Stepping out of Bounds: Security Impact of Allowing Packages on
npm to Declare External Dependencies

Dominic Tassio
University of Kansas
Lawrence, KS, USA
dominic.tassio@ku.edu

Lorenzo De Carli
University of Calgary
Calgary, CA
lorenzo.decarli@ucalgary.ca

ABSTRACT

In this paper, we explore an understudied feature of the npm pack-
age registry, allowing packages to specify a dependency that is
served from a source that is external to (and outside the control of)
npm. Although URL dependencies or external dependencies have
been recognized as code smells in previous literature and current
security tooling, there is a lack of analysis of external dependen-
cies across the entirety of npm. Thus, we present our method for
conducting a registry-wide npm analysis, describing special consid-
erations that we made to account for the large size of the registry.
To address those considerations, we analyze a cache of all npm
packages. External dependencies were identified based on the type
returned by the npm-package-arg package which is used by the
npm cli. Our work characterizes the usage of external dependencies
among all packages on npm, considering their popularity and po-
tential security impact. We identify several notable attack vectors
that do not exist for internal packages and are enabled when the
package is served from an external location. In our usage analysis,
we find that 0.41% of npm packages make use of an external de-
pendency in their latest version. Of those packages, 372 packages
have more than 350 weekly downloads, which we consider to be
the lower threshold of usage by developers. Further, there are six
packages that have over 100 thousand weekly downloads, which
we consider to be significant usage by developers. Finally, we also
discuss a number of mitigation steps that software developers and
package registry maintainers may use to reduce the negative impact
of external dependencies.

ACM Reference Format:

Dominic Tassio, Elizabeth Wyss, Gael Salazar-Morales, Lorenzo De Carli,
and Drew Davidson. 2025. Stepping out of Bounds: Security Impact of Allow-
ing Packages on npm to Declare External Dependencies. In Proceedings of
the 2025 Workshop on Software Supply Chain Offensive Research and Ecosys-
tem Defenses (SCORED °25), October 13-17, 2025, Taipei, Taiwan. ACM, New
York, NY, USA, 9 pages. https://doi.org/10.1145/3733827.3765525

Please use nonacm option or ACM Engage class to enable CC licensesm

This work is licensed under a Creative Commons Attribution 4.0 International License.
SCORED °25, October 13-17, 2025, Taipei, Taiwan

© 2025 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-1915-8/2025/10

https://doi.org/10.1145/3733827.3765525

Elizabeth Wyss

University of Kansas
Lawrence, KS, USA
elizabethwyss@ku.edu

Gael Salazar-Morales
University of Kansas
Lawrence, KS, USA
gmorales034@ku.edu

Drew Davidson
University of Kansas
Lawrence, KS, USA
drewdavidson@ku.edu

1 INTRODUCTION

Modern software development increasingly relies on the discovery,
procurement, and integration of dependencies - units of code that
provide generic functionality to a codebase [10, 14, 42]. These de-
pendencies form a major part of the software supply chain, allowing
developers to conveniently avail themselves of a wealth of prebuilt
infrastructure. Government, industry and academic entities have
all noted that the software supply chain requires serious security
examination [4, 8, 39, 41]. A particular area of study within the do-
main is the security of open-source package registries [15]. These
package registries enable developers to easily share open-source
dependencies to a large developer audience. Much of this work
studies the methods and effects of uploading malicious packages to
the registry, focusing primarily on the integrity aspect of the CIA
triad. Our larger vision is to contribute a complementary line of
analysis: a study that also considers the availability aspect of the
CIA triad for package registries. To this end, we focus this work at
the level of the design and policies of package registries. We look
beyond the treatment of a single malicious behavior or attack vector.
Rather, we consider whether the registry has the appropriate means
to (1) provide reliable access to benign packages and (2) remediate
malicious package code.

Our work is focused on the npm package registry for managing
node.js dependencies. The npm registry provides an important
target of study, as it is the largest package registry - both in terms
of the number of packages that are listed in the registry and in the
number of downloads. An underappreciated aspect of npm is that
it is possible to create a package hosted within the registry itself
(and thus forming a part of the software supply chain provided by
npm), which declares a dependency outside of the registry itself.
We refer to the former as an internal dependency, and the latter as
an external dependency.

The unique design of npm, which mixes the availability of both
kinds of dependencies, leads us to study the adoption and effect
of external dependencies. External dependencies force npm to ex-
tend its root of trust beyond the boundaries of its own mediation:
the registry becomes reliant upon the availability of 3rd-party in-
frastructure to serve code reliably and benignly, which may be
underappreciated by developers that rely on the registry for avail-
ability.


https://orcid.org/0009-0004-4165-1202
https://orcid.org/0009-0001-2228-9912
https://orcid.org/0009-0003-7448-428X
https://orcid.org/0000-0003-0432-3686
https://orcid.org/0000-0002-5096-1446
https://doi.org/10.1145/3733827.3765525
https://creativecommons.org/licenses/by/4.0/legalcode
https://creativecommons.org/licenses/by/4.0/legalcode
https://doi.org/10.1145/3733827.3765525

SCORED ’25, October 13-17, 2025, Taipei, Taiwan

Packages on npm are highly interconnected. If one package
becomes unavailable or buggy, all packages that transitively depend
upon it are exposed.

The effect of package interconnectivity has been demonstrated
in several high-profile security incidents. In March 2016, a widely
depended on npm package, left-pad, was unpublished from the
registry by its author, resulting in widespread issues across npm-
based web applications by preventing any packages that depended
on left-pad from building [38]. As another example, in January
2022, the npm packages colors and faker were intentionally sab-
otaged by their author, impacting the many projects that depended
on them [33]. These incidents demonstrate the impact of package
interdependence, but the mitigations that were applied in these
cases are also notable. In all cases, the npm maintainers restored
the packages to previous archived versions from within the registry.
This option would have been unavailable if these dependencies
were external to the npm registry, since there would be no archived
version available.

Motivated by these incidents, we set out to exhaustively study
how external dependencies are used by npm packages in practice.
We note that our focus is on the impact to the npm registry itself.
Our interest is studying how external dependencies declared by
packages on npm impact the health and security of npm. We do
not study packages or applications that are not hosted on npm.
These packages or applications do not impact the availability of
npm packages themselves.

Our primary contribution is a registry-scale analysis of npm on
the actual usage of external dependencies. We find that external
dependencies are rarely used, implying that developers may be
able to avoid depending upon them. We also note that because
they are rare, developers may not be fully aware of their security
impact. Our work describes software supply chain attack vectors
that are enabled by external dependencies, and we demonstrate
precisely how the design of a package registry can impact these
threat vectors. Finally, we discuss protections for both package
registry maintainers and developers on how to reduce the impact
of external dependencies.

2 BACKGROUND

In this section, we provide the necessary background on the design
and operation of npm and its package system.

The npm system consists of distinct, but related, components
that enable the consumption and distribution of software pack-
ages [24]. These components are the npm website, the command
line interface (CLI), and the package registry. Each component has
a purpose in the user workflow of using npm. The primary points
of contact for a user when installing or publishing a package are the
website and CLI. When exploring packages, the website provides
discovery through search functionality and presents basic infor-
mation about the package. In addition, this information includes
displaying the package readme file, versions, dependencies, depen-
dents, and download information. The CLI presents a large surface
area, consisting of many sub-commands and providing user access
to much of the npm system. By default, the npm system uses the
npm registry to resolve packages [28]. As of our analysis from April
2025, the npm registry reports more than 3.5 million packages.

Dominic Tassio, Elizabeth Wyss, Gael Salazar-Morales, Lorenzo De Carli, and Drew Davidson

When installing a package using the npm CLI, the package’s
dependencies are also installed with it. This process is recursive,
leading to the installation of all transitive dependencies of the
original package.

As points of comparison, we look at package systems in other
programming language ecosystems. Unique among them is the
Go programming language, in that it lacks a central registry and
provides a standard way to specify dependencies using URLs. Most
package registry systems prevent the ability for a package on the
registry to depend on a package external to the registry. For ex-
ample, the Rust ecosystem’s package registry crates. io prevents
packages from being published with external dependencies [3]. Sim-
ilarly PyPI, the package registry for Python, also prevents packages
from depending on external packages [1]. Both Go’s and npm’s
usage of external dependencies present technical and security chal-
lenges that are not found in other package registries. After describ-
ing how external dependencies are supported, we will look at the
mechanisms Go uses to mitigate these challenges.

2.1 Support for External Dependencies

Below, we describe the mechanism through which npm allows for
packages to specify external dependencies. See figure 1 for an ar-
chitecture of a package on npm specifying an external dependency.
External Registry: The npm registry maintains the list of its in-
ternally hosted packages, dubbed the package registry [28]. Users
are able to specify external registries in a user-level . npmrc config-
uration file, thus causing packages to be fetched from the external
registry [9]. However, this association only impacts the local user’s
development environment.

Direct URL: Another way that an npm package can specify a
dependency is through an explicit URL [27]. The URL must resolve
to a tarball containing an npm package or be a URL to a Git registry
of a package. This deviates significantly to the standard method of
specifying a version range.

Implicit Domain: A specific feature of npm dependency specifiers
is the ability to set a GitHub registry as the source using a short
form specifier. The short form is <user>/<repository> and will
be treated as a Git URL to that repository on GitHub. Another
short form allows specifying Git repositories on other hosts in
addition to GitHub. By prefixing with “bitbucket:”, “github:”, or
“gitlab:” arepository can be targeted that is hosted on BitBucket,
GitHub, or GitLab respectively. We note that the form <user>/
<repository> is very similar to how scoped packages are named
on npm: @<scope>/<package>, where the scope refers to a user or
organization on npm. This allows for multiple packages to have
the same name if they are under different scopes. The npm cli
tool allows installing packages using the <user>/<repository>
short form instead of the name of the package on npm. This will
install the package from the repository on GitHub. The entry in the
resulting dependency field of the package. json will be "<name>":
"github:<user>/<repository>" where the name will be what
is given in the dependency’s package. json. See listing 1 for an
example of the GitHub short form specifier.



Stepping out of Bounds: Security Impact of Allowing Packages on npm to Declare External Dependencies

npm registry external host

S gg
A

— Requested Package
— Indirect Internal Dependency
» Indirect External Dependency

Figure 1: Architecture of a user consuming a package from
npm that depends on a package that is hosted externally by
a third-party.

"dependencies": {

"ansi-escape-sequences": "%6.2.2",
"debug": ""*4.3.4",
"eastasianwidth": "*0.2.0",

"hash-arg": "*1.0.6",
"node-getopt": "github:takamin/node-getopt"
}

Listing 1: Example snippet of the package.json file from the
list-it package on npm with an external dependency on
the node-getopt package.

2.2 Protections

As a point of comparison, we look towards Go. Since Go and npm
both support direct URL dependencies, it is interesting to compare
the protections in place against the threats posed by allowing the
package registry to depend upon third-party web domains. Go has
implemented two protections for the unique issues its package
ecosystem faces by not having a central package registry [30].
Package Checksum: A checksum database stores a SHA-256 hash
for a Go package which is used when downloading to verify the
contents of a package. The checksum database stores for each pack-
age the package path, the package’s version, and the computed
hash of the package [2]. When downloading a package, the hash
of the package is compared to the hash stored in the checksum
database to ensure the package has not been altered [30].
Package Mirror: To guarantee the availability of packages, Go also
provides a mirror of cached packages. When installing packages,
the mirror is used instead of the direct source if the package is
already present on the mirror. When a package is requested for the
first time and has an open-source license, the package is cached to
the mirror. All future requests of a package cached on the mirror
are served from there, even in the case that the package is removed
from its original source [30].

3 SECURITY IMPACT

In this section, we contribute descriptions of the security impacts
that arise when external dependencies are supported by registry
ecosystems.

We also reiterate that the scope of our study, and thus the de-
scription of security impact, is limited to the effects of external

SCORED ’25, October 13-17, 2025, Taipei, Taiwan

dependencies on packages that are present within the package reg-
istry itself. In particular, we note that the study of dependencies
declared by applications is beyond the scope of this work. We be-
lieve that application developers may have good reason to declare
the need for a package that is not part of the registry.

We note that external dependencies have been identified as a
cause for concern in other systems [6, 18]. Both the external secu-
rity scanning tools Sandworm and Socket.dev, two popular node
package security scanners, mark any external dependency as a se-
curity issue [31, 35, 36]. Socket.dev ranks external dependencies as
high severity security issues [35, 36].

We identify developer confusion, user targeting, package avail-
ability, and obscuring remediation. These correspond to the cate-
gories of “Create Name Confusion with Legitimate Package”, “Dis-
tribute Malicious Version of Legitimate Package”, “Compromise
Build System”, and “Prevent Update to Non-Vulnerable Version”, re-
spectively, from the taxonomy of attacks from Ladisa et al. [25] We
will refer to this taxonomy as the attack taxonomy going forward.
Packages on npm depending on external packages present unique
security threats and new avenues for known security threats that
may otherwise not be possible without external dependencies.

3.1 Taxonomy of External Packages

We detail some of the security implications of allowing packages
within the registry to declare dependencies external to the registry.
These dependencies provide a vector for a malicious actor to harm
users of the registry package.

Developer Confusion: There are many previous works that detail
the threat of package confusion, whereby a developer includes an un-
intended package due to a typo or other confusion that an attacker
has taken advantage of to cause the developer to include malicious
code [29, 37, 39]. This is classified under the attack taxonomy as
“Create Name Confusion with Legitimate Package” [25].

Package confusion is a problem that is not exclusive to pack-
ages on a central registry. For example, a malicious Go package
was recently removed, boltdb-go/bolt, which was intended to
induce package confusion with the benign boltdb/bolt package.
The confusion attack caused the wrongly-included code to grant
persistent remote access to the malware author [11].

In particular, npm allows for notational shorthand to indicate
that a particular external package source is being requested. As an
example, consider the distinction between the external dependency
shorthand <user>/<repository> versus the scoped dependency
naming scheme @<scope>/<package>. The first indicates a pack-
age on GitHub and the second is a scoped package on npm. When
using the npm cli tool to install a package, forgetting the ‘@ in front
will cause npm to install an external dependency hosted on GitHub.

We consider the possibility of such confusion to be a plausible
and accidental behavior. The omission of a single character falls
within previous definitions of package confusion [29, 37]. Our anal-
ysis found 5,862 dependencies potentially installed where the ‘@’
character was omitted. Of those dependencies, 449 correspond to
a scoped package that currently exists on npm. It is possible that
some of these packages were installed accidentally instead of the
intended scoped package on npm. The majority of dependencies
(3,691) have a corresponding scope that exists on npm without



SCORED ’25, October 13-17, 2025, Taipei, Taiwan

npm registry external host

user

((J
=

npm frontend

- Requested Package
— Indirect Internal Dependency
» Indirect External Dependency

Benign Package
W7 Malicious Package

Figure 2: Architecture for a user targeting attack using dif-
ferential serving. The third-party external host can choose to
serve a malicious version of a package instead of the benign
version based on the user requesting the package.

the package. Most concerningly, 1,722 dependencies do not have a
corresponding scope or package on npm. A malicious actor would
be able to claim the scope and package to enact a dependency
confusion attack against a user attempting to install an external
dependency. Thus, we find that the different methods of specifying
packages may serve as a vector for attack.

User Targeting: External dependencies necessarily involve a 3rd-
party host delivering a package. Most naturally, the host would act
as a static package registry. However, the host may instead take
dynamic action when a client attempts to fetch a package, even
as it masquerades as a static service. We refer to this behavior as
differential serving, as it allows for differential treatment of clients,
according to the goals of the adversary. See Figure 2 for an attack
architecture. Under the attack taxonomy this would be classified
as “Distribute Malicious Version of Legitimate Package” [25]. An
adversary may generally distribute a legitimate package, only to
then use differential serving to target specific users and serve them
a malicious version of the package.

In practice, such a host may choose to use a differential policy
to target particular users with malware. For example, the host
might serve a malicious codebase (perhaps a trojaned version of the
legitimate package) to a targeted block of IP addresses. The desire
to target a particular set of clients in this way has been observed in
software supply chain attacks in the past—the node-ipc package
was updated to corrupt the developer’s filesystem if it was run
from a Russian or Belarusian IP address [13]. This same malicious
behavior could be achieved by serving benign code to non-Russian
or Belarusian IP addresses.

Alternatively, the host might choose to use its differential behav-
ior to conceal malicious behavior and delay detection. An adversary
could use differential serving to serve a benign package to clients
that are known to be security scanners or auditing tools in order to
escape detection, while serving malware to all other clients.
Package Availability: An additional security impact of allowing
external dependencies is that it increases the attack surface of the
package ecosystem.When a package is hosted on a private server,
it provides a target for a denial of service attack. We place this un-
der “Compromise Build System” from the attack taxonomy due to
potential impacts on build availability[25]. Should an adversary be
able to take down a third-party external dependency host, it would

Dominic Tassio, Elizabeth Wyss, Gael Salazar-Morales, Lorenzo De Carli, and Drew Davidson

break the installation process of any dependent package. As demon-
strated by the left-pad incident, even a seemingly inconsequential
package can lead to significant service outages [12].

An author may intentionally unpublish a package from npm. Un-

publishing is subject to the npm’s unpublishing policy. This policy
disallows package unpublication if it has any dependent packages
(amongst other criteria). An external dependency is effectively ex-
cused from such rules, as the host can simply refuse to serve the
package at its own prerogative.
Obscuring Remediation: A key security feature of npm is the
ability to remove code when it has been deemed malicious. This
capability is employed in order to ensure a mandatory stoppage of
the distribution of malicious code. In npm, the content of a package
is replaced with a “security holding package”, a code-free package
whose metadata links to the security advisory that compelled the
takedown. This approach has the advantage that any package that
incidentally uses the affected package will at least still complete
installation, though usage of any code from the removed package
will fail.

When an external package is subject to a security advisory, there
is significantly less control that can be exerted over the package
contents. In the most basic sense, the package exists outside of npm
and therefore its content cannot be replaced with a holding package.
We place this under “Prevent Update to Non-Vulnerable Version”
from the attack taxonomy.

The recent example of the boltdb-go/bolt malicious package,
which induces package confusion against the benign boltdb/bolt
package, is a representative example of this issue. The malicious
version of boltdb-go/bolt, 1.3.1, was published to GitHub in No-
vember of 2021, and cached by the package mirror. Once cached,
the malware authors rewrote the v1.3.1 Git release tag to point to
a benign commit. This change allowed the malicious code to be
served from the mirror, but an audit that simply followed the ver-
sion number and analyzed the Git code would observe no malicious
behavior.

4 REGISTRY SCALE ANALYSIS

Due to the unique feature of npm that allows packages on the central
registry to specify external dependencies, and the lack of mitigating
features employed by npm, we have chosen to conduct a registry-
scale analysis of external dependencies across every package that
has ever been uploaded to npm. Performing such an analysis is
necessary in order to fully assess the state of the registry, but it
requires overcoming a significant challenge of scalability. Not only
are there 3,527,282 total packages on npm at the time of our work,
packages may also have more than one version. For the sake of
completeness, we choose to analyze every version of every package
available on npm.

An additional challenge of our analysis is that we aim to min-
imize the impact on npmjs.com. We note that in prototyping the
analysis, checking for various aspects of each package, and running
a crawler over the entire registry is not insignificant.

In order to meet the scalability needs of our analysis while simul-
taneously reducing the load on npmjs.com, we construct a special
private mirror of the entire npm registry. In recognition of the speed
at which the registry grows, we design our system to maintain a



Stepping out of Bounds: Security Impact of Allowing Packages on npm to Declare External Dependencies

“living snapshot” of the registry that stores a copy of each new
package and package version that is added to npm. A benefit of this
is that if the package version is removed from npm, we retain that
copy for future analysis.

Registry-scale analysis must contend with an important charac-
teristic of real code. Namely, that much of the code on the registry
is not used in practice. For example, it is both trivial and common
to quickly create a free account and upload a test package to the
registry. Even code with nontrivial functionality may become aban-
doned or be uploaded without any appreciable audience. A recent
npm analysis deemed that only about 12.1% of packages on npm
see actual use [37].

We note that any registry-scale analysis that does not account for
this unused package phenomenon may be confounded by skewed
aggregate results. For this reason, we modulate our analysis using
a popularity threshold. We decide upon this threshold using npm’s
reported weekly download counts as a proxy for usage. As such,
we regard any package with less than 350 weekly downloads as
effectively unused, as has been done by several recent works in
this space [29, 39]. Throughout our evaluation, we refer to any
npm package above that threshold as utilized, and any (effectively
unused) package below the threshold as unutilized.

We identified external dependencies based on their specifier
listed in the dependencies object of a package’s package. json.
Taking advantage of the package used internally by the npm cli,
we used npm-package-arg to determine the type of the specifier.
In the cases where npm-package-arg returned the type as git or
remote, were the cases in which we classified a dependency as
external.

Our analysis used information on a package from three sources.
First, a cached version of the metadata provided by the npm api
athttps://registry.npmjs.org/<package_name> to collect the
latest version. Second, the package. json of each package version
to obtain the list of declared dependencies. Third, the npm api for
download counts.

5 EVALUATION

Our analysis leverages our private mirror of npm detailed in Sec-
tion 4. We contribute an analysis on the prevalence of external
dependencies on npm.

We find the usage of external dependencies by packages on npm
is a rare phenomenon. Of the more than 4.7 million packages that
we have cached from npm, 0.41% make use of external dependencies
in their latest version. There are 0.99% of package versions that use
an external dependency out of more than 44.5 million versions.

Despite the low percentage of packages that use external depen-
dencies, we look to the six latest versions identified in Figure 4 that
have over 100 thousand weekly downloads to highlight the risk
posed to npm by external dependencies.

5.1 Prevalence Within the npm Registry

As described in Section 4, characterizing any aspect of a package
registry requires careful analysis of which packages are being con-
sidered. Figure 3 breaks down all versions of all packages that have
an external dependency. We analyze 44,507,170 package versions

SCORED ’25, October 13-17, 2025, Taipei, Taiwan

10°
331,322

104

Number of Packages

1044

351-999
1k-9,999
100k+

0k-99,999

—
Weekly Downloads

Figure 3: Weekly downloads of all package versions with an
external dependency

[a
o
9

18,996

Number of Packages
= = =
o o o
N w S

[
o
-

0-350
351-999
1k-9,999

100k+{ o

10k-99,999

Weekly Downloads

Figure 4: Weekly downloads of the latest package versions
with an external dependency

and find that 439,551 (0.99%) specify an external dependency. Tak-
ing into account only the latest version of a package, Figure 4 shows
a similar pattern of external dependency usage. We analyze the
latest versions of 4,706,114 package versions and find 19,368 (0.41%)
use at least one external dependency. We see that the vast majority
of packages are downloaded 350 times or less a week. This remains
the same whether looking at all versions of packages that have an
external dependency or only the latest version of a package. We be-
lieve that these results provide evidence that external dependency
use is rare.



SCORED ’25, October 13-17, 2025, Taipei, Taiwan

103

1024

101 ]

Number of Packages

1 1 1

1 2 3 4 7 8
Number of External Dependencies

1004

Figure 5: Number of external dependencies used by the latest
versions of packages on npm with greater than 350 weekly
downloads. Of the 190 utilized packages with external depen-
dencies, 84% have only 1 such dependency.

Despite usage being generally rare, there are six packages with
over 100,000 weekly downloads that pose a risk to the npm ecosys-
tem. These packages are: @electron/rebuild, node-xlsx, volar-service-
emmet, @axelar-network/axelar-cgp-sui, @whiskeysockets/bai-
leys, and domotz-remote-pawn. Between all six of these packages,
there are 105 direct dependents and 201 indirect dependents. Due
to the transitive nature of package dependencies on npm, the risks
identified in Section 3 now impact 306 other packages on npm
outside of the six packages that directly use external dependencies.

5.2 Prevalence within Individual Packages on
npm

While the overall number of packages that use external dependen-
cies is low, we additionally consider the degree to which utilized
packages (>350 weekly downloads) employ external dependencies.
Our analysis identifies only 190 utilized packages from the latest
versions that use external dependencies, and Figure 5 provides
a breakdown of the 190 packages. We find that 160 (84%) of the
utilized packages only specify one external dependency, and the
maximum number of declared external dependencies by a single
package is eight (of which there is only one such package).

Since most of the external dependencies serve only a single
internal package, they are functionally much closer to a particular
module of that internal package. As such, these particular external
dependencies could instead be bundled to avoid the security issues
associated with external dependencies.

5.3 Characteristics of External Dependencies

In addition to exploring how widespread the use of external de-
pendencies is from within npm, we are also interested in capturing
information about those external packages themselves. The non-
standard presentation of external packages makes them difficult to
profile, especially in terms of download count. Given the lack of a
consistent statistic, such as the weekly download count provided
by npm, we instead use the number of npm packages that use a
particular external dependency as a metric for its use.

Dominic Tassio, Elizabeth Wyss, Gael Salazar-Morales, Lorenzo De Carli, and Drew Davidson

= =
o o
- w

Number of Packages
=
o

@
o~

—
Number of Dependents

Figure 6: Dependents of External Dependencies. Most exter-
nal dependencies have only one internal npm user.

| Package Dependents
github:libphamton/client-fb 1796
github:uNetworking/uWebSockets.js 170
github:daemonsec637/dotgov-list-node 163
github:daemonsec637/eks-auto-create-idp 125
github:gulpjs/gulp 121
github:bitpay/node-buffers 100

Table 1: Number of Dependents for the Most-Used External
Packages. All packages with greater than 100 dependents
were selected.

Figure 6 characterizes the degree of use that an external package
receives. As described above, we find that of the latest versions,
19,368 packages use at least one external dependency. Furthermore,
we find that there are a total of 15,186 distinct external dependencies
that are referenced from packages on npm. Of these distinct external
dependencies, 12,593 or 83% are used by only one npm package.
This result seems to indicate that for the cases in which a package
exists outside of npm, its adoption is quite low.

It is of note that there are six external packages that are each
listed as dependencies for over 100 packages. These packages are
shown in Table 1. The top package seems to be a clone of the
npm package @libphamton/chatfanpage and looks to take advan-
tage of the tea crypto rewards program [34]. The second pack-
age, uNetworking/uWebSockets. js, takes an ideological stance
against being hosted on npm [7, 19, 20]. The third and fourth
packages from the user daemonsec637, are no longer available
on GitHub. The fifth package is available on npm and does not need
to be installed as an external dependency. The last package is a
clone of the buffers package on npm.

In a random sample of 11 packages that depend on the top two
external dependencies, none were published more recently than
2021, indicating that their dependencies are likely abandoned.



Stepping out of Bounds: Security Impact of Allowing Packages on npm to Declare External Dependencies

Of the 15,186 total unique dependencies, we find that 13,552
(89%) use the git protocol (see Section 2 for more information). The
remaining 1,634 dependencies fetch a file over http. The majority
of these point to a package on GitHub (13,253), either through a git
url, the GitHub short form, or a direct url to GitHub.

Not only is the adoption of external dependencies rare, but the
packages that do declare external dependencies overwhelmingly
target github.com. Since GitHub is the owner of npm, this repre-
sents little actual decentralization in practice.

6 DISCUSSION

Above, we explored security problems with external dependencies
and detailed our experiments characterizing the actual usage of the
feature. Based on our findings, we contribute recommendations to
package registry maintainers and package developers for mitigation
strategies to address the issues raised by external dependencies.

6.1 Registry Recommendations

Based on our findings regarding the security implications of ex-
ternal dependencies, we have arrived at three recommendations
that registry maintainers could adopt. We note that these recom-
mendations serve to blunt the security impact of misuse of external
dependencies. However, we take a “do no harm” stance towards
security here - proposed changes must not break the build of any
legitimate package, nor should they forbid the use of external pack-
ages. Rather, they should seek to align the transitive use of external
packages with the functionality of packages hosted within the reg-
istry. Our first recommendation, for npm to implement an external
dependency checksum database, is intended to prevent the prob-
lems that we described in Section 3. Our second recommendation,
to deprecate unused packages that currently use external depen-
dencies, is designed to caution and dissuade future use of these
packages. Our third recommendation is to add a confirmation step
when installing an external dependency, is intended to prevent the
confusion problem discussed in Section 2.1 and Section 3.1.
Implementing a Checksum Database: Our primary recommen-
dation is the addition of a checksum database, similar to the one
provided by Go, for all existing and any future external dependen-
cies to be cataloged in this database. This recommendation is based
on our finding that several new security threat vectors are enabled
by external dependencies. When downloading an external depen-
dency, a checksum will be created for the package to verify against
the checksum database for external packages. If the checksum is
not found in the database, it will be added. Any subsequent lookup
of a checksum will compare to the originally calculated checksum.
By comparing these checksums, it would be possible to defeat dif-
ferential serving and user targeting attacks, as any alteration of the
package would be detected when its checksum does not match the
one stored in the database.

Deprecating Unused Packages with External Dependencies:
Our analysis shows that the use of external dependencies tends to
cause instability in a package. Several of the most-depended-upon
external dependencies across all npm packages are entirely unavail-
able, causing any package that transitively depends upon them
to fail its installation procedure because the external dependency
cannot be fetched. This situation implies that many packages using

SCORED ’25, October 13-17, 2025, Taipei, Taiwan

external dependencies are not maintained, and that as external
dependencies fall victim to bitrot, their dependents do not take
appropriate ameliorative action.

Overall, the existence of unmaintained packages is not surprising.
Indeed, our registry-scale analysis estimates that nearly 95% of all
packages are effectively unused. As such, flagging those packages
that are particularly likely to break a transitive build is a worth-
while endeavor. We recommend that registry maintainers flag such
packages to provide indications to potential users that the package
they are considering including may be particularly subject to bitrot.
A conservative metric to identify such packages is to flag any pack-
age with no dependents, less than 350 weekly downloads, and an
external dependency. We do not recommend that such packages be
taken down, as they do not necessarily exhibit malicious behavior,
nor violations of any terms of service. Indeed, such packages may
be dependencies of application code, for which the registry cannot
account (since they are not part of the registry itself). Instead, we
suggest that registry maintainers mark such packages as depre-
cated, as it is of increased likelihood to break any build that uses it
as a transitive dependency.

We suggest the metrics and thresholds above because they are

inspired by npm’s own policy for unpublishing a package from the
registry [23]. When a package meets those criteria, it is considered
ancillary to the operation of the npm infrastructure. We further note
that, like many other deprecation decisions, a package developer
can chose to update their package to avoid the notice or simply
ignore the warning with no penalty in functionality.
Require Confirmation: A user is most susceptible to the po-
tential confusion presented in Section 2.1 and Section 3.1 when
installing dependencies using npm install. In the common case
of installing a scoped package, if the user forgets to type the lead-
ing ‘@, then it is possible that they would unknowingly install an
external dependency. To prevent this, we recommend introducing
a confirmation step when installing an external dependency using
the npm install command. This step should warn the user that
they are about to install an external dependency and in the case
that the scoped package does exist on npm, should indicate that
the package name should be entered with a leading ‘@”. This should
greatly reduce the risk of a user mistakenly installing an external
dependency when they intended to install a scoped package.

6.2 Developer Mitigations

Our view is that external dependencies incur unique threats to
developers that rely on them. However, we note that many of the
worst outcomes from this feature can be mitigated through careful
package development. Below, we describe several features that
developers should consider as they target dependencies.

Package Bundling: The primary mitigation step that we encour-
age any package developer who must rely on an external depen-
dency to deploy is a feature provided by the npm protocol. This
feature, called package bundling, allows a package to copy all of
its dependency code into its tarball distribution. In this way, the
package is robust to package availability issues if the external de-
pendency is taken down, trojaned, or altered to serve malware
post-facto from an external url. Bundling comes with its own set
of additional burdens, as any update to the external package will



SCORED ’25, October 13-17, 2025, Taipei, Taiwan

not be propagated to the internal consumer. Nevertheless, bundling
is highly targeted: the developer may choose to specify that some
subset of their dependencies (such as the external dependencies)
should be bundled, while the rest of the dependencies should be
fetched at install time.

Internal Clone Packages: For the sake of completeness, we note
that a developer could choose to fork an external dependency and
upload their fork to the registry. We do not advocate for cloning a
package without providing a functional improvement, as doing so
may take credit from the original package author. However, we note
that many external dependencies seem to be non-functional code
bases that presumably can be improved upon by those developers
that rely upon them. Furthermore, many of the packages we found
outside of npm use permissive licensing that allow for forking,
and additionally, recent evidence suggests that such cloning is a
common practice in npm [39].

7 RELATED WORK

While a great deal of work has focused on the security of the soft-
ware supply chain in general, and on the security of npm in partic-
ular, we believe that the security impact and adoption of external
dependencies as they relate to supply chain security at a registry-
scale is under-studied. We describe some of the work most closely
related to our own below.

Registry-Scale Analysis: As described in Section 4, characterizing
an entire package ecosystem is challenging due to the scale of the
largest package registries. Several previous works have provided
registry-scale analyses, though they do so with different goals. Tay-
lor et. al. present a novel method of typosquatting detection across
the entire npm package set [37]. Whereas their work compared mul-
tiple packages by metadata within the registry, our work analyzes
packages within the registry for their relationships to dependencies
outside the registry. Wyss et. al. present a tool for detecting cloned
packages within all packages available on npm [39]. Like our work,
they operate at registry scale using a mirror-based analysis but use
it for a comparative analysis between packages.

Package Confusion: Previous works have identified the threat
of package confusion, i.e. the threat of an application developer or
package developer including the wrong package. Package confusion
may be encouraged by a malicious actor or may cause accidental
harms if the incorrect package is confused incidentally for the
correct one [22, 25, 29, 37, 40-42]. Our work extends this line of
work by noting that external dependencies can be an exacerbating
factor in package confusion, since the registry maintainer has less
control over takedowns of malicious packages. Furthermore, the
various means by which external packages can be specified present
another way that package confusion may occur.

Dependency Smells: Jafari et. al. characterizes several dependency
smells related to npm packages, including the use of external depen-
dencies [21]. Where a dependency smell is an issue pertaining to the
management and development of software. We expand the security
impact of external dependencies Jafari et. al describe, identifying
more attack vectors uniquely enabled by external dependencies. We
also provide analysis of the entirety of packages on npm, covering
a vastly larger dataset of packages.

Dominic Tassio, Elizabeth Wyss, Gael Salazar-Morales, Lorenzo De Carli, and Drew Davidson

Security of npm: The security of package managers, npm specifi-
cally, has been the subject of a large collection of works. Here, we
discuss some examples. Duan et. al. present a comparative frame-
work for analyzing package managers, including npm, and provide
an analysis pipeline to identify malicious packages [15]. The health
and security of the npm system relies on developers to follow best
practices when configuring their packages and applications, Kabir
et. al. investigates how these practices are followed [22]. How these
vulnerabilities in packages on npm manifest in applications has
been studied by Alfadel et. al. [8].

Other Ecosystem Solutions: Google’s Go programming language
features a unique method of package management. All dependen-
cies are initially decentralized and not found in a central registry [6].
The Go team has added a mirroring and indexing service to their
package management system [5]. This approach was analyzed by
Hu et. al. in their paper covering how vulnerabilities are addresses
in Go’s ecosystem [18]. Ultimately, the security mechanisms of Go
could serve as mitigation against some of the threats we describe
in npm.

Threat Vectors: A great deal of work has described some of the
threats that may be launched via the software supply chain, includ-
ing npm. These threats include research studies which detail the
importance of supply chain security and various forms of attack
against them [12, 15-17, 42]. Package-based supply chain secu-
rity has also been the subject of a number of popular news sto-
ries [32, 33, 38]. These works show the reality that packages can
be subverted (and are) attacked in practice, motivating our stance
that extending the root of trust outside of the registry’s domain
has negative security implications. Finally, we note that the ability
for a webserver to target particular segments of users, as pointed
out in Section 3, has been well-studied. A representative work is
Mansoori et al. which describes several means by which a site may
distinguish various traffic populations [26].

8 CONCLUSION

In this paper, we study the impact of allowing packages on npm to
depend on external dependencies. This feature allows a package to
specify a dependency that is served from a url outside the control
of npm. Our study characterized both the security impact and the
actual incidence of external dependencies.

On the security front, we observe that several attack vectors
that do not exist for internal package dependencies are enabled
when a package is served from another location. These threats
include taking advantage of developer confusion, changing the
code that is served to different clients (allowing targeted attacks
on particular developer populations), and evading auditing. Even
if the maintainer of an external dependency is benign, they may
become the target of denial-of-service attacks in which they are
unable to avail themselves of the resources of the registry’s web
infrastructure.

On the usage front, we find that the prevalence of external depen-
dencies is rare in practice. Overall, the proportion of packages using
external dependencies at all is quite scarce. Furthermore, more pop-
ular packages tend to avoid the use of external dependencies. Those
packages that do use external dependencies use them sparingly, and



Stepping out of Bounds: Security Impact of Allowing Packages on npm to Declare External Dependencies

that many of the most popular external dependencies are entirely
non-functional.

In summary, we conclude that there are potential security im-
pacts of allowing for external dependency usage on a package
registry. Given the infrequency of external dependencies, we note
that the security implications of their use may be underappreciated.
We also discuss a number of mitigation steps that can reduce the
security impact of external dependencies, particularly when used
by open-source package registries. These mitigation steps can help
to make the registry less vulnerable to the misuse of external de-
pendencies. We also discuss steps that a developer transitioning
away from external dependencies may use to reduce their negative
impact.

REFERENCES

(1]

[12

[13]

[14]

[15]

[16

[17]

[19]

[20

[n.d.]. Cannot upload with external dependency due to "Invalid value for re-
quires_dist" - Issue #9404 - pypi/warehouse. https://github.com/pypi/warehouse/
issues/9404

[n.d.]. Go Modules Reference - The Go Programming Language. https://go.dev/
ref/mod

[n.d.]. Specifying Dependencies - The Cargo Book. https://doc.rust-lang.org/
cargo/reference/specifying-dependencies.html

2021. Exec. Order No. 14028. https://www.federalregister.gov/documents/2021/
05/17/2021-10460/improving- the-nations-cybersecurity

2024. Go Module Mirror, Index, and Checksum Database. https://proxy.golang.
org/

2024. Managing Depdendencies - The Go Programming Language.
//go.dev/doc/modules/managing-dependencies

2024. uNetworking/uWebSocket.js: uWebSockets for Node.js back-ends. https:
//github.com/uNetworking/uWebSockets.js

Mahmoud Alfadel, Diego Elias Costa, Mouafak Mokhallalati, Emad Shihab, and
Bram Adams. 2020. On the Threat of npm Vulnerable Dependencies in Node.js
Applications. doi:10.48550/arXiv.2009.09019 arXiv:2009.09019.
Roberto Basile, Andrew, and Luke Karrys. 2024. scope | npm Docs.
//docs.npmyjs.com/cli/v11/using-npm/scope

Ethan Bommarito and Michael Bommarito. 2019. An Empirical Analysis of the
Python Package Index (PyPI). arXiv:1907.11073 [cs.SE] https://arxiv.org/abs/
1907.11073

Kirill Boychenko. 205. Go Supply Chain Attack: Malicious Package Exploits
Go Module... https://socket.dev/blog/malicious-package-exploits-go-module-
proxy-caching-for-persistence

Md Atique Reza Chowdhury, Rabe Abdalkareem, Emad Shihab, and Bram Adams.
2021. On the untriviality of trivial packages: An empirical study of npm javascript
packages. IEEE Transactions on Software Engineering 48, 8 (2021), 2695-2708.
Joseph Cox. 2022. Open Source Maintainer Sabotages Code to Wipe Russian,
Belarusian Computers. https://www.vice.com/en/article/open-source-sabotage-
node-ipc-wipe-russia-belraus-computers/

Alexandre Decan, Tom Mens, and Philippe Grosjean. 2017. An Empirical Compar-
ison of Dependency Network Evolution in Seven Software Packaging Ecosystems.
arXiv:1710.04936 [cs.SE] https://arxiv.org/abs/1710.04936

Ruian Duan, Omar Alrawi, Ranjita Pai Kasturi, Ryan Elder, Brendan Saltafor-
maggio, and Wenke Lee. 2020. Towards Measuring Supply Chain Attacks on
Package Managers for Interpreted Languages. doi:10.48550/arXiv.2002.01139
arXiv:2002.01139.

Robert J. Ellison, John Goodenough, Charles B. Weinstock, and Carol C. Woody.
2010. Evaluating and Mitigating Software Supply Chain Security Risks. (2010),
1158599 Bytes. doi:10.1184/R1/6573497.V1

Gabriel Ferreira, Limin Jia, Joshua Sunshine, and Christian Kastner. 2021. Con-
taining Malicious Package Updates in npm with a Lightweight Permission System.
In 2021 IEEE/ACM 43rd International Conference on Software Engineering (ICSE).
IEEE, Madrid, ES, 1334-1346. do0i:10.1109/ICSE43902.2021.00121

Jinchang Hu, Lyuye Zhang, Chengwei Liu, Sen Yang, Song Huang, and Yang Liu.
2024. Empirical Analysis of Vulnerabilities Life Cycle in Golang Ecosystem. In
Proceedings of the IEEE/ACM 46th International Conference on Software Engineering
(Lisbon, Portugal) (ICSE "24). Association for Computing Machinery, New York,
NY, USA, Article 212, 13 pages. doi:10.1145/3597503.3639230

Alex Hultman. 2024. Addressing Claims of Conspiracy to Commit Crimes under
the Computer Fraud and Abuse Act (CFAA). https://github.com/uNetworking/
uWebSockets.js/blob/master/misc/npm.md

Alex Hultman. 2024. uWebSockets.js — beware of slander, envious hypocrisy
& Manuel Astudillo. https://unetworkingab.medium.com/beware- of-tin-foil-
hattery-{738b620468¢c

https:

https:

[21

[22]

[23

™
=)

[25

[26

[27

o
&

[29

[30

(31]

(32]

(33]

(34]

[35

[36

[37

[38

[39

[40

[42

SCORED ’25, October 13-17, 2025, Taipei, Taiwan

Abbas Javan Jafari, Diego Elias Costa, Rabe Abdalkareem, Emad Shihab, and
Nikolaos Tsantalis. 2022. Dependency Smells in JavaScript Projects. IEEE Trans-
actions on Software Engineering 48, 10 (Oct. 2022), 3790-3807. doi:10.1109/tse.
2021.3106247

Md Mahir Asef Kabir, Ying Wang, Danfeng Yao, and Na Meng. 2022. How Do
Developers Follow Security-Relevant Best Practices When Using NPM Packages?.
In 2022 IEEE Secure Development Conference (SecDev). IEEE, Atlanta, GA, USA,
77-83. doi:10.1109/SecDev53368.2022.00027

Luke Karrys, Mayank Pathela, Michael Rienstra, Edward Thomson, Seryozha
Khachatryan, Talgat Sarybaev, and Demira. 2024. Npm | Unpublishing packages
from the registry. https://docs.npmjs.com/unpublishing-packages-from-the-
registry

Luke Karrys, Michael Rienstra, Myles Borins, and Edward Thomson. 2024. About
npm | npm Docs. https://docs.npmjs.com/about-npm

Piergiorgio Ladisa, Henrik Plate, Matias Martinez, and Olivier Barais. 2023. SoK:
Taxonomy of Attacks on Open-Source Software Supply Chains. In 2023 IEEE
Symposium on Security and Privacy (SP). IEEE, San Francisco, CA, USA, 1509-1526.
doi:10.1109/SP46215.2023.10179304

Masood Mansoori and Ian Welch. 2019. Geolocation Tracking and Cloaking of Ma-
licious Web Sites. In 2019 IEEE 44th Conference on Local Computer Networks (LCN).
IEEE, Osnabrueck, Germany, 274-281. doi:10.1109/LCN44214.2019.8990794
Mike McCready, Kyle Mitchell, Santoshraj2, Mottle, Hong Xu, s100, Uiolee, Chris-
tian OIiff, , Daniel Kaplan, Jan Sott, Gar, Francesco Sardone, P-Chan, Davide,
Darryl Tec, Rohan Mukherjee, and Luke Karrys. 2024. package.json | npm Docs.
https://docs.npmjs.com/cli/v10/configuring-npm/package-json

Eric Mutta, Nathan Fritz, and Luke Karrys. 2024. registry | npm Docs. https:
//docs.npmyjs.com/cli/v10/using-npm/registry

Shradha Neupane, Grant Holmes, Elizabeth Wyss, Drew Davidson, and
Lorenzo De Carli. 2023. Beyond Typosquatting: An In-depth Look at Package
Confusion. In 32nd USENIX Security Symposium (USENIX Security 23). USENIX
Association, Anaheim, CA, 3439-3456. https://www.usenix.org/conference/
usenixsecurity23/presentation/neupane

Julie Qiu and Roger Ng. [n. d.]. Supply chain security for Go, Part 2: Compromised
dependencies. https://security.googleblog.com/2023/06/supply-chain-security-
for-go-part-2.html

sandworm_alerts 2024. Issue Types | Sandworm. https://docs.sandworm.dev/
audit/issue-types

Ax Sharma. 2022. BIG sabotage: Famous npm package deletes files to protest
Ukraine war. https://www.bleepingcomputer.com/news/security/big-
sabotage-famous-npm-package-deletes-files-to- protest-ukraine-war/
https://www.bleepingcomputer.com/news/security/big-sabotage-famous-
npm-package-deletes-files-to-protest-ukraine-war/.

Ax Sharma. 2022. npm libraries "colors’ and ’faker’ sabotaged in protest by their
maintainer — What to do now? https://www.sonatype.com/blog/npm-libraries-
colors-and-faker- sabotaged-in- protest-by-their- maintainer- what- to-do-now
Ax Sharma. 2024. Devs flood npm with 15,000 packages to reward themselves
with Tea ’tokens’. https://www.sonatype.com/blog/devs-flood-npm-with-10000-
packages-to-reward-themselves- with-tea-tokens

socket_git_dep 2024. Git dependency - Alert - Socket. https://socket.dev/alerts/
gitDependency

socket_http_dep 2024. HTTP dependency - Alert - Socket. https://socket.dev/
alerts/httpDependency

Matthew Taylor, Ruturaj Vaidya, Drew Davidson, Lorenzo De Carli, and Vaibhav
Rastogi. 2020. Defending Against Package Typosquatting. In Network and Sys-
tem Security: 14th International Conference, NSS 2020, Melbourne, VIC, Australia,
November 25-27, 2020, Proceedings (Melbourne, VIC, Australia). Springer-Verlag,
Berlin, Heidelberg, 112-131. doi:10.1007/978-3-030-65745-1_7

Chris Williams. 2016. How one developer just broke Node, Babel and thousands of
projects in 11 lines of JavaScript. https://www.theregister.com/2016/03/23/npm_
left_pad_chaos/ https://www.theregister.com/2016/03/23/npm_left_pad_chaos/.
Elizabeth Wyss, Lorenzo De Carli, and Drew Davidson. 2022. What the fork?:
finding hidden code clones in npm. In Proceedings of the 44th International
Conference on Software Engineering. ACM, Pittsburgh Pennsylvania, 2415-2426.
doi:10.1145/3510003.3510168

Nusrat Zahan, Thomas Zimmermann, Patrice Godefroid, Brendan Murphy, Chan-
dra Maddila, and Laurie Williams. 2022. What are weak links in the npm
supply chain?. In Proceedings of the 44th International Conference on Software
Engineering: Software Engineering in Practice (Pittsburgh, Pennsylvania) (ICSE-
SEIP °22). Association for Computing Machinery, New York, NY, USA, 331-340.
doi:10.1145/3510457.3513044

Ahmed Zerouali, Tom Mens, Alexandre Decan, and Coen De Roover. 2022. On
the impact of security vulnerabilities in the npm and RubyGems dependency
networks. Empirical Software Engineering 27, 5 (2022), 107.

Markus Zimmermann, Cristian-Alexandru Staicu, Cam Tenny, and Michael Pradel.
2019. Smallworld with high risks: a study of security threats in the npm ecosystem.
In Proceedings of the 28th USENIX Conference on Security Symposium (Santa Clara,
CA, USA) (SEC’19). USENIX Association, USA, 995-1010.


https://github.com/pypi/warehouse/issues/9404
https://github.com/pypi/warehouse/issues/9404
https://go.dev/ref/mod
https://go.dev/ref/mod
https://doc.rust-lang.org/cargo/reference/specifying-dependencies.html
https://doc.rust-lang.org/cargo/reference/specifying-dependencies.html
https://www.federalregister.gov/documents/2021/05/17/2021-10460/improving-the-nations-cybersecurity
https://www.federalregister.gov/documents/2021/05/17/2021-10460/improving-the-nations-cybersecurity
https://proxy.golang.org/
https://proxy.golang.org/
https://go.dev/doc/modules/managing-dependencies
https://go.dev/doc/modules/managing-dependencies
https://github.com/uNetworking/uWebSockets.js
https://github.com/uNetworking/uWebSockets.js
https://doi.org/10.48550/arXiv.2009.09019
https://docs.npmjs.com/cli/v11/using-npm/scope
https://docs.npmjs.com/cli/v11/using-npm/scope
https://arxiv.org/abs/1907.11073
https://arxiv.org/abs/1907.11073
https://arxiv.org/abs/1907.11073
https://socket.dev/blog/malicious-package-exploits-go-module-proxy-caching-for-persistence
https://socket.dev/blog/malicious-package-exploits-go-module-proxy-caching-for-persistence
https://www.vice.com/en/article/open-source-sabotage-node-ipc-wipe-russia-belraus-computers/
https://www.vice.com/en/article/open-source-sabotage-node-ipc-wipe-russia-belraus-computers/
https://arxiv.org/abs/1710.04936
https://arxiv.org/abs/1710.04936
https://doi.org/10.48550/arXiv.2002.01139
https://doi.org/10.1184/R1/6573497.V1
https://doi.org/10.1109/ICSE43902.2021.00121
https://doi.org/10.1145/3597503.3639230
https://github.com/uNetworking/uWebSockets.js/blob/master/misc/npm.md
https://github.com/uNetworking/uWebSockets.js/blob/master/misc/npm.md
https://unetworkingab.medium.com/beware-of-tin-foil-hattery-f738b620468c
https://unetworkingab.medium.com/beware-of-tin-foil-hattery-f738b620468c
https://doi.org/10.1109/tse.2021.3106247
https://doi.org/10.1109/tse.2021.3106247
https://doi.org/10.1109/SecDev53368.2022.00027
https://docs.npmjs.com/unpublishing-packages-from-the-registry
https://docs.npmjs.com/unpublishing-packages-from-the-registry
https://docs.npmjs.com/about-npm
https://doi.org/10.1109/SP46215.2023.10179304
https://doi.org/10.1109/LCN44214.2019.8990794
https://docs.npmjs.com/cli/v10/configuring-npm/package-json
https://docs.npmjs.com/cli/v10/using-npm/registry
https://docs.npmjs.com/cli/v10/using-npm/registry
https://www.usenix.org/conference/usenixsecurity23/presentation/neupane
https://www.usenix.org/conference/usenixsecurity23/presentation/neupane
https://security.googleblog.com/2023/06/supply-chain-security-for-go-part-2.html
https://security.googleblog.com/2023/06/supply-chain-security-for-go-part-2.html
https://docs.sandworm.dev/audit/issue-types
https://docs.sandworm.dev/audit/issue-types
https://www.bleepingcomputer.com/news/security/big-sabotage-famous-npm-package-deletes-files-to-protest-ukraine-war/
https://www.bleepingcomputer.com/news/security/big-sabotage-famous-npm-package-deletes-files-to-protest-ukraine-war/
https://www.sonatype.com/blog/npm-libraries-colors-and-faker-sabotaged-in-protest-by-their-maintainer-what-to-do-now
https://www.sonatype.com/blog/npm-libraries-colors-and-faker-sabotaged-in-protest-by-their-maintainer-what-to-do-now
https://www.sonatype.com/blog/devs-flood-npm-with-10000-packages-to-reward-themselves-with-tea-tokens
https://www.sonatype.com/blog/devs-flood-npm-with-10000-packages-to-reward-themselves-with-tea-tokens
https://socket.dev/alerts/gitDependency
https://socket.dev/alerts/gitDependency
https://socket.dev/alerts/httpDependency
https://socket.dev/alerts/httpDependency
https://doi.org/10.1007/978-3-030-65745-1_7
https://www.theregister.com/2016/03/23/npm_left_pad_chaos/
https://www.theregister.com/2016/03/23/npm_left_pad_chaos/
https://doi.org/10.1145/3510003.3510168
https://doi.org/10.1145/3510457.3513044

	Abstract
	1 Introduction
	2 Background
	2.1 Support for External Dependencies
	2.2 Protections

	3 Security Impact
	3.1 Taxonomy of External Packages

	4 Registry Scale Analysis
	5 Evaluation
	5.1 Prevalence Within the npm Registry
	5.2 Prevalence within Individual Packages on npm
	5.3 Characteristics of External Dependencies

	6 Discussion
	6.1 Registry Recommendations
	6.2 Developer Mitigations

	7 Related Work
	8 Conclusion
	References

