
Spilling the Tea: Uncovering TEA Token Abuse in npm
Elizabeth Wyss
University of Kansas
Lawrence, KS, USA

ElizabethWyss@ku.edu

Lorenzo De Carli
University of Calgary

Calgary, CA
Lorenzo.DeCarli@ucalgary.ca

Drew Davidson
University of Kansas
Lawrence, KS, USA

DrewDavidson@ku.edu

Abstract
TEA tokens–an experimental cryptocurrency designed to incen-
tivize and reward high-impact contributions to open-source pack-
age ecosystems–launched an incentivized testnet in early 2024 and
is now preparing for a full release. At this moment, the repository-
wide impacts of TEA on open-source package ecosystems are criti-
cally understudied.

In this work, we conduct a measurement study on TEA token-
related packages across the entire npm repository, involving the
analysis of more than 3.8 million unique packages. From this study,
we identify 50,953 packages that are directly registered to claim TEA
tokens–in addition to 484,595 dependent packages, which indirectly
influence the reward mechanism of TEA–thus encompassing 13.8%
of the entire npm ecosystem.

However, further investigation revealed large swathes of TEA
token-related packages that serve no functional purpose–but rather
appear designed solely to illegitimately manipulate the reward
mechanism of TEA. Through heuristic-based filtering, we estimate
that up to 207,101 TEA token-related packages are illegitimate,
including 98.6% of the packages that are directly registered to
claim TEA tokens. It is our hope that this research raises broader
awareness and action against TEA token-related spam and abuse–
across open-source package ecosystems and the implementation of
TEA itself.
ACM Reference Format:
ElizabethWyss, Lorenzo De Carli, and DrewDavidson. 2025. Spilling the Tea:
Uncovering TEATokenAbuse in npm. In Proceedings of the 2025Workshop on
Software Supply Chain Offensive Research and Ecosystem Defenses (SCORED
’25), October 13–17, 2025, Taipei, Taiwan. ACM, New York, NY, USA, 9 pages.
https://doi.org/10.1145/3733827.3765527

1 Introduction
Open-source package ecosystems play a crucial role in modern
software development. By enabling developers to quickly fetch
and install modular software dependencies, package repositories
assist in streamlining the overall process of building software. As a
result, large communities of open-source developers and security
practitioners [1, 19, 20] have invested substantial time and effort
into the creation and maintenance of freely available and open-
source package software. Managing the health of these ecosystems–
and contending with package spam and malware at scale–is an
active research problem.

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 Interna-
tional License.
SCORED ’25, Taipei, Taiwan
© 2025 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-1915-8/2025/10
https://doi.org/10.1145/3733827.3765527

In an effort to reward package maintainers for high-impact
projects, the TEA Association [28] (stylized as ’tea’) is designing an
experimental cryptocurrency, based on their novel "Proof of Con-
tribution" consensus mechanism, which is aimed at quantifying the
impacts of open-source packages [11]. In essence, TEA tokens aim
to financially incentivize and compensate impactful contributions
to open-source package ecosystems. Such rewards are determined
primarily by a package’s total number of dependents (i.e., how many
other packages transitively depend on it) [27]. As of March 2025,
the tea protocol released its final incentivized testnet to the public
and is preparing for its full launch [29].

In spite of best intentions, the tea protocol [28] may inadver-
tently yield perverse incentives for spammers to manipulate pack-
age ecosystems for ill-gotten financial gains. Such spam and abuse
harms not only the tea protocol–but also the open-source ecosys-
tems that become flooded with significant waves of package spam.
This, in turn, poses negative security consequences for the broader
software supply chains that depend on these ecosystems–as pack-
age spam is demonstrated to contribute to issues such as package
confusion [16, 26]–in addition to burdening the workload of repos-
itory crawlers and indexers that perform critical security analyses.

We note that the tea Association directly acknowledges this po-
tential for spam and abuse, stating that they are actively tuning
defensive mechanisms aimed at preventing spammers from illegiti-
mately claiming rewards [27]. However, regardless of whether the
tea protocol’s reward mechanism effectively excludes spammers
(and regardless of whether the tea protocol is even adopted at large)
we emphasize that open-source package ecosystems–and the soft-
ware supply chains they enable–are still adversely impacted by any
package spam resulting from the tea protocol.

In this work, we seek to critically explore the repository-wide
impacts of the tea protocol [28], through a detailed quantitative anal-
ysis spanning the entire npm repository–the largest open-source
package ecosystem currently supported by the tea protocol [21].
However, realizing this research goal poses two key challenges.
First, is the massive scale of npm, which as of March 2025, hosts
more than three million unique packages and thus requires substan-
tial resources and effort to analyze at scale. The second challenge
is that legitimate packages need to be distinguished from package
spam that is intended to manipulate the tea protocol. As such, care-
ful data analysis and targeted classification techniques are needed
to fully understand the repository-wide impacts of the tea protocol.

We overcome these challenges through large-scale data analysis
over a synchronous mirror of npm that we have actively maintained
for more than five years–archiving packages in real time as they
are uploaded to the repository. Not only does this mirror enable us
to identify how the tea protocol has impacted the npm ecosystem
over time, it also allows us to catalog historical package takedowns

https://doi.org/10.1145/3733827.3765527
https://creativecommons.org/licenses/by-sa/4.0
https://creativecommons.org/licenses/by-sa/4.0
https://creativecommons.org/licenses/by-sa/4.0
https://doi.org/10.1145/3733827.3765527


SCORED ’25, October 13–17, 2025, Taipei, Taiwan Elizabeth Wyss, Lorenzo De Carli, and Drew Davidson

to assess whether repository maintainers are taking action against
any tea-related spam and abuse.

Utilizing our mirror of npm, we conduct a detailed analysis of
more than 3.8 million unique packages. This analysis uncovered
207,101 packages that appear to be illegitimately manipulating
the tea protocol, of which 93.8% are still live on the official npm
package registry and costing npm hosting resources. However, we
also record 328,447 seemingly legitimate packages that either di-
rectly registered to claim TEA tokens, or indirectly influence the
tea protocol by depending on one or more tea-registered packages.
Notably, we find only 7 highly popular packages1 that are directly
registered to claim TEA tokens; however, the recursive dependent
trees of these 7 packages account for the overwhelming major-
ity of seemingly legitimate tea-related packages–highlighting the
immensely interdependent nature of npm.

From our data, we construct a timeline of the tea protocol’s
influence across npm, and we explore characteristic features for dif-
ferentiating legitimate packages from spam aimed at manipulating
the tea protocol.

Overall, the contributions of our work are as follows:
• We conduct a measurement study of the tea protocol’s influ-
ence across the entire npm repository.

• We demonstrate metrics and heuristics that effectively distin-
guish tea-related spam and abuse from legitimate packages.

• We derive a timeline of releases and takedowns for packages
designed to artificially manipulate the tea protocol.

2 Background
This section provides key details that are essential to understanding
the tea protocol [28] and how it interacts with the npm repository.

2.1 The tea Protocol
Here, we describe the basic functionality of the tea protocol. To
register a package with tea and thus make it eligible to collect TEA
tokens, the package must first be registered on the official tea web
application [27]. This registration process requires one or more tea
accounts, connected to associated GitHub account(s) that own the
package being registered2. Upon successful registration, a tea.yaml
file is generated, which must then be added into the package’s file
tree–and validated on the official tea web application–before TEA
tokens may start being awarded to the package. As such, packages
that are eligible to generate TEA tokens are able to be identified by
the presence of a tea.yaml file.

For registered packages, TEA tokens are distributed on a daily
basis, proportional to a custom metric referred to as ’teaRank’ [11].
Although the precise implementation details of the teaRank algo-
rithm are not publicly known, the tea Association has stated that it
utilizes a logarithmic scale and is largely based on a package’s num-
ber of dependents [27]. Effectively, this means that every package
that (transitively) depends on one or more registered tea packages
increases its teaRank and thus indirectly influences the tea protocol.

1defined as garnering at least 100,000 weekly downloads
2Although package ownership on npm is controlled by an npm account, packages may
be linked to an associated GitHub repository via a field in their package.json metadata
file, which the tea protocol utilizes determine GitHub ownership for npm packages.

2.2 Spam Resistance
To defend against spam and abuse, the tea Association states that
they have implemented and are actively refining several spam-
resistance mechanisms, which are included in the teaRank algo-
rithm [11]. Once again, although precise implementation details are
not made public, the official tea documentation provides some high-
level information regarding the function of these defensive mech-
anisms [27]. The first mechanism relates to self-influence attacks,
wherein the owner of a high teaRank package creates superfluous
dependencies for their package in order to artificially inflate the
teaRank of those dependencies. To address self-influence attacks,
teaRank employs a parameter, 𝜅, which encapsulates the percent-
age of total influence that can be transferred from a package to its
dependencies, and then distributes that fraction of total influence
evenly across its dependencies.

The next mechanism concerns tree attacks, wherein a spammer
publishes large quantities of packages that transitively depend on
a tea-registered package in order to illegitimately boost its teaR-
ank. To combat tree attacks, the tea Association records and mon-
itors changes to the dependent tree width and depth for every
tea-registered package on a parameterized time period, represented
as 𝛿 [27]. However, it is unclear the extent to which a dependent
tree change is required to trigger this mechanism, nor the effective-
ness of this mechanism against an adaptive adversary who controls
their flow of package releases to emulate organic growth. Never-
theless, the tea protocol, and its spam resistance measures, are still
being developed and refined in anticipation of the tea protocol’s
full release [29].

For the aims of this work, we emphasize that tea-related spam
impacts not only the tea protocol–but also the npm package ecosys-
tem itself–as large quantities of spam packages occupy storage
resources, contribute to possible package confusion [16, 26], and
increase the workload of repository crawlers and indexers.

3 Overview
In this section, we outline the methodology of our repository-wide
investigation into the impacts of the tea protocol [28] across npm.

3.1 Description of tea Spam
This subsection provides a qualitative description of tea-related
spam that we encounter across the npm repository. We emphasize
that it is impossible to perfectly infer the intent behind tea-related
spam packages, as it may be the case that certain packages manip-
ulating the tea protocol are intended as stress tests, rather than
attempts at cryptocurrency exploitation. However, the focus of this
work lies in measuring tea-related spam–and its impacts across the
npm repository–regardless of intent.

For the purpose of our analysis, we consider tea-related spam
packages to be those devoid of any novel functionality (often any
functionality altogether), yet manipulate the teaRank algorithm [11]
via their dependency structure. Many of these packages appear
to be procedurally generated, employing common template file
structures and naming conventions. Listing 1 shows an excerpt of
a procedural package generation script, which we found residing
within a tea-related spam package identified by our analysis.



Spilling the Tea: Uncovering TEA Token Abuse in npm SCORED ’25, October 13–17, 2025, Taipei, Taiwan

function publishWithDelay() {
...
let pkgJson = fs.readFileSync("package.json");
let pkgData = JSON.parse(pkgJson);
let randomFruit = uniqueNamesGenerator({

dictionaries: [adjectives, animals, colors],
length: 2,

});

pkgData.name = `${randomFruit}_z3n`;

fs.writeFileSync("package.json",
JSON.stringify(pkgData));

...
exec("npm publish --access public")
...

}

Listing 1: Excerpt of procedural package genera-
tion script identified in tea-related spam package
beneficial_cougar_z3n

Broadly, we find two types of tea-related spam packages. First,
are the packages that directly contain a tea.yaml file, which are
used to claim TEA tokens. These packages tend to be first created
shortly after the release of the initial incentivized tea testnet in early
2024 [28]. Notably, we find these packages to have suspiciously high
dependent counts relative to their weekly download counts, often
accruing thousands of dependents despite having weekly download
counts below 350, which is the npm maintainers’ upper-bound
estimate of weekly downloads that can be attributed to bots and
crawlers alone [17].

The second category of tea-related spam packages are those
that depend on one or more of the packages that directly contain
a tea.yaml file. These packages often list dozens of package de-
pendencies, which are typically composed of a mixture of highly
popular npm packages and other tea-related spam packages. Some
of these packages also have additional tea spam dependents or
are interdependent with other tea spam packages. We also find
that tea-related spam dependent trees are often distributed across
numerous distinct npm accounts (which we further discuss in Sec-
tion 4.3), likely functioning as Sybil accounts for the authors of
the packages that are registered to claim TEA tokens. Such fea-
tures demonstrate deliberate attempts to manipulate the teaRank
algorithm by artificially inflating package dependent trees.

3.2 Research Questions
Based on our initial observations on the prevalence of tea-related
spampackageswith no legitimate functionality, we initiate a repository-
wide measurement study focused on the following research ques-
tions:

• RQ1: How many npm packages interact with the tea proto-
col, either directly or indirectly? To what extent are these
packages legitimate, or tea-related spam and abuse?

• RQ2: What are the key characteristics of tea-related spam,
and how do these packages differ from legitimate ones?

• RQ3: Are communities of spammers and/or Sybil accounts
responsible for tea-related spam and abuse?

4 Results
This section presents the findings of our repository-wide inves-
tigation into the impacts of the tea protocol [28] across npm, as
directed by our research questions. First, Section 4.1 explores the
overall scope of npm packages interacting with the tea protocol
and demonstrates techniques for distinguishing legitimate pack-
ages from spam and abuse. Then, in Section 4.2, we investigate key
characteristics of packages identified as likely tea spam and contrast
them against those identified as likely legitimate. Finally, Section 4.3
examines the authors behind packages identified as likely tea spam,
from which we derive distinct communities of spammers and their
Sybil accounts.

4.1 Classifying Tea Packages
In this subsection, we answer RQ1–by identifying npm packages
that interact with the tea protocol [28] and demonstrating tech-
niques for classifying these packages as either likely spam or likely
legitimate.

Our analysis is based on a snapshot of npm, captured on 3/17/2025,
which spans a total of 3,884,532 unique packages. Across this snap-
shot, we identify 50,953 packages that directly contain a tea.yaml
file and are thus eligible to generate TEA tokens.We note that the to-
tal scope of the tea protocol across npm is much larger than just this
set of packages that directly interact with it–since the tea protocol
rewards packages based on the number of other packages that de-
pend on them. To identify these dependent packages, we start from
our initial set of direct tea.yaml packages and recursively crawl the
package reverse dependency trees of our entire snapshot of npm
until the complete dependent trees of all tea-incorporating pack-
ages are extracted. This process uncovered an additional 484,595
packages that eventually depend on one or more tea.yaml packages,
bringing the total scope of the tea protocol across npm to 535,548
unique packages.

To accurately characterize the impacts of the tea protocol across
npm, it is crucial to distinguish legitimate packages using tea from
spammers seeking to manipulate the tea protocol for financial gain.
Figure 1a depicts the distribution of release dates for every npm
package in the complete tea dependent tree. The large spike of
package releases in early 2024 coincides with the initial launch
of the incentivized tea testnet [28] and appears to largely consist
of spammers attempting to exploit the tea protocol. To separate
spam and abuse from seemingly legitimate packages, we employ a
heuristic-based filter that captures key defining characteristics of
tea abuse. Our filtering criteria are as follows:

(1) Tea spam packages must be initially created on or after 2024.
This criterion serves primarily to filter out packages that
were created well before the initial release of the incen-
tivized tea testnet and thus are overwhelmingly likely to
be legitimate.

(2) Tea spam packages must accrue no more than 350 weekly
downloads. This figure represents the npm maintainers’



SCORED ’25, October 13–17, 2025, Taipei, Taiwan Elizabeth Wyss, Lorenzo De Carli, and Drew Davidson

(a) Entire Tea Dependent Tree

6/2025 9/2022 12/2019 3/2017 6/2014 9/2011
Package Release Date

0

5000

10000

15000

20000

Nu
m

be
r o

f P
ac

ka
ge

s

Release Date Distribution
for All Tea Packages

(b) Likely tea Spam Packages

6/2025 9/2022 12/2019 3/2017 6/2014 9/2011
Package Release Date

0

5000

10000

15000

20000

Nu
m

be
r o

f P
ac

ka
ge

s

Release Date Distribution
for Likely Tea Spam Packages

(c) Likely Legitimate tea Packages

6/2025 9/2022 12/2019 3/2017 6/2014 9/2011
Package Release Date

0

5000

10000

15000

20000

Nu
m

be
r o

f P
ac

ka
ge

s

Release Date Distribution
for Likely Legitimate Packages

Figure 1: Histograms depicting the distribution of package
creation dates for (a) all packages in the entire tea dependent
tree across npm, (b) the subset of packages identified as likely
tea spam, and (c) the subset of tea packages identified as likely
legitimate.

upper-bound estimate of weekly downloads that can be at-
tributed to bots and mirrors alone [17]. Hence, packages
below this threshold are likely never downloaded by real
users and extremely unlikely to have legitimate packages
depend on them.

(3) Tea spam packages either directly contain a tea.yaml file or
reside in the dependent trees of other tea spam packages.

To be classified as tea-related spam, a package must meet all
three of the filtering criteria. We apply this filter in two passes.
First, we recursively propagate our filter up the dependent trees of
tea-related packages (i.e., from a package to those that depend on
it), starting from the packages that directly contain a tea.yaml file
and match our filtering criteria. From this first pass, we flag 50,251
out of 50,953 packages that directly contain a tea.yaml file as likely
spam, and 149,106 out of 484,595 packages that eventually depend
on one or more tea.yaml packages as likely spam.

In our second pass, we reapply our filtering criteria to all tea-
dependent packages that share package authorship with any tea-
related spam packages identified in the first pass, as this secondary
pass helps to catch any edge cases in which dependency trees may
have been stealthilymanipulated (e.g., via dependency aliasing [14]).
From this second pass, we flag an additional 7,744 packages that
eventually depend on one or more tea.yaml packages as likely spam.
This brings the total quantity of likely spam packages identified to
207,101 out of 535,548 tea-related packages.

To visualize this data, see Figure 1. The distribution of package
creation dates for all tea-related packages is presented in Figure 1a,
the distribution for likely tea spam in Figure 1b, and the distribution
for likely legitimate tea-related packages in Figure 1c. We note that
the relatively constant distribution of likely legitimate packages in
Figure 1c is expected for typical package releases, which we obtain
by removing likely tea spam packages from the distribution of all
tea-related packages (Figure 1a). In other words, the tea-related
spam packages identified by our filter almost entirely account for
the anomalous spike of package releases observed in early 2024.
Thus, we believe our filter to be largely effective in separating waves
of tea-related spam from legitimate npm packages.
Summary of RQ1: We record 535,548 distinct npm packages that
interact with the tea protocol, representing a notable portion of
the npm repository. We estimate that 207,101 tea-related packages
are spam, which includes 98.6% of all packages that are directly
registered to claim TEA tokens. Despite this, a small number of high-
profile packages also appear to utilize the tea protocol as intended,
and these packages account for 327,745 unique dependents across
npm.

4.2 Characterizing Tea Spam
This subsection, guided by RQ2, explores key characteristics of tea
spam packages and contrasts them against legitimate packages, so
as to provide a deeper characterization of tea spam and abuse across
npm.
Dependency Trees: Dependency trees, and their overall structure,
provide useful insight into how spammers attempt to exploit the
tea protocol, and how this differs from typical package use. Figure 2
presents the dependency tree depth distribution for likely tea spam



Spilling the Tea: Uncovering TEA Token Abuse in npm SCORED ’25, October 13–17, 2025, Taipei, Taiwan

0 2 4 6 8 10 12
Position in Tea Dependency Tree

0

20000

40000

60000

80000

100000

Nu
m

be
r o

f P
ac

ka
ge

s
Dependency Tree Depth Distribution

 for Likely Spam Tea Packages

Figure 2: Histogram of dependency tree positioning for likely
tea spam packages. Note: a position of zero represents a pack-
age that directly contains a tea.yaml file, and a position of 𝑛
represents a package that is at most 𝑛 dependency relation-
ships removed from any package at position zero.

packages, and Figure 3 depicts the dependency tree depth distribu-
tion for likely legitimate tea packages. For likely tea spam packages,
there is a large number of packages that directly incorporate a
tea.yaml file, and most of their dependents directly depend on them.
We also observe a small number of long dependency chains (for
dependent tree depths of 15 and beyond, we find at most 13 distinct
packages per layer), the longest of which being a single chain of
dependent packages that runs 96 dependency relationships deep.

As for likely legitimate packages, we observe a small number of
popular packages that directly contain a tea.yaml file, with most
of their dependents centered around a tree depth of 4 dependency
relationships apart. Regarding the popularity of these packages, we
find only 7 npm packages that contain a tea.yaml file and garner
more than 100,000 weekly downloads (a threshold that represents
the top 16,300 npm packages, which together accrue more than
99% of all package downloads across npm [26]). We note that the
overall tree depth distribution of likely legitimate tea packages
appears to be caused by this small number of very popular package
dependencies, such as dotenv-expand and brace-expansion that
reside a few layers deep in the dependency trees of other highly
popular npm packages.

The characteristic differences across these distributions may
serve as a useful, but not definitive signal in distinguishing legiti-
mate packages from spam, as we find that observed spam dependent
trees are tightly focused on direct dependencies, whereas observed
legitimate dependency trees trend more towards slightly deeper
and seemingly normal distributions.
Code Complexity: Next, we explore code complexity as a metric
for characterizing tea spam versus legitimate packages–as we ex-
pect tea-related spam packages to contain lower-effort code, which
should be reflected in code complexity metrics. For our analysis,
we quantify code complexity using cyclomatic complexity [10],
a software metric that encapsulates the total number of linearly

0 1 2 3 4 5 6 7 8 9 10 11 12
Position in Tea Dependency Tree

0

20000

40000

60000

80000

100000

Nu
m

be
r o

f P
ac

ka
ge

s

Dependency Tree Depth Distribution
 for Likely Legitimate Tea Packages

Figure 3: Histogram of dependency tree positioning for for
likely legitimate tea packages. Note: a position of zero rep-
resents a package that directly contains a tea.yaml file, and
a position of 𝑛 represents a package that is at most 𝑛 depen-
dency relationships removed from any package at position
zero.

independent paths through a program, starting at a value of one
and increasing with program loops and branches.

To extract package-level cyclomatic complexity data, we utilize
the complexity-report package to recursively analyze the direc-
tories of every package in the entire tea dependent tree andmeasure
their total cyclomatic complexity. Figure 4 depicts the distribution
of cyclomatic complexity observed in likely tea spam packages,
and Figure 5 depicts the distribution of cyclomatic complexity ob-
served in likely legitimate tea packages. We find that likely tea
spam packages overwhelmingly exhibit a cyclomatic complexity of
one and show little variation or deviation from this value. Mean-
while, we find that likely legitimate packages appear to exhibit
a power-law-like distribution, starting at a cyclomatic complex-
ity of one and quickly tapering off into larger values. Although
the differences across these cyclomatic complexity distributions
are interesting at scale (and potentially distinguishing for values
greater than two, which are almost exclusively exhibited by likely
legitimate packages), we find that in most instances, cyclomatic
complexity is unreliable in distinguishing legitimate packages from
spam, as both groups are dominated by packages with a cyclomatic
complexity of one.

While the focus of our analysis is on tea-related spam, previous
work notes significant quantities of near-empty, placeholder, tem-
plate, and trivial packages [2, 3] across the npm repository, many of
which are effectively unused. As such, the large quantity of likely
legitimate packages with a cyclomatic complexity of one is an ex-
pected result of the extensive trivial packages observed in the npm
ecosystem.
File Tree Uniqueness: The file tree structure of packages may
also provide insights into the mass generation of spam packages.
Within the set of likely tea spam packages, we find that only 2.68%
have a unique file tree structure, whereas within the set of likely
legitimate tea packages, we measure that 73.64% have a unique file



SCORED ’25, October 13–17, 2025, Taipei, Taiwan Elizabeth Wyss, Lorenzo De Carli, and Drew Davidson

0 1 2 3 4 5 6 7 8 9 10
Cyclomatic Complexity

0

25000

50000

75000

100000

125000

150000

175000

Nu
m

be
r o

f P
ac

ka
ge

s
Cyclomatic Complexity Distribution

 for Likely Spam Tea Packages

Figure 4: Distribution of package-level cyclomatic complexity
for likely tea spam packages.

0 2 4 6 8 10 12 14 16 18
Cyclomatic Complexity

0

25000

50000

75000

100000

125000

150000

175000

Nu
m

be
r o

f P
ac

ka
ge

s

Cyclomatic Complexity Distribution
 for Likely Legitimate Tea Packages

Figure 5: Distribution of package-level cyclomatic complexity
for likely legitimate tea packages.

tree structure. Many of these non-unique file trees across likely
legitimate packages are once again the result of trivial packages [2,
3] observed across the npm repository, which are often composed
of just one or two JavaScript files spanning a handful of common
naming conventions and/or an assortment of common metadata
files. To further contextualize these percentages, we collect a control
sample of 500,000 randomly selected packages across our snapshot
of npm, and find that about half of these packages (49.00%) have a
unique file tree structure. Within our control sample, we observe a
lower percentage of unique file trees compared to our set of likely
legitimate packages. We find this smaller percentage to be a result
of various forms of package spam–as well as typical packages–
both being present within the control sample, in addition to the
overall larger size of the control sample increasing the chance
odds of collisions occurring. For comparison, every package in the
complete tea dependent tree, including both spam and legitimate
packages, makes for a comparable sample size of 535,548, and we
observe that only 47.21% of packages within this complete set have
a unique file tree structure. Ultimately, these results demonstrate

significant differences between the file tree structure of legitimate
npm packages and those identified as likely tea spam, which we
believe to be potentially useful in validating and/or tuning filtering
criteria for identifying tea-related spam and abuse.
Summary ofRQ2: Numerous characteristics distinguish tea-related
spam and abuse from legitimate packages at a population level, in-
cluding dependent tree structure, code complexity, and file tree
uniqueness. For classifying individual packages, we find that de-
pendent tree depth and file tree structure can provide useful but
not definitive insight, whereas cyclomatic complexity is only situa-
tionally useful in identifying a small subset of legitimate packages
that are highly complex.

4.3 Spammer Communities
In this subsection, we explore characteristics pertaining to the
authorship of tea packages and identify communities of tea-related
spammer accounts and their Sybils, as guided by RQ3.

First, we explore package author networks across our set of likely
tea spam packages and our set of likely legitimate tea packages.
We find a total of 5,442 unique author accounts are responsible
for the 207,101 identified likely tea spam packages. Conversely, we
find a total of 154,921 unique author accounts are responsible for
the 328,447 identified likely legitimate tea packages. Hence, likely
tea spam package authors publish, on average, nearly 18 times
more packages per npm account than likely legitimate package
authors. Regarding inter-group overlap, we find the sets of likely
tea spam package authors and likely legitimate tea authors to be
nearly bipartite, with only 30 npm accounts publishing packages
marked in both categories. While this small overlap may represent
some noise in our data, the overwhelmingly disjoint nature of tea
spam versus legitimate package authors provides reassurance that
our data is highly consistent.

Next, we investigate the presence of author communities and
their Sybil accounts behind packages identified as likely tea spam.
To accomplish this, we employ thewell-established Louvain commu-
nity detection algorithm [4], a graph-based heuristic that iteratively
identifies non-overlapping communities of nodes by optimizing for
maximal connectedness within communities and maximal disjoint-
ness across communities. To utilize this approach, we construct a
package author relation graph over our set of likely tea spam pack-
ages, where nodes represent individual npm accounts and edges
represent the total number of package-to-package dependency re-
lationships between different accounts. Effectively, this means that
employing the Louvain algorithm on this graph will identify the
most strongly connected groups of likely tea spam package authors,
based on whose packages depend on each other’s. From this graph,
the Louvain algorithm identifies 227 author communities and 637
isolated authors. Table 1.1 presents the ten largest of these com-
munities sorted by total authors, and Table 1.2 presents the ten
largest of these communities sorted by total packages. We observe
significant variation across community sizes and total packages
per community; however, when measured in isolation, each met-
ric appears to follow a power-law-like distribution. Overall, our
results demonstrate the presence of several large communities of
tea-related spammers and Sybil accounts that are behind a signifi-
cant portion of likely tea spam packages identified by our filter.



Spilling the Tea: Uncovering TEA Token Abuse in npm SCORED ’25, October 13–17, 2025, Taipei, Taiwan

1.1 Sorted by Total Authors
Rank Authors Likely Tea Spam Packages
10 90 194
9 106 2,015
8 135 591
7* 137 14,981
6* 157 38,064
5 164 1,865
4 168 1,421
3 186 1,153
2* 401 15,088
1 408 817

1.2 Sorted by Total Packages
Rank Authors Likely Tea Spam Packages
10 5 4,523
9 6 6,649
8 10 6,790
7 4 7,224
6 6 7,225
5 41 7,509
4* 137 14,981
3* 401 15,088
2 18 16,815
1* 157 38,064

Table 1: Top ten largest communities of likely tea spam pack-
age authors, sorted by total authors in the community (Table
1.1) and total number of packages published by the commu-
nity (Table 1.2). Note:* indicates a community that is present
in both top tens.

Summary of RQ3: Communities of spammers and Sybil accounts
are responsible for a large majority of identified tea-related spam
and abuse, with 88.3% of such packages belonging to a community
of npm accounts as found by the Louvain community detection
algorithm.

5 Discussion
In this section, we discuss auxiliary findings and implications of
this work.

5.1 Adoption of tea
Here, we discuss the current state of the npm repository, with re-
spect to the adoption of the tea protocol [28]. In its current testnet
stage, we find that only 0.04% of packages that garner more than
100,000 weekly downloads are directly registered with the tea proto-
col. These high-impact packages represent notable targets for tea to
attract, as they simultaneously are capable of generating the most
rewards and encouraging legitimate use of the tea protocol. De-
spite the current number of highly popular packages adopting tea
being small, the transitive dependents of these packages are wide-
reaching and span hundreds of thousands of packages indirectly

influencing the tea protocol and demonstrating its effectiveness in
benign settings.

Meanwhile, seemingly illegitimate packages account for 98.6% of
all npm packages that are directly registered with the tea protocol.
Although the contrast between legitimate and illegitimate adoption
may seem alarming, we emphasize that TEA is still in a testnet
stage, and the data gathered from this testnet is extremely valuable
for resolving issues prior to a full launch.

In spite of this, we highlight that independent of the tea protocol
itself, tea-related spam packages still pose concerns regarding the
overall health of the npm ecosystem, as they occupy storage capac-
ity, contribute to possible package confusion [16, 26], and increase
the bandwidth of crawlers and indexers scanning the repository.

5.2 Spam Resistance
In this subsection, we discuss potential mechanisms for hardening
against spam, both within protocols such as tea and across open-
source package ecosystems. In its current form, dependent trees
alone do not provide enough information to accurately flag all forms
of spam and abuse–particularly considering adaptive adversaries
that are capable of manipulating package publication traffic to
emulate natural dependent growth.

Rather, we recommend that a wider range of metrics be employed
to flag potential spam and abuse. Download counts may serve as a
simple sanity check when compared against transitive dependent
counts; however, we note that instances of download count manip-
ulation have also been observed in the npm repository [17]. Despite
this, adversarial emulation of natural growth is made significantly
more difficult as more and more metrics are monitored. Further,
associated GitHub repository metrics, such as stars, watchers, and
forks [5] may additionally serve as cross-references for indicating
real use, considering that the tea protocol requires an associated
GitHub repository to register a package in the first place.

Outside of popularity metrics, package code itself may assist
in identifying non-meaningful projects. Empty, template, and/or
procedurally generated packages that are registered to claim TEA
tokens could be caught and flagged at scale–perhaps via existing
code clone detection [33] or spam detection [23] techniques.

Moreover, we recommend that protocol designers, such as tea,
work directly with open-source ecosystem maintainers to report
flagged spam and mitigate negative externalities on package reposi-
tories. Expanding upon existing packagemetrics, protocol designers
would have access to additional information regarding their user-
base, linked repository accounts, and their registered packages.
Such data could be highly valuable, both in identifying spammers
and in propagating spam reports to relevant repository authorities.

In total, different spam resistance approaches constrain adver-
sarial behavior in different ways, and we ultimately recommend
that an ensemble of metrics and detection strategies be employed
to flag tea-related spam and abuse–both for securing protocols like
tea–and keeping open-source package ecosystems clean from spam.

6 Related Work
This section explores related works and contextualizes our findings
alongside existing research.



SCORED ’25, October 13–17, 2025, Taipei, Taiwan Elizabeth Wyss, Lorenzo De Carli, and Drew Davidson

6.1 Characterizing Package Ecosystems
Investigating the characteristics and impacts of open-source pack-
age ecosystems forms a large and active body of research [3, 7, 15,
32, 33, 36, 37]. Notable features identified by these works include
extensive interdependence between packages [13] and package
popularity distributions that are heavily skewed towards a tiny
fraction of packages that account for the overwhelming majority
of all package downloads [15, 26, 37]. Both of these features pose
implications for the tea protocol [28], as the dependent trees of
highly adopted packages exhibit exponential growth; moreover,
popularity metrics may assist in augmenting existing data sources
to identify spam and abuse.

Other works in this domain detail the existence of repository-
wide phenomena, such as the widespread presence and adoption
of trivial packages [2, 3], stealthily-forked packages that obscure
provenance information [33], or discrepancies between code pub-
lished to package ecosystems versus their associated GitHub repos-
itories [31].

Our work is unique in that it, to the best of our knowledge,
is the first study within academic literature to characterize and
measure repository-wide impacts of the tea protocol [28]. Further,
we believe that tea-related spam and abuse are a prominent, yet
critically under-studied, threat to the health and authenticity of
open-source package ecosystems.

6.2 Software Supply Chain Security
Also related to this work is the field of software supply chain secu-
rity, which explores the security implications of vulnerable and/or
malicious software dependencies [20]. Works in this domain of-
ten operate from a software development perspective–focusing on
the identification of key attack vectors [6, 8, 16, 22, 30, 38]and/or
proposing tools to solve or mitigate package security issues [9, 12,
13, 18, 24, 25, 34, 35].

Although we do not observe directly vulnerable or malicious
code being distributed by tea-related spam packages, abuse of the
tea protocol [28] represents a software supply chain-related finan-
cial security issue, which may constitute cryptocurrency fraud.
As such, this work provides a unique contribution to the greater
understanding of open-source software supply chains and their
widespread security implications.

7 Conclusion
This work explored the impacts of the tea protocol–and the exper-
imental cryptocurrency it distributes based on package contribu-
tions [28]–across the entire npm repository. We found that even a
small number of highly utilized packages adopting the tea protocol
expands its influence to hundreds of thousands of dependent pack-
ages. Further, we characterized spam and abuse of the tea protocol
across npm, uncovering more than 200,000 packages that likely
serve no functional utility, yet illegitimately manipulate the reward
mechanism of the tea protocol. It is our hope that this work raises
broader awareness and efforts to combat spam and abuse across
open-source package ecosystems as the tea protocol nears its full
launch.

References
[1] 2022. OpenSSF Scorecard. https://github.com/ossf/scorecard.
[2] Rabe Abdalkareem, Olivier Nourry, Sultan Wehaibi, Suhaib Mujahid, and Emad

Shihab. 2017. Why Do Developers Use Trivial Packages? An Empirical Case Study
on Npm. In ESEC/FSE 2017 (Paderborn, Germany). Association for Computing
Machinery, New York, NY, USA. doi:10.1145/3106237.3106267

[3] Rabe Abdalkareem, Vinicius Oda, Suhaib Mujahid, and Emad Shihab. 2020. On
the impact of using trivial packages: an empirical case study on npm and PyPI.
Empirical Software Engineering 25 (03 2020). doi:10.1007/s10664-019-09792-9

[4] Vincent D Blondel, Jean-Loup Guillaume, Renaud Lambiotte, and Etienne Lefeb-
vre. 2008. Fast unfolding of communities in large networks. Journal of Statistical
Mechanics: Theory and Experiment 2008, 10 (Oct. 2008), P10008. doi:10.1088/1742-
5468/2008/10/p10008

[5] Hudson Borges and Marco Túlio Valente. 2018. What’s in a GitHub Star? Un-
derstanding Repository Starring Practices in a Social Coding Platform. CoRR
abs/1811.07643 (2018). arXiv:1811.07643 http://arxiv.org/abs/1811.07643

[6] Kyriakos Chatzidimitriou, Michail Papamichail, Themistoklis Diamantopoulos,
Michail Tsapanos, and Andreas Symeonidis. 2018. Npm-miner: An infrastructure
for measuring the quality of the npm registry. In MSR 2018. IEEE, 42–45.

[7] Tapajit Dey and Audris Mockus. 2020. Deriving a usage-independent software
quality metric. ESE 25 (2020). doi:10.1007/s10664-019-09791-w

[8] Ruian Duan, Omar Alrawi, Ranjita Pai Kasturi, Ryan Elder, Brendan Saltaformag-
gio, and Wenke Lee. 2021. Towards Measuring Supply Chain Attacks on Package
Managers for Interpreted Languages. In NDSS 2021. Internet Society.

[9] Aurore Fass, Michael Backes, and Ben Stock. 2019. JStap: a static pre-filter
for malicious JavaScript detection. In Proceedings of the 35th Annual Com-
puter Security Applications Conference (San Juan, Puerto Rico, USA) (ACSAC
’19). Association for Computing Machinery, New York, NY, USA, 257–269.
doi:10.1145/3359789.3359813

[10] William Fetzner. 2021. What Is Code Complexity? What It Means and How to
Measure It. https://linearb.io/blog/what-is-code-complexity/

[11] Max Howell and Timothy Lewis. 2025. A Decentralized Protocol for Open-Source
Developers to Capture the Value They Create. https://docs.tea.xyz/tea-white-
paper/white-paper

[12] Cheng Huang, Nannan Wang, Ziyan Wang, Siqi Sun, Lingzi Li, Junren Chen,
Qianchong Zhao, Jiaxuan Han, Zhen Yang, and Lei Shi. 2024. DONAPI: Malicious
NPM Packages Detector using Behavior Sequence Knowledge Mapping. arXiv
preprint arXiv:2403.08334 (2024).

[13] Igibek Koishybayev and Alexandros Kapravelos. 2020. Mininode: Reducing
the Attack Surface of Node.js Applications. In RAID 2020. USENIX Association.
https://www.usenix.org/conference/raid2020/presentation/koishybayev

[14] Mike McCready, Kyle Mitchell, Santoshraj2, Mottle, Hong Xu, s100, Uiolee, Chris-
tian Oliff, , Daniel Kaplan, Jan Sott, Gar, Francesco Sardone, P-Chan, Davide,
Darryl Tec, Rohan Mukherjee, and Luke Karrys. 2024. package.json | npm Docs.
https://docs.npmjs.com/cli/v10/configuring-npm/package-json

[15] Suhaib Mujahid, Rabe Abdalkareem, and Emad Shihab. 2022. What are the
characteristics of highly-selected packages? A case study on the npm ecosystem.
doi:10.48550/ARXIV.2204.04562

[16] Shradha Neupane, Grant Holmes, Elizabeth Wyss, Drew Davidson, and
Lorenzo De Carli. 2023. Beyond Typosquatting: An In-depth Look at Package
Confusion. In 32nd USENIX Security Symposium (USENIX Security 23). USENIX
Association, Anaheim, CA, 3439–3456. https://www.usenix.org/conference/
usenixsecurity23/presentation/neupane

[17] npmjs.org. 2014. numeric precision matters: how npm download counts work
(accessed 02/2021). https://blog.npmjs.org/post/92574016600/numeric-precision-
matters-how-npm-download-counts-work.

[18] Marc Ohm, Felix Boes, Christian Bungartz, and Michael Meier. 2022. On the Fea-
sibility of Supervised Machine Learning for the Detection of Malicious Software
Packages. In Proceedings of the 17th International Conference on Availability, Reli-
ability and Security (Vienna, Austria) (ARES ’22). Association for Computing Ma-
chinery, New York, NY, USA, Article 127, 10 pages. doi:10.1145/3538969.3544415

[19] Marc Ohm and Charlene Stuke. 2023. SoK: Practical Detection of Software Supply
Chain Attacks. In Proceedings of the 18th International Conference on Availability,
Reliability and Security (Benevento, Italy) (ARES ’23). Association for Computing
Machinery, New York, NY, USA, Article 33, 11 pages. doi:10.1145/3600160.3600162

[20] Chinenye Okafor, Taylor R. Schorlemmer, Santiago Torres-Arias, and James C.
Davis. 2022. SoK: Analysis of Software Supply Chain Security by Establishing
Secure Design Properties. In SCORED. doi:10.1145/3560835.3564556

[21] OpenJS Foundation. 2024. npm. https://www.npmjs.com/.
[22] Brian Pfretzschner and Lotfi ben Othmane. 2017. Identification of Dependency-

based Attacks on Node.Js. In ARES.
[23] Mohammed Rasol Al Saidat, Suleiman Y. Yerima, and Khaled Shaalan. 2024.

Advancements of SMS Spam Detection: A Comprehensive Survey of NLP and ML
Techniques. Procedia Computer Science 244 (2024), 248–259. doi:10.1016/j.procs.
2024.10.198 6th International Conference on AI in Computational Linguistics.

[24] Adriana Sejfia and Max Schäfer. 2022. Practical automated detection of malicious
npm packages. In Proceedings of the 44th International Conference on Software

https://doi.org/10.1145/3106237.3106267
https://doi.org/10.1007/s10664-019-09792-9
https://doi.org/10.1088/1742-5468/2008/10/p10008
https://doi.org/10.1088/1742-5468/2008/10/p10008
https://arxiv.org/abs/1811.07643
http://arxiv.org/abs/1811.07643
https://doi.org/10.1007/s10664-019-09791-w
https://doi.org/10.1145/3359789.3359813
https://linearb.io/blog/what-is-code-complexity/
https://docs.tea.xyz/tea-white-paper/white-paper
https://docs.tea.xyz/tea-white-paper/white-paper
https://www.usenix.org/conference/raid2020/presentation/koishybayev
https://docs.npmjs.com/cli/v10/configuring-npm/package-json
https://doi.org/10.48550/ARXIV.2204.04562
https://www.usenix.org/conference/usenixsecurity23/presentation/neupane
https://www.usenix.org/conference/usenixsecurity23/presentation/neupane
https://blog.npmjs.org/post/92574016600/numeric-precision-matters-how-npm-download-counts-work
https://blog.npmjs.org/post/92574016600/numeric-precision-matters-how-npm-download-counts-work
https://doi.org/10.1145/3538969.3544415
https://doi.org/10.1145/3600160.3600162
https://doi.org/10.1145/3560835.3564556
https://doi.org/10.1016/j.procs.2024.10.198
https://doi.org/10.1016/j.procs.2024.10.198


Spilling the Tea: Uncovering TEA Token Abuse in npm SCORED ’25, October 13–17, 2025, Taipei, Taiwan

Engineering (Pittsburgh, Pennsylvania) (ICSE ’22). Association for Computing
Machinery, New York, NY, USA, 1681–1692. doi:10.1145/3510003.3510104

[25] Raphael J. Sofaer, Yaniv David, Mingqing Kang, Jianjia Yu, Yinzhi Cao, Junfeng
Yang, and Jason Nieh. 2024. RogueOne: Detecting Rogue Updates via Differential
Data-flow Analysis Using Trust Domains. In Proceedings of the IEEE/ACM 46th
International Conference on Software Engineering (Lisbon, Portugal) (ICSE ’24).
Association for Computing Machinery, New York, NY, USA, Article 101, 13 pages.
doi:10.1145/3597503.3639199

[26] Matthew Taylor, Ruturaj Vaidya, Drew Davidson, Lorenzo De Carli, and Vaibhav
Rastogi. 2020. Defending Against Package Typosquatting. In NSS 2020.

[27] tea Association. 2024. Docs. https://docs.tea.xyz/tea
[28] tea Association. 2025. tea. https://tea.xyz/.
[29] tea Association. 2025. Unlock the Value of Open Source: Join the Tea Revolution.

https://tea-xyz.webflow.io/sepolia
[30] Ruturaj K. Vaidya, Lorenzo De Carli, Drew Davidson, and Vaibhav Rastogi. 2019.

Security Issues in Language-based Sofware Ecosystems. CoRR abs/1903.02613
(2019). arXiv:1903.02613 http://arxiv.org/abs/1903.02613

[31] Duc-Ly Vu, FabioMassacci, Ivan Pashchenko, Henrik Plate, and Antonino Sabetta.
2021. LastPyMile: Identifying the Discrepancy between Sources and Packages.
In ESEC/FSE 2021. doi:10.1145/3468264.3468592

[32] Erik Wittern, Philippe Suter, and Shriram Rajagopalan. 2016. A look at the
dynamics of the JavaScript package ecosystem. In MSR.

[33] Elizabeth Wyss, Lorenzo De Carli, and Drew Davidson. 2022. What the Fork?
Finding Hidden Code Clones in npm. In ICSE 2022. doi:10.1145/3510003.3510168

[34] Elizabeth Wyss, Alexander Wittman, Drew Davidson, and Lorenzo De Carli. 2022.
Wolf at the Door: Preventing Install-Time Attacks in Npm with Latch. In ASIA
CCS ’22. doi:10.1145/3488932.3523262

[35] Nusrat Zahan, Thomas Zimmermann, Patrice Godefroid, Brendan Murphy, Chan-
dra Maddila, and Laurie Williams. 2022. What are Weak Links in the npm Supply
Chain?. In ICSE-SEIP 2022. doi:10.1145/3510457.3513044

[36] Ahmed Zerouali, Eleni Constantinou, Tom Mens, Gregorio Robles, and Jesus
Gonzalez-Barahona. 2018. An Empirical Analysis of Technical Lag in npm
Package Dependencies. doi:10.1007/978-3-319-90421-4_6

[37] Ahmed Zerouali, Tom Mens, Gregorio Robles, and Jesus M. Gonzalez-Barahona.
2019. On the Diversity of Software Package Popularity Metrics: An Empirical
Study of npm. In SANER 2019. doi:10.1109/SANER.2019.8667997

[38] Markus Zimmermann, Cristian-Alexandru Staicu, CamTenny, andMichael Pradel.
2019. Small world with high risks: A study of security threats in the npm
ecosystem. In USENIX Security 19.

https://doi.org/10.1145/3510003.3510104
https://doi.org/10.1145/3597503.3639199
https://docs.tea.xyz/tea
https://tea-xyz.webflow.io/sepolia
https://arxiv.org/abs/1903.02613
http://arxiv.org/abs/1903.02613
https://doi.org/10.1145/3468264.3468592
https://doi.org/10.1145/3510003.3510168
https://doi.org/10.1145/3488932.3523262
https://doi.org/10.1145/3510457.3513044
https://doi.org/10.1007/978-3-319-90421-4_6
https://doi.org/10.1109/SANER.2019.8667997

	Abstract
	1 Introduction
	2 Background
	2.1 The tea Protocol
	2.2 Spam Resistance

	3 Overview
	3.1 Description of tea Spam
	3.2 Research Questions

	4 Results
	4.1 Classifying Tea Packages
	4.2 Characterizing Tea Spam
	4.3 Spammer Communities

	5 Discussion
	5.1 Adoption of tea
	5.2 Spam Resistance

	6 Related Work
	6.1 Characterizing Package Ecosystems
	6.2 Software Supply Chain Security

	7 Conclusion
	References

