for package URLs. Logistically,

this is a non-trivial task, as at the time of analysis (Spring 2023),

the npm registry consisted of > 2" packages, whose code must

be obtained and scanned. Ideally, the context where URLs appear

should also be taken into account and further analyzed, to weed out

false positives and gain broader understanding of why static URLs

may be used. Indeed, while certain uses pose obvious security risks

(e.g., steering the code execution based on content from external

URLs), others (e.g., placeholder example URLs) may be acceptable.

We address the scalability challenge by setting up and main-

taining, over the course of several months, an npm observatory: a

mirror of the main npm registry that provides a local clone of all

https://doi.org/10.1145/3689944.3696168
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packages available of npm, and incorporates updates on the main

npm registry so that it remains a faithful copy. This allows us to

e�ciently analyze code for all 2M+ npm packages, without creating

undue burden of the npm infrastructure. We investigate context sur-

rounding URL usage, and functional issues by performing manual

analysis of selected representative samples.

Results suggest thatmost URLs appearing in package code present

limited security risks; however, the presence of problematic URLs

increases in less popular packages, including use of URLs point-

ing to broken links and/or expired domains. We also �nd evidence

of use of basic HTTP authentications, even including credentials

embedded within plaintext URLs.

By undertaking this measurement study, we aim to provide in-

sights into the prevalence and implications of hardcoded URLs in

npm packages and identify problematic practices a�ecting the re-

liability, security, and maintainability of JavaScript applications.

Our �ndings contribute to a more comprehensive understanding

of software supply chain dependencies on the internet ecosystem.

The rest of this paper is structured as follows. Section 2 pro-

vides background on npm and relevant security issues. Section 3

discusses related work. Section 4 presents methodology and dataset,

Section 5 presents our measurement results, and Section 6 discuss

their implications. Finally, Section 7 concludes the paper.

2 Background

2.1 npm ecosystem

The npm archive is one of the largest software ecosystems in the

world, counting as of 2023 over 2M packages. These packages im-

plement a wide variety of functionality, and span a wide range of

popularity and quality.

Many npm packages do not work in isolation. Instead, they re-

quire functionality from other packages in the ecosystem, and thus

depend on them. In npm, such reuse is very common [18]. Thus,

packages tend to transitively de�ne large dependency trees that

span hundreds of packages across many layers of dependencies [29].

While this approach leads to faster implementation of complex soft-

ware, it also causes security issues and vulnerabilities to propagate

across the ecosystem. Dependency code, once imported into a pack-

age, becomes a part of its attack surface [12].

Such issues are part of the more general problem of open source

software supply chain security: as a software package depends on

many others, it becomes easier for attackers to target a high-value

software project, by injecting malicious code into vulnerable depen-

dencies. The type of attacks that can be conducted this way have

been discussed elsewhere in literature [24, 29] but, brie�y, they may

entail ex�ltration of sensitive data [20], execution of unwanted op-

erations such as cryptomining [6], and others. Even without explicit

attacks, code written following poor programming practices may

generate vulnerabilities exploitable at ecosystem scale [12].

2.2 Issue under study and threat model

The use of hardcoded URLs in package source code generates poten-

tial security issues. First, if a package’s �ow of execution depends

on external content, it becomes impossible to statically determine

whether executing the package may result in an undesirable out-

come. Second, there is no guarantee that a URL will remain un-

der ownership or control of a benign author inde�nitely. If the

content from a URL in�uences—directly or indirectly—package

behavior, the URL owner may gain considerable power on that

package’s use. Indeed, we found a few example packages (such

as goindexmod666647@1.0.1, discussed in Section 6) which use

URLs to download executable code. Even if URLs are hardcoded to

benign functionality (e.g., interface to a remote database, transmit

installation counts, etc.), a threat actor may replace or alter that

functionality by taking over the URL. Such a takeover may be as

simple as waiting for the URL domain registration to expire, and

purchasing it [9]. We emphasize that domain takeover is not just

a theoretical issue; as Lauinger et al. point out, it is a somewhat

common practice, with negative security implications [19].

Threat model: we consider an adversary who intends to broadly

cause a package to perform an unintended action. To do so, the

adversary may try to take control of the content served by URL(s)

referenced within the package. By doing so, the adversary may

cause the package to fetch incorrect content, altering the package

execution and/or storing attacker-controlled content on the victim

machine. The attacker may also capture data transmitted during

package executions. Our goal is to measure the extent to which

the above threat exists in the npm ecosystem at large. To do so,

we measure the presence of hardcoded URLs, and we perform an

in-depth analysis of select identi�ed samples.

One threat we do not consider is that of an attacker uploading a

malicious packages with URLs pointing to knowmalware or exploit

download links. These are non relevant to our goal, which is to

identify possible risks from benign use of URLs. Typically, malicious

URLs will be obfuscated or composed dynamically at run-time to

avoid detection; if unobfuscated, they may be detected by matching

against URL blocklists (e.g., [10, 25]).

3 Related Work

Software supply chain security. Problems in supply chain security

stem both from vulnerabilities, or malicious code. Malicious code

may have several di�erent purposes, and may be injected in soft-

ware projects via di�erent methods. Several works have analyzed

and categorized common attack strategies in this domain [13, 24, 29].

Other works focus instead on detecting and identifying malicious

packages. Sejfyia and Scäfer introduced Amal�, a classi�er which

�ags possible malicious code based on a number of package fea-

tures [22]. Similar approaches were investigated by Vu et al. in

the context of the PyPI ecosystem for Python [14]. Froh et al. [15]

propose statistical analysis to �ag suspicious package updates.

Beyond detection, previous research has also focused on con-

tainment of attacks. Wyss et al. proposed to contain install-time

attacks via enforcement of user-de�ned policies [28]; Christou et

al. propose a similar permission system for native JavaScript li-

braries [8]. At higher level, Project Sigstore [1] enable code-signing

at scale for provenance veri�cation, while Hassanshahi et al. [16]

propose a logic framework for running provenance queries using

rich package metadata.
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Overall Number of Packages 2,154,700

Overall no. of Packages w/ URLs 486,558

Overall no. of URLs (w/ duplicates 6,898,948

Overall number of unique URLs 1,834,110

Table 1: Package and URL datasets

Our work complements and extends the existing body of knowl-

edge, as to the best of our knowledge, prevalence and risks related

to embedded URLs have not been investigated.

URL and link decay. The fact that links may cease to function,

or point to content di�erent than what was originally intended,

is a well-know, long-running issue a�ecting the web. This issue

is oftentimes referred to "linkrot". Zittrain et al. [30] investigated

links appearing in articles from the New York Times from 1996 to

2019, discovering signi�cant linkrot. Lauinger et al. [19] measured

domain re-registration after expiration, a practice often performed

by questionable parties that may result in misleading users into

accessing unwanted content. Part of our work investigates the

prevalence of this type of issue in package-embedded URLs. There

is also anecdotal evidence that domain expiration issues a�ect the

domains used by package maintainers to run and manage their

projects (e.g. email servers) [9]; however, this issue is orthogonal

to the one investigated in this paper.

4 Methodology and Data

In this section, we present the overall design of our measurement

study on URL use in npm packages.

4.1 Methodology

Figure 1 presents our analysis pipeline. We deploy an npm ob-

servatory - a mirror of the main npm package registry (based on

CouchDB [2]), which stores all npm packages and mirrors any up-

date to the main registry1. The observatory maintains consistency

with npm via an update observer, based on npm’s Public Registry

API [5]. For the purpose of this work, we generated a snapshot

of the package database in April 2023, resulting in the dataset de-

scribed in Section 4.2 (step 1). We also collect package popularity

data, which we used for our analysis, via npm’s public-facing API

which gives weekly download counts.

In order to identify package URLs, we scan package code �les

(e.g. *.js, *.ts, *.ejs, *.mjs, *.cjs) using a regular expression-based

approximation of URL format. To limit false positives, we �ltered

out comments prior to parsing, and performed data cleanup using

basic sanity checking (e.g. ensuring that URLs declare a valid URI

scheme and contain a valid domain or IP address) (step 2). Finally,

we sent all detected URLs to our analysis pipeline, discussed in

Section 5 (step 3). While most of the analyses were accomplished via

custom parsing scripts, some required investigating characteristics

and health of URL domains. For those, we used whois queries [11]

(limitations of this approach are discussed in Section 5.2.2).

URL Count (%)

http://www.w3.org/2000/svg 93,277 (1.35%)

http://www.w3.org/1999/xlink 45,980 (0.67%)

http://www.w3.org/1999/xhtml 44,228 (0.64%)

http://fb.me/use-check-prop-types 30,298 (0.44%)

http://www.w3.org/1998/Math/MathML 24,544 (0.36%)

http://www.w3.org/XML/1998/namespace 23,964 (0.35%)

http://localhost 19,447 (0.28%)

http://a 17,616 (0.25%)

http://a/c%20d 14,364 (0.21%)

https://fb.me/react-warning-dont-call-proptypes 12,516 (0.18%)

Total 326,234 4.7%

Table 2: Top-10 most common URL in dataset

4.2 Dataset

Table 1 summarizes our package/URL dataset. Overall, 22.6% of

packages contain complete or incomplete URLs within their code,

resulting in 6, 898, 948 URLs overall, and 1, 834, 110 distinct URLs.

Note, we include incomplete URLs in our analysis, as many such

fragments contain su�cient information (e.g., complete domain)

to enable us to perform our analyses. These fragments constitute a

small fraction of our dataset.

In terms of URI schemes, the majority of identi�ed URLs (72.1%)

used HTTPS. However, a signi�cant portion of identi�ed URLs

(27.2%) used unencrypted HTTP. A small potion of identi�ed URLs

(0.6%) used the FILE scheme, most of which were either incomplete

fragments or placeholder examples, and a tiny fraction of which

pointed to valid JavaScript or JSON �les within the package. The

remainder of our dataset (0.1%) used other schemes including FTP,

GOPHER, TELNET, and WAIS. Due to the negligible fraction of

these outlier schemes, we do not analyze them further.

For reference, we also display the top-10 encountered URL ex-

pressions in Table 2. Overall, they account for 4.7% of our dataset.

Five of them represent XML namespaces. Their use is necessary to

ensure XML-based formats such as SVG and MathML are standard-

compliant. While these namespaces are valid URLs, they are not

intended to represent actual web content. Others may provide con-

text to speci�c error messages, and some appear to be used for

host-local communication.

5 Analysis

Our measurements aim at answering these questions:

• What are the characteristics of URLs within packages?

• What are the characteristics of the domains within URLs?

• Which type of content is accessed via URLs? And how much

of this content is still accessible?

5.1 URL Demographics

5.1.1 HTTP URLs. We discuss �rst the characteristics of URLs us-

ing plain HTTP, which make up 27.2% of our total dataset. Note

that in general, HTTP is a deprecated protocol due to lack of se-

crecy and authentication; thus, the fact that more than 1/5 of our

1Note that we ignore package deletions, as those are oftentimes related to takedowns
of malicious packages, which we speci�cally wish to archive for research.
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Figure 1: Overview of URL analysis pipeline

URL dataset consists of HTTP URLs is somewhat surprising. As

discussed above, a fraction of these HTTP URLs consist of XML

namespaces, which are valid URLs but not expected to represent

actual online locations; however these only constitute a minority

of the overall number of HTTP URLs. Of the identi�ed HTTP URLs,

55.7% were URL string constants pointing to static web pages2, and

an additional 33.5%were URL string constants pointing to statically

hosted �les. The rest consisted of various types of dynamically

constructed URLs and partial URL strings, the latter intended to be

dynamically completed at runtime. Of those, incomplete URL frag-

ments which lacked a complete domain name or IP (e.g. http://

or http://abc) accounted for 6.6% of the sample, and incomplete

URLs which declare but do not supply a value for a query vari-

able made up 1.5% of the sample3. Across the entire set, 7.6% of

identi�ed HTTP URLs accessed localhost, and 3.9% were static IPs

(suggesting their possible use for testing or examples).

Concerningly, a total of 1, 301, or 0.3% of examined HTTP URLs

supplied username and password credentials directly in the plain-

text of the URL. However, many of these credential-carrying URLs

appeared to supply only default credentials or were intended to

serve as examples for the purpose of URL parsing. Furthermore,

in modern server setups, requests for HTTP URLs are frequently

redirected to equivalent HTTPS endpoints, which somewhat miti-

gates their negative security impact. However, we posit that even

the implicit endorsement of sending plaintext credentials over un-

encrypted HTTP communications is cause for reasonable security

concerns.

5.1.2 HTTPS URLs. As for the identi�ed HTTPS URLs, 64.8% were

URL string constants pointing to static web pages, and an addi-

tional 33.8% were statically hosted �les. Indications of dynamic

URL construction were signi�cantly less common. Incomplete URL

fragments accounted for only 0.5% of the sample, and URLs which

declare but do not supply a value for a query variable made up

1.0% of the sample. Additionally, just 0.2% of identi�ed HTTP URLs

accessed the localhost, and only 0.1% were static IPs.

With respect to passing user credentials, a total of 1, 095, or

0.1% of examined HTTPS URLs supplied username and password

2We de�ne here static web pages as web pages without indication of server-side
dynamic construction, such as URL parameters. We acknowledge that this de�nition is
incomplete, as any web page may be dynamically constructed w/o external indicators.
3Note that the two detection rules for "incomplete" and "missing parameters" are
not mutually exclusive; the former detects URL which does not includes all sections
required by speci�cation; while the latter detects URLs ending with "=".
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Figure 2: Empirical CDF for URL count per domain

credentials directly in the plaintext of the URL. As this percentage

is signi�cantly smaller than in the HTTP case, it is possible that

HTTPS usage correlates to greater security awareness as compared

to HTTP usage within npm packages.

5.1.3 Take-aways. A signi�cant percentage of URLs in our dataset

use the plaintext HTTP protocol rather than HTTPs. Across our

datasets, we also found over 2,000 URLs which incorporate user cre-

dentials, despite the fact that HTTP basic authentication is generally

deprecated due to its security implications. While these �ndings

do not directly imply the existence of vulnerabilities, they suggest

gaps in the security awareness of npm developers and poor security

posture amongst many packages.

5.2 Domain Demographics

A URL domain is critical from a security point of view, because

it determines—directly or indirectly—who controls the content

pointed by the URL. Out of 1, 834, 110 examined unique URLs, we

identi�ed a total of 267, 115 unique domains to which they belonged.

A very small portion of these domains appeared frequently, such as

github.com, which accounted for 13.5% of all unique URLs. Most

domains appeared somewhat infrequently, and 10.9% of identi�ed

domains appeared only in a single URL. This suggests that the

distribution of URLs across domains may follow a power law; this

indeed con�rmed by the ECDF of #URL per domain, displayed in

Figure 2 (note the use of log scales for X and Y axis). Power-law
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Domain Count (%)

github.com 931,298 (13.5%)

www.w3.org 394,602 (5.7%)

ecma-international.org 344,045 (5.0%)

developer.mozilla.org 221,199 (3.2%)

262.ecma-international.org 184,130 (2.7%)

s3.amazonaws.com 166,912(2.4%)

fb.me 140,879 (2.0%)

lichess.org 139,787 (2.0%)

fonts.gstatic.com 87,492 (1.3%)

docs.aws.amazon.com 78,232 (1.1%)

Total 268,8576 (39.0%)

Table 3: Top-10 most common domains in URL dataset

distributions tend to arise in npm in relation to item popularity

(e.g., package download counts [24]).

For details, Table 3 lists the top-10 most popular domains, which

together account for nearly 40% of the URLs.Many of them are likely

used to download additional features (e.g., fonts.gstatic.com) or

interface to online storage resources (e.g., s3.amazonaws.com). In-

terestingly, a signi�cant (2%) fraction of the URLs points to lichess.org,

an online chess platform. We discovered this is due to the single

l1-chessboard package (a web component implementing a chess-

board), which includes 139, 668 URLs pointing to the site.

5.2.1 Domain registration status. For each unique domain, we per-

formed a whois domain lookup query [11] to establish domain

registration and expiration information. We note that although

whois may provide incomplete information, it is the most general

and readily available approach to gather domain data, and its use

is common in network security research (e.g., [7, 21]). Thus, we

believe whois data is still valuable for lower-bound estimates of

domain expiration. This analysis is important, as expired domains

are up for grab for anyone willing to pay the registration fee [19].

As such, if a package relies on a URL pointing to an expired domain,

a malicious actor may be able to take over control of that URL and

exploit it to in�uence package behavior.

We identi�ed a total of 784 unique domains across 648 pack-

ages, whose registration was past the expiration date provided by

whois. To verify this result, we manually analyzed a subsample

of 86 of these domains (11% of all those �agged by whois) to de-

termine whether they were truly expired. Of this subsample, 20

domains (23.3%) had been reclaimed and re-registered, while 66

(76.7%) remained expired. Assuming that the distribution from this

subsample generalizes, we estimate that up to 601 identi�ed do-

mains may remain expired and may be potentially vulnerable to

malicious takeover.

5.2.2 Missing data. Of the 267, 115 identi�ed domains, 31.3% of

their respective whois queries were unable to identify a domain

registrar. However, this does not necessarily indicate that a domain

is truly unregistered. It is likely that many of these instances are

due to invalid or incomplete domain fragments, or they are the

result of imperfect whois information (e.g. whois does not supply

domain registration information for European domains due to the

establishment of GDPR in 2018 [17], and as such, we were unable

to automatically identify a domain registrar for those domains). We

investigate the existence of truly valid but unregistered domains

by manually vetting a random sample of 100 domains in which the

whois query was unable to identify a domain registrar. Within this

sample, 47 domains were invalid or incomplete, 43 were valid and

registered, and 10 were valid, unregistered, and publicly available

for purchase (veri�ed using Google Domains [3]). Assuming the

distribution from this subsample generalizes, we estimate that up

to 8, 360 of identi�ed domains may be unregistered and publicly

available for purchase.

5.2.3 Take-aways. While whois data is noisy, our results - com-

plemented by manual analysis - found a non-negligible number of

packages incorporating URLs with expired domains. These �ndings

indicate that domain takeover attacks constitute a potential threat

to the health of the npm package ecosystem.

5.3 URL analysis

We additionally test whether each of the 1, 834, 110 unique identi�ed

URLs successfully resolve statically via a web request. Out of all

tested URLs, 70.4% successfully resolve, and 29.6% do not. We note

that failed resolutions are a signi�cant over-approximation because

not all URLs are intended to be accessed statically, without any

dynamic construction, outside of a package’s intended environment.

5.3.1 URL content by popularity. We analyze the content of URLs

in our dataset, grouping the URLs in three broad categories based

on package popularity. We use weekly download counts as a proxy

for popularity. We de�ne three categories, based on previous lit-

erature [23]: highly popular packages (more than 100, 000 down-

loads/week), somewhat popular packages (between 350 and 100, 000

downloads/week), and never-downloaded packages (less than 350

downloads/week). The choice of 350 as a threshold for never-downloaded

packages is due to the fact that npm packages experience a routine

baseline of 50 downloads/day due to mirrors and bots. Stratifying

analysis by popularity is done due to the fact that packages in

di�erent popularity groups tend to exhibit distinct traits [27].

5.3.2 Manual case study. We perform manual analysis on the sub-

set of packages that were at least somewhat popular and utilized

domains which were con�rmed to be expired. This amounted to 5

packages in total, none of which were highly popular; rather, each

garnered weekly download counts in the thousands. Of these 5

packages, 2 have since released a newer package version which

no longer contains the expired domain, while 2 still contained test

cases which accessed expired domains, and one still exported a data

object containing an expired domain. This manual analysis demon-

strates that even npm packages which are somewhat popular can

be potentially compromised by the malicious takeover of expired

domains.

Results. Table 4 breaks down results for both URLs that resolved

successfully, and URLs that failed to resolve. In the former case,

we distinguished between content types: text, web applications,

static �les across image, audio, binary, font, and video formats, and

replies without content type. In the latter case (URL did not resolve),

we distinguished between error types: failing HTTP status codes,

connection refused, timeout, invalid URL, and Unicode-related.
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Successfully resolves [content type] Does not resolve [error type]

Dl count #URLs Text Web app File No type Err. code Conn refused T/O Invalid URL UC err

> 100, 000 18,288 59.4% 3.1% 1.5% 10.8% 16.4% 7.3% 1.5% 0.1% 0.03%

(350 − 100.000] 330,763 41.9% 2.9% 20.1% 8.2% 13.0% 12.6% 1.2% 0.05% 0.03%

[0, 350] 1,448,168 43.7% 4.1% 13.2% 8.7% 17.3% 10.0% 2.9% 0.1% 0%

Table 4: URL analysis results by download count

For the 18,288 unique URLs accessed by highly popular packages,

we �nd that 74.8% successfully resolve statically, while 25.2% do not.

Most URLs return some type of text reply, suggesting that the use of

Web APIs (e.g., REST) may be the main reason for URL embedding.

For the 330,763 unique URLs accessed only by somewhat pop-

ular packages, we �nd that 73.1% resolve statically, and 26.9% do

not. For the remaining 1,448,168 unique URLs accessed only by

never-downloaded packages, we �nd that 69.7% successfully re-

solve statically, and 30.3% do not. In both of these latter groups, a

non-negligible percentage of URLs return �le-based content.

5.3.3 Manual URL testing. We further verify the status of URLs

that fail to resolve via static access by performing manual analysis

on random subsamples of such URLs. We manually test each URL

in a given subsample within the package context in which it is

intended to be used, and we additionally look for any more recent

updates to package code.

Highly popular packages. In a random subsample of 100 URLs

which are accessed by highly popular npm packages and fail to

resolve via static, programmatic access, we �nd that 35 resolve

successfully within the intended context (including 8which require

additional con�guration performed by the package code) 15 that fail

within the context of the most up-to-date version of the package,

33 that fail but were removed from a newly released version of the

package, 14 that were not intended to be accessed via a web request

(e.g. test cases for URL parsing), and 3 that were intended to fail

(e.g. test cases for failed web requests).

Somewhat popular packages. We contrast this with a random sub-

sample of 100 URLs which are accessed only by somewhat popular

npm packages and fail to resolve via static, programmatic access,

wherein we �nd that 35 resolve successfully within the intended

context (including 23 which require additional con�guration per-

formed by the package code), 25 that fail within the context of

the most up-to-date version of the package, 30 that fail but were

removed from a newly released version of the package, and 10 that

were not intended to be accessed via a web request.

Never-downloaded packages. Last, we examine a random subsam-

ple of 100 URLS which are accessed only by never-downloaded

npm packages and fail to resolve via static, programmatic access,

wherein we �nd that 23 resolve successfully within the intended

context (including 10 which require additional con�guration per-

formed by the package code), 66 that fail within the context of

the most up-to-date version of the package, 4 that fail but were

removed from a newly released version of the package, and 7 that

were not intended to be accessed via a web request.

5.3.4 Take-aways. Our �ndings highlight notable di�erences in

URL usage across the popularity of packages which utilize them.

First, the more popular a package is, the more likely its URLs are to

resolve statically. Additionally, more popular packages are rather

unlikely to access static �les via web requests, while less popu-

lar packages do so much more frequently. Furthermore, we found

that as the popularity of npm packages increase, they are signi�-

cantly more likely to maintain up-to-date URLs and to utilize more

extensive testing as compared to less popular packages.

6 Discussion

6.0.1 Presence of Problematic URL Usage. Our �ndings demon-

strate that problematic URL usage is a present threat within the

npm package registry, albeit one which is primarily localized within

unpopular packages that are infrequently maintained or outright

abandoned. Despite this, we have identi�ed several instances of

somewhat popular packages utilizing expired domains, as well as

signi�cant use of unencrypted HTTP communication, even within

highly popular packages. Packages which access web content, and

especially those which download �les over HTTP, are prone to

adversarial manipulation and potential compromise. We hope that

our �ndings motivate package authors to improve the hygiene and

maintenance of URL usage within their packages.

6.0.2 Other Potentially Undesired URL Usage. In addition to dead

links and expired domains, we observe some additional poten-

tially undesired URL usage across the npm registry. We identify

some packages which appear to promote a�liate marketing links

intended to generate pro�ts for the package authors. One such

package was @bevry/links@2.9.0, which appears to exist for the

sole purpose of storing links with a�liate URL redirections. On

a similar note, URLs which link to advertising servers are also

somewhat common, in packages implementing ad-related func-

tionality such as bidding (e.g. mk9-prebid@5.12.0). Moreover, we

�nd numerous packages intended to generate, trade, and inter-

act with cryptocurrency, including many dead or broken links

to cryptocurrency exchanges, which may or may not be legiti-

mate (e.g. solana-token-list@0.0.24, moralis@2.14.2). These

packages clutter the ecosystem and may confuse newcomers look-

ing for reliable cryptocurrency-related functionality. Finally, in

some extreme cases we found packages downloading executable

JavaScript code from URLs; this is a highly sensitive operation

which should be avoided unless absolutely necessary. One such

package is goindexmod666647@1.0.1, which downloads what ap-

pears to be a mini�ed JS script to modify a web CSS con�guration.

We hope that these �ndings can raise awareness of some potentially

undesired forms of URL usage we observed across npm packages.
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6.0.3 General implications of our findings. Our goal is to perform a

measurement study to understand developer practices concerning

use of URLs in npm packages. As such, and also given the ethical

implications of doing so, we did not attempt to exploit identi�ed

issues or to perform domain takeover. Rather, we reported our

�ndings to the npm security team, including a list of the expired

domains identi�ed and the speci�c package versions utilizing them.

As of the time of writing, we have yet to receive a response from

the npm security team.

Overall, we believe that our �ndings point to both security and

functional issues deriving from referring to network resources

using URL string constants. While there are legitimate reasons to

do so (e.g., pointing to API endpoints for database backends), our

investigation also reveals a large number of insecure URLs, expired

domains, and broken URLs, with negative implications for security

and functionality. In general, when hardcoding references to online

resources within a package, care should be taken to assess whether

(i) this is absolutely necessary; and (ii) which measures will be taken

to ensure that the URL—and thus the package using it—continues to

function. We put forward that developers, especially inexperienced

ones, may bene�t from guidelines concerning the use of hardcoded

URLs in their code.

7 Conclusion

In this work, we presented a brief review of the use of hardcoded

URLs within packages in the npm ecosystem. At a high-level, our

measurement study shows prevalence of risky practices such as

use of unencrypted HTTP, use of basic HTTP authentication, bro-

ken/nonfunctioning URLs, and presence of expired domains. We

hope that these �ndings can foster better awareness and more

robust development practices.

Data access

We publicly release our dataset at https://osf.io/5bqnp/?view_only=

da6dde3e665c41a6b1cb5943a702a363 to promote broader access and

replicability.
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