
Assessing Adaptive Attacks Against Trained
JavaScript Classifiers

Niels Hansen1, Lorenzo De Carli2, and Drew Davidson1

1 University of Kansas
2 Worcester Polytechnic Institute

Abstract. In this work, we evaluate the security of heuristic- and ma-
chine learning-based classifiers for the detection of malicious JavaScript
code. Due to the prevalence of web attacks directed though JavaScript
injected into webpages, such defense mechanisms serve as a last-line of
defense by classifying individual scripts as either benign or malicious.
State-of-the-art classifiers work well at distinguishing currently-known
malicious scripts from existing legitimate functionality, often by employ-
ing training sets of known benign or malicious samples. However, we
observe that real-world attackers can be adaptive, and tailor their at-
tacks to the benign content of the page and the defense mechanisms
being used to defend the page.
In this work, we consider a variety of techniques that an adaptive adver-
sary may use to overcome JavaScript classifiers. We introduce a variety
of new threat models that consider various types of adaptive adversaries,
with varying knowledge of the classifier and dataset being used to detect
malicious scripts. We show that while no heuristic defense mechanism
is a silver bullet against an adaptive adversary, some techniques are far
more effective than others. Thus, our work points to which techniques
should be considered best practices in classifying malicious content, and
a call to arms for more advanced classification.

1 Introduction

Developments in adversarial machine learning are deeply affecting the science
of computer security. In recent years, the research community has shown how
a variety of classification techniques are vulnerable to adversarial samples. An
adversarial sample is a malicious object—its type depending on the classification
task—which exhibits features causing a target classifier to misclassify it. Adver-
sarial samples apply naturally to a special form of classification in which there are
two categories: malicious and benign (we consider software defense frameworks
to be instances of classifiers in this regard, and we will use the term classifier to
refer to such systems throughout this work). By subverting the training sets of
security mechanisms to misclassify attacks as benign, adversarial samples have
been shown to be effective against such classifiers in several contexts [2].

The potential impact of adversarial samples is significant in the domain of
website protection. In this context, the task is to analyze each individual script,



2 N. Hansen et al.

particularly JavaScript, being served from a page. The analysis deems a script as
allowed if the script is legitimate content, or disallowed otherwise. The research
community has produced classification techniques that can (i) learn descriptive
features for benign and malicious JavaScript samples from a corpus, and (ii)
efficiently use these features to distinguish scripts from the two classes, so that
malicious scripts can be stopped before they are executed or served to the user.
A key benefit of these classifiers is that they do not need to have access to an
explicit whitelist of scripts, but can instead rely on heuristics or learned mod-
els. Indeed, such a classifier labels a script as benign as long as it is sufficiently
similar to other scripts that are known to be benign (and, in the case of some
classifiers, if it is sufficiently dissimilar from a script that it known to be ma-
licious). In other words, the power of the classifier comes from its ability to
learn general characteristics of benign code, and look for those characteristics
in unknown scripts. However, trained classifiers may misclassify a script with
malicious behavior but descriptive features similar enough to the benign train-
ing. An adaptive adversary may attempt to exploit this limitation by altering
an attack script to encourage misclassification.

The degree to which an adaptive adversary can succeed in forcing misclassi-
fication in the context of JavaScript has not been fully investigated. Although
previous work has been successful by proposing specific ways to mask malicious
scripts, more work is needed to understand the effect of factors such as the type
of classifier being attacked, the knowledge the adversary has about the benign
scripts, and the type of malicious content that the adversary wants to inject.
While the security literature presents various instances of adaptive attacks (e.g.,
[19, 9]), their effectiveness relative to each other has been understudied. In this
work, we analyze several forms of adaptive attacks, and evaluate their strength
against different styles of classifier. Our goal is to build a more complete charac-
terization of the landscape of threats faced by trained classifiers, and to better
characterize their ability to withstand various attempts at evasion. We consider
two types of classifiers, those that directly use a script’s syntactic structure for
classification, and those that use scalar features indirectly derived by the syn-
tactic structure. As representative and recently-proposed examples of classifiers,
we consider CSPAutoGen, which is a structural classifier [19], and JaSt, which is
a feature-based classifier [9]. We choose CSPAutoGen and JaSt for two reasons.
First, they both achieve near-0% false negative rate (against a non-adaptive ad-
versary), and they can be considered the state-of-art in malicious JavaScript
detection. Second, they are based on fundamentally different mechanisms, al-
lowing us to compare two distinct approaches to classification. Both approaches
use syntactic features derived from a script’s abstract syntax tree: CSPAutoGen
generates a whitelist of generalized ASTs served from a website, while JaSt uses
frequencies of n-grams extracted from ASTs to train a tree ensemble classifier
to distinguish between malicious and benign email JavaScript snippets.

A key insight of our paper is that the strength of an adaptive adversary
depends on his or her knowledge about the target. We present three threat
models, corresponding to attackers with different levels of knowledge about the



Assessing Adaptive Attacks Against Trained JavaScript Classifiers 3

target site. We also introduce three novel, domain-specific mimicry attacks: the
subtree editing mimicry attack, the gadget composition attack, and the script
stitching attack.
This paper makes the following contributions:

– We examine state-of-the-art algorithms for malicious JavaScript code detec-
tion, determining their vulnerability to mimicry attacks.

– We articulate a number of threat models for attacks against current syntax-
based JavaScript classifiers. These threat models both explore the design
space of attacks and highlight realistic adversarial capabilities.

– We identify three classes of adaptive attacks at the AST level: subtree editing,
script stitching, and gadget composition.

– We implement and evaluate the above attacks, characterizing their effective-
ness in realistic scenarios.

The rest of this paper is structured as follows. Section 2 provides background
on malicious JavaScript detection. Section 3 presents our characterization of
various threat models that correspond to our domain. Section 4 describes our
newly-discovered attack techniques, and Section 5 describes their implementa-
tion. Section 6 experimentally validates these attacks on a realistic JavaScript
corpus. Section 7 reviews related work, and Section 8 concludes the paper.

2 Problem Overview

There are a variety of attack scenarios in which automatic JavaScript classifica-
tion might be deployed. In order to focus the discussion on the case most com-
monly proposed in the literature, we consider the case of malicious JavaScript
code injected in a website or web application, and served to the web application’s
users. Such malicious code may have various goals, such as extracting information
from the webpages visited by the user, or downloading and executing additional
payloads. The first line of defense against these attacks is to prevent the code
from being added to the victim website. However—as recently demonstrated by
the outbreak of infections due to the MageCart attack code [16]—relying on
injection prevention alone is insufficient.

Due to the persistent vulnerability of web applications to code injection, the
security community has produced forms of defense-in-depth. The goal of these
defenses is to render injected JavaScript harmless. The most popular of such
solutions is the content security policy (CSP) - a set of directives that can be
added to a webpage to limit the set of scripts that can run in the context of that
webpage. Unfortunately, CSP has been plagued by a perceived lack of flexibility
and semantics that do not match the way web applications are developed in prac-
tice, and has seen limited adoption [3]. For these reasons, researchers have also
investigated heuristic- and machine learning-based classifiers that automatically
learn what scripts are acceptable on a webpage, and prevent anything that does
not fit the model from reaching the end-user. Those classifiers are our object of
study, and we discuss them next.



4 N. Hansen et al.

2.1 Existing Classification Approaches

Existing approaches to JavaScript classification cannot rely on an exhaustive list
of scripts to whitelist. Indeed, in many cases websites generate scripts dynami-
cally in a content-dependent manner, which means that the set of benign scripts
may potentially be infinite [19]. Instead, the classifier labels scripts as benign
if they are similar to a training set of benign scripts, which is usually a subset
of all of the benign scripts that may be served. Some tools also use a training
set of known attack scripts to serve as negative examples. These detectors are
necessarily approximate, and can incur both false positives and false negatives
during deployment. In order to be usable, automatic classifiers need to make
allowances to reduce both types of errors. In practice, tools have attempted to
recognize aspects of benign scripts that are characteristic of acceptable func-
tionality in order to reduce false negatives. To reduce false positives, they allow
some tolerances for similarity to a benign script. To illustrate these tradeoffs, we
describe our two representative classifiers.
CSPAutoGen [19] is a defense framework which aims at preventing execution
of malicious injected JavaScript code. Although (as the name implies), CSPAu-
toGen automatically generates Content Security Policies, it also includes a core
template-based algorithm recognizing and allowing benign scripts (for brevity’s
sake we refer to this algorithm as “CSPAutoGen”). CSPAutoGen automatically
learns a model of which scripts are benign using only a training set of allowed
sample scripts, for which it builds generalized templates that capture the struc-
ture of the benign script’s abstract-syntax tree (AST). At runtime, a client-side
library component of CSPAutogen determines whether each loaded script should
be allowed to run. This library parses the script under test, extracts its AST,
and checks for a match against a template. Ultimately, the framework consid-
ers a script to be benign if it has a template match, and malicious otherwise.
Based on its template behavior, we view CSPAutoGen as effectively solving the
benign/malicious script classification problem. To our knowledge, CSPAutoGen
is the most recent of classifiers based on the syntactic structure of scripts. As
such, CSPAutoGen is a good representative of structural classifiers. Although
it is intended to run with client and server components, its core algorithm can
be evaluated in a command-line batch mode through tooling included in its
open-source distribution.
JaSt [9] is representative of feature-based classifiers. It trains a random forest
classifier on a corpus of labeled benign and malicious scripts. Vectorization is
accomplished by computing the frequency of various n-grams in each script’s
AST. In order to reduce feature sparsity, only n-grams appearing in the evalua-
tion dataset are considered, and only n-grams of length ≤ 5 are considered.

2.2 Objectives and Challenges

Consider a classifier f : P → {M,B} mapping any JavaScript program p ∈ P
to one of two possible classes: malicious (M) or benign (B). Given a malicious
program pM s.t. f(pM ) = M , an adaptive attack is a transformation T (pM )



Assessing Adaptive Attacks Against Trained JavaScript Classifiers 5

which generates a second program p∗M which is functionally equivalent to pM
but f(p∗M ) = B.

There are two important points to note about our attacker’s goal. First, as
program equivalence is in general undecidable, care must be taken so that the
transformation T (pM ) = p∗M maintains the semantic effect of the original pM .
In practice, we use a weak form of program equivalence that postulate that two
programs are identical if, when run under the same conditions, they accomplish
the same security exploit. Second, the above formulation is different from the ones
traditionally used in adversarial machine learning [2, 25], which tend to stress
minimization of some notion of distance d(pM , p∗M ) in feature space. In fact, in
our case pM and p∗M can be arbitrarily distant as long as they are functionally
equivalent, and a good attack sample does not necessarily lie in the vicinity
of pM (intuitively, this is a consequence of syntactic features not being a good
proxy for program behavior and semantics).

3 Threat Models

A key contribution of our work is that we consider various ways in which an
adversary might attack a JavaScript classifier. These threat models are intended
to explore the range of scenarios that a website maintainer should consider when
evaluating defense measures against an adaptive adversary.

We note that a common capability shared by adversaries in all of our threat
models is the ability to inject an arbitrary script onto the target page. Thus, we
assume that the adversary is capable of bypassing any form of script sanitization
or input validation. While the ability to embed malicious content onto a benign
page is a strong capability for overall web security, it is exactly the threat model
in which malicious JavaScript classifiers operate: if a malicious script is never
embedded, the classifier is unnecessary. As noted in Section 2, these tools are
designed to be a last line of defense when input validation and sanitization has
failed. Furthermore, the prevalence of such attacks in the wild show that real
adversaries can and do hold the capability to inject content.

We differentiate our different threat models based on the knowledge that an
attacker has about the system that they are attempting to evade, as well as the
power of the system itself. In adversarial machine learning, the knowledge that
an attacker may have about a system is typically classified as knowledge about
the following aspects of the target system [2]:

– The dataset D upon which the classifier was trained. We note that it is
highly likely that the attacker will have at least partial knowledge of D,
because the adversary has interactive access to the website that they are
attacking. It is reasonable to assume that the classifier will be trained on
the benign scripts that it is serving, and those scripts are freely accessible
to the adversary, either by crawling the site or by recording the results of
reconnaissance sessions of browsing the target site. If D also include sample
malicious scripts, an attacker may attempt to replicate this by collecting
publicly-available JavaScript exploit datasets (e.g., [1]).



6 N. Hansen et al.

– The (weighted) feature set X that the classifier uses to determine syntactic
similarity between scripts. This information is valuable to an attacker, as
they may choose to mount their mimicry by prioritizing similarity to those
features that are most highly valued by the classifier.

– The learned model F that is used by classifier f to label a script as benign
or malicious. Implicit in the F is the style of classification used by f .

We articulate several threat models that correspond to various levels of knowl-
edge that the adversary has about the classifier under attack.

Scenario 1: Non-adaptive Attacker For the sake of comparison, we first con-
sider the case of an attacker with no knowledge of the target site. This attacker
essentially serves as a baseline for adaptive attacks: although the attacker may
attempt to obfuscate their malicious script to make it appear more benign, the
obfuscation must, by definition, be done without knowledge of what constitutes
a benign script in the context of the victim. The non-adaptive attacker threat
model constitutes limited evasion capabilities: the attacker has no access to the
dataset D, the learned model F , or the feature set X . Nevertheless, this attacker
is the one modeled (implicitly or otherwise) by most classifiers.

Scenario 2: Reconnaissance Attacker The next attacker that we consider
is designed to represent realistic capabilities for an attacker with regular access
to the target website. This attacker has the ability to observe the behavior of
pages on the victim site, including the ability to collect scripts embedded in the
site such as inline JavaScript, event handlers, and callbacks. This reconnaissance
phase allows the attacker to collect a partial dataset of benign scripts S ′B , which
were observed during interaction with the target. We assume that S ′B is nearly
a proper subset of SB , because we expect that the classifier will necessarily
be trained on the benign scripts that are served to the user (modulo minor
variations, such as those caused by dynamic scripts) in order to ensure the lowest
possible rate of false alarms. However, because the attacker only has access to the
data served from the pages visited during the reconnaissance phase, and makes
no attempt to make inferences about the target classifier through aggregate
observations on the scripts in S ′B , the attacker has no knowledge of F or X .
We believe that the reconnaissance attacker should be considered the minimal
bar for a classifier to address in order to be considered effective. For most web
sites and web apps, the target site will be publicly accessible, and therefore the
reconnaissance phase can be achieved by crawling public pages or by simply
collecting all scripts encountered during a regular browsing session on the target
site. We note any attacker that encounters a script classifier is likely to have
gone through a reconnaissance phase in the due course of finding a vulnerability
that allows for malicious content to be injected onto a page. As such, attacker
access to S′B should be expected.

Scenario 3: Classifier-aware Attacker The third attack scenario we con-
sider extends the capabilities of the reconnaissance attacker with (potentially



Assessing Adaptive Attacks Against Trained JavaScript Classifiers 7

partial) knowledge of the classifier being used to defend the target site. Because
of this access, we call the attacker in this threat model the classifier-aware at-
tacker. The classifier-aware attacker seeks to mount more sophisticated attacks
than the prior two threat models. Rather than being constrained to mimicry
of exactly those scripts that are observed during reconnaissance, the classifier-
aware attacker can construct a mimicry attack based purely on a notion of what
the classifier will accept. Note that the classifier-aware attacker is stronger than
the attacker in the previous two threat models. However, this attacker still repre-
sents a realistic set of capabilities. As noted in the previous scenario, the attacker
has interactive access to the target site. Thus, the attacker can build a surrogate
by training a classifier similar to the one used to protect the site on the set S′B

that was collected during reconnaissance. While a training set SM of malicious
scripts (only necessary for some classifiers) cannot be directly obtained from the
target, an attacker may build a surrogate S′M from public sources as discussed
above. In a typical attack scenario, it is unlikely that the attacker will have direct
access to F or to X . However, the attacker can make reasonable assumptions
about X based on training a surrogate classifier on S′B (and if necessary S′M ).
Furthermore, previous work on model inversion [10] has shown that interactive
attacker can gain significant details about the classifier (and indeed the underly-
ing model) by making repeated queries to the classifier. In this case, the attacker
can simply make naive attempts to inject content into the page and observe the
success of the attack. In doing so, they can likely infer the type of classifier F .
Coupled with the ability to train on the surrogate data, the attacker can likely
build a classifier which is quite close to that used by the site. We note that the
classifier-aware attacker represents a strong adversary. Nevertheless, we feel that
this model is important to consider if a classifier is to be relied upon in a real
deployment, and to assess the strength of a classification system.

4 Attacks

In this section, we introduce several types of adaptive attacks against JavaScript
classification. We ignore the non-adaptive, non-adversarial attacker (ref. Sec-
tion 3) as this is the attacker normally assumed by target classifiers [19, 9]. The
subtree editing and script stitching attacks are within the capabilities of a recon-
naissance attacker (ref. Section 3), while the gadget composition attack assumes
a classifier-aware attacker (ref. Section 3). We discuss each attack below.

4.1 Subtree Editing Mimicry Attack

The subtree editing mimicry attack assumes the attacker has partial knowledge
of the dataset D. In particular, the attacker knows a subset of the benign scripts
used for training, S ′B ⊆ SB . Consider a malicious script M the attacker wishes
to be classified as benign by the target classifier F . The core idea of this attack,
depicted in Figure 1a, is to find a benign script whose AST contains a subtree
which is isomorphic to the AST of M , and replace such AST with that of M .



8 N. Hansen et al.

t1

t2 t2

t3 t4

Malicious
script M

t0
t1t2

t3 t2

Concatenate a 
benign sample to M

S’B
(benign 

samples)

t1

t2 t2

t3 t4

AM:
AST of 

malicious 
script M

t1

t2 t2

t3 t4

t0
t1t2

t3 t2

Embed AM

in a benign 
sample

ti AST node of type i

S’B
(benign 

samples)

Prelim: Determine target feature vector T via 
analysis of classifier F (Note: F(T) = Benign)

2. Find gadget SD whose feature vector 
FSD minimizes || T – (FM + FSD)||2

Malicious script M

1. Compute feature 
vector FM of M

t1

t2

t4

3. Append SD  

to M

t5

t6 t6

Termination:
max #iterations 

reached, or 
iteration w/o 
improvement

(c) Gadget composition attack

(a) Subtree editing attack

(b) Script stitching attack

Fig. 1: Attacks discussed in this paper

More formally, let S ′B = {SB
1 , SB

2 , . . . , SB
n } be the set of benign scripts

present upon a target website, where each SB
i induces AST Ai. The attack seeks

to inject a malicious script SM onto the page with an AST indistinguishable
from some Aj . If the attack succeeds, then the matching defense must either
mark both SM and SB

j as benign, or mark both SM and SB
j as malicious. The

attack takes part in two phases:

– Phase I: Let M be a JavaScript snippet that realizes the attacker’s goal,
and let AM be the AST for M . Note that M need not be a self-contained
JavaScript program. Find a benign script SB

j ∈ S ′B s.t. its AST Aj is iso-

morphic to AM . In the most basic formulation of the attack, AM needs only
exhibit a subtree isomorphism to a subtree K of SB

i . However, the search
for a satisfying K can be subject to additional constraints if the web defense
mechanism employs extra attributes in script matching. For example, the
search for K may also require that nodes of K exhibit the same AST type as
AM . In practice, requiring ASTs AM and Aj to be isomorphic may make it
impossible to find viable benign host scripts. For that reason, our approach
allows benign candidates that are similar to, but not exactly isomorphic to
AM . This is accomplished by requiring that, for a viable candidate benign
AST Aj , TED(Aj , A

M ) < DT , where TED computes the tree-edit distance,
and DT is an arbitrary threshold.

– Phase II: Create a new script SM by replacing the code represented by K
in SB

j by M .



Assessing Adaptive Attacks Against Trained JavaScript Classifiers 9

While we were completing our analysis of subtree editing , we became aware
of HideNoSeek, a similar attack due to Fass et al. [8]. The two algorithms
are based on the same principle (replacing subsections of the AST), although
they differ significantly in their approach. Differently from the attack described
here, HideNoSeek requires exact matching but can perform swaps against non-
contiguous sequences of statements. Given these considerations, we believe high-
level conclusions drawn from the analysis of our attack qualitatively apply to
HideNoSeek too. We defer a full quantitative evaluation to future work.

4.2 Script Stitching Mimicry Attack

While subtree editing generates scripts that are, feature-wise, virtually indis-
tinguishable from benign ones, it relies upon the existence of a suitable benign
host script within a targeted website, which may not always exist. In practice,
we found that for certain classifiers simpler forms of mimicry, which relax the
reliance on the existence of suitable host scripts, are sufficient.

Like the subtree editing attack, the script stitching attack (summarized in
Figure 1b), assumes partial knowledge of the training dataset D. In particular,
it is sufficient to have access to a subset S ′B ⊆ SB of benign samples used for
training (which in the domain of interest can typically be obtained by crawling
the target website).

Let S ′B = {SB
1 , SB

2 , . . . , SB
n } ∈ SB be the set of benign scripts available to

the attacker, and M a JavaScript snippet that realizes the attacker’s goal. In a
script stitching attack, the attacker randomly select a benign script SB

C ∈ S ′B
and generate an adversarial sample SM = M · SB

C , i.e. she concatenates the
selected benign script to the malicious code. Although this attack is simple,
in Section 6 we show that a script generated with this approach can bypass a
state-of-the-art classifier.

4.3 Gadget Composition Mimicry Attack

One limitation of script stitching is that it does not provide guidance to the
attacker in selecting benign scripts in a manner that maximizes the probability
of success. This limitation is unavoidable if the attacker does not have knowledge
of the classifier model F . However, in some cases it may be possible to gain
such knowledge, e.g. by training a model on a surrogate dataset. In this case,
the model can offer guidance on selecting appropriate transformations to the
malicious code M to increase the probability of success. We leverage this insight
for the gadget composition attack, depicted in Figure 1c. This attack assumes
knowledge of the model F , and specifically of (i) ranking of features by their
importance (e.g. using Gini importance), and (ii) full or partial knowledge of
the values of such features should achieve for a sample to be classified as benign
(this can be inferred by repeatedly querying a model, or using model-specific
attacks such as the one by Kantchelian et al. [17] for random forests). Assume
the attacker has access to the set of N highest-ranked features for F , and define
FS as the vector containing the values of such features for a given script S.



10 N. Hansen et al.

Furthermore, assume the attacker is able to produce a target vector T containing
values of features in H that cause a script to be classified as benign with high
probability. Finally, assume the attacker has a dictionary D of gadgets, i.e. self-
contained snippets of JavaScript code. Given a malicious snippet M , at every
iteration, this attack “grows” M by appending the gadget SD ∈ D whose feature

vector FSD

minimizes ||FB − (FM +FSD

)||2. In other words, at every iteration
the attack chooses the gadget SD that brings the concatenation M · SD closest
to the target T (according to the Euclidean distance), and then updates M to
M · SD. Note that D does not have to be limited to the corpus SB of benign
scripts for the domain, and indeed does not even have to contain any such scripts.
This makes the attack also viable for the case where the attacker has access to
the target model F but not the training dataset D (which is only relevant from
a theoretical point of view, because in our domain of interest building D can
trivially be achieved by crawling the victim website.)

4.4 Correctness

An important question is whether the generated adversarial code successfully ex-
ecutes the exploit. Script stitching concatenates two valid programs, generating
code which is syntactically correct by construction. Similarly, gadget composition
grows a script by adding syntactically correct program snippets. We empirically
verified syntactic correctness by parsing each stitched script; this resulted in only
a handful of corner cases being discarded. We note that both operations may
still introduce semantic inconsistencies (e.g., variable aliasing); however, due to
the dynamic nature of JavaScript interpretation, any such issue will cause an
error after the malicious code has been executed. For subtree editing, we parse
each generated script to ensure syntactic correctness. We also manually checked
a number of generated samples and determined that the script would indeed ex-
ecute up to the entrypoint of the malicious code. We note that all methods can
generate multiple adversarial samples from a single malicious one, maximizing
the probability of obtaining one or more working scripts.

The only tricky point concerns the generation of the gadget dictionary D for
the gadget composition attack. In our experiments, we generated such dictionary
by randomly extracting 250,000 AST subtrees, ranging in size from 1 to 100
nodes, from our script dataset (ref. Section 6). To reduce the chance of breaking
JavaScript semantic by concatenating malformed gadgets, when mining gadgets
the algorithm only considers AST subtrees whose root node can appear as child
of the AST root node type. The set of suitable AST node types is automatically
learned by analyzing the structure of scripts in the JavaScript dataset.

5 Implementation

In order to generate the script corpus used for our evaluation (Section 6), we
adapted the web scraper open-sourced by the CSPAutoGen project [19]. This
scraper crawls a list of target websites, saving extracted JavaScript snippets



Assessing Adaptive Attacks Against Trained JavaScript Classifiers 11

0 10 20 30
Script

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

. r
at

e 
ac

ro
ss

 d
om

ai
ns

(a) Script stitching attack

0 25 50 75 100
Script

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

. r
at

e 
ac

ro
ss

 d
om

ai
ns

(b) Gadget composition attack

Fig. 2: Success rate of each script against JaSt for different attacks

into a MongoDB instance. For convenience, we used the same approach to store
adversarial scripts generated by our attacks; all of our attack tools store their
output as MongoDB collections.

The components implementing our subtree editing attack (ref. Section 4.1)
and the dictionary generation for our gadget composition attack (Section 4.3)
were implemented as a set of Java classes totaling 7222 lines of code. This code-
base also includes a suite of AST analysis tools by Falleri et al. [7], which we used
for their efficient implementation of tree-edit distance computation. Internally,
our program analysis routines leverage Java’s Nashorn JavaScript parser. Inter-
estingly, Nashorn defines a set of AST node types which is both quantitatively
and qualitatively different from that defined by Esprima, which is the parser
used by the JaSt classifier for feature computation. However, we found that this
fact does not prevent isomorphic scripts generated by our tool to be effective
against JaSt. This observation suggests that the effectiveness of this attack may
not depend on the specific choice of AST-based features, instead reflecting an
inherent fragility of such features in general. The script-stitching attack (Sec-
tion 4.2) and gadget composition attacks were implemented as suite of Python
tools totaling ∼300 lines of code.

In order to evaluate the performance of CSPAutoGen [19] and JaSt [9] in
identifying malicious JavaScript code, we used the respective implementations
open-sourced by their authors.

6 Experimental Evaluation

In this section we evaluate the robustness of two state-of-the-art techniques
for malicious JavaScript detection, CSPAutoGen [19] and JaSt [9]. We aim to
answering the following questions:

1. Are the attacks identified in this paper effective in generating ad-
versarial scripts? Section 6.3 shows that subtree editing, script stitching,



12 N. Hansen et al.

Dataset #Domains #Scripts Avg script len [char]

Benign 306 35632 2763

Malicious N/A 1327 5068

Table 1: JavaScript dataset summary

and gadget composition can generate adversarial scripts that go undetected
by JaSt and CSPAutoGen between 3% and 47% of the cases, depending on
the combination of classifier and attack method.

2. What is the degree to which different domains are vulnerable to
adversarial JavaScript samples? Our analysis in Section 6.4 shows that
a per-domain JaSt classifier would be vulnerable to one or more attack script
in 96% of the domains under consideration. A CSPAutoGen classifier would
be vulnerable for 27% of the domains.

3. Does knowledge of classifier model lead to the creation of more
effective adversarial scripts compared to knowledge of training
dataset alone? Section 6.5 shows that knowledge of the model leads to
a small but significant increase in the number of successfully obfuscated
scripts (45 additional adversarial variants across 50 domains).

6.1 Dataset and Infrastructure

To extensively evaluate the robustness of the target classifiers, we randomly
selected 300 websites from Alexa’s Top-500 and crawled them as described in
Section 5. To ensure a realistic corpus of malicious JavaScript snippets, we used
a publicly-available collection by the security collective GeeksOnSecurity [1].
Both datasets (benign and malicious) are summarized in Table 1. Our tooling
and implementation are described in Section 5. We ran all experiments on a
MacBook Pro laptop with a quad-core 2.6Ghz Intel Core i7 CPU, 16GB of
RAM, and 500GB of storage. The laptop runs MacOS Mojave 10.14.

6.2 Baseline Classifier Performance

JaSt: In order to evaluate the best-case performance of JaSt in the absence of
adaptive adversarial samples, we trained it on 303 domains from our dataset
(the remaining 3 domains triggered bugs in the classifier code which prevented
their evaluation). In each instance, we used all the scripts scraped from a domain
as the benign dataset, and our collection of malicious scripts as the malicious
dataset. We first used the same dataset for training and evaluation, asking JaSt
to re-label each script on which it was trained. JaSt performs consistently well
in this experiment, achieving on average 0% false negatives (evasion rate)
and a 2.3% false positives (false alarm rate) across all domains.

Since assuming that JaSt has access of the entirety of both the benign and
malicious script sets of interest is unrealistic, we also performed a round of



Assessing Adaptive Attacks Against Trained JavaScript Classifiers 13

experiments where we split the dataset in disjoint training and evaluation subsets
using 10-fold cross validation. This results in a 0.5% evasion rate and a 6%
false alarm rate.
CSPAutoGen: We generated CSPAutoGen templates for each of 227 domains.
We could not test the remaining 79, as the current implementation of CSPAu-
toGen crashes while processing their scripts. Since CSPAutoGen generates tem-
plates using benign scripts exclusively, no malicious script was used for training.
We then used CSPAutoGen to analyze each script in the training corpus, and
all the scripts in the malicious corpus. CSPAutoGen achieves on average 0.06%
evasion rate and a 1.5% false alarm rate across all domains. Splitting the
dataset in training and evaluation and performing 10-fold cross-validation results
in 0.06% evasion rate and 11% false alarm rate.
Discussion: Although the evasion rate remains negligibly low for both classi-
fiers, both suffer from a somewhat high false alarm rate. This is a significant
hurdle to deployment, as even a handful of false positives may disrupt website
functionality. Even when using the same dataset for training and evaluation,
we note that both classifiers present occasional significant deviations from the
false alarm average. This results in extremely high false alarm rates for some do-
mains. For JaSt, these occurrences mostly occur for pathological domains where
the scraper could only successfully extract a few scripts. The most extreme case is
theglobeandmail.com, which only includes 2 benign scripts, both misclassified,
giving a 100% false positive rate. CSPAutoGen occasionally exhibits unaccept-
ably high false positive rate even for domains for which a significant amount of
data is available. For example, CSPAutoGen misclassifies 29 of the 70 benign
scripts scraped from 360.cn, yielding a false positive rate of 41%.

6.3 Evaluation of Attacks

Attacks Setup To launch subtree editing and script stitching attacks for a
given domain, we simply attempted to combine each malicious script of interest
with each benign script in the domain, according to each attack’s semantics.
This involves attempting to perform a suitable tree-swap in subtree editing - we
include each distinct point of the benign script at which an attack can be injected
as a separate sample. For script stitching, combination consists of concatenating
the given attack script and the target benign one. The tree-edit distance thresh-
old for subtree editing was set to 20.3 For gadget composition, we mutated
each malicious script towards a target feature vector by adding gadgets from
the dictionary described in Section 4.4. We generate the target feature vector
by extracting the highest-ranked (by feature importance) 35 features from each
model, and computing the average value of each feature across the benign scripts
for that domain. We note that this is a rather crude way to generate adversarial
feature vectors, however it serves as a lower-bound on attack effectiveness.

3 Experimentally, we determined that increasing the maximum tree-edit distance
above 20 results in a sharp increase in the detection rate for the generated sam-
ples. This applies to both classifiers in our examination.



14 N. Hansen et al.

0 100 200 300
Domain

0.0

0.2

0.4

0.6

0.8

1.0
Ev

as
io

n 
ra

te

(a) Evasion rates on JaSt

0 50 100 150 200
Domain

0.0

0.2

0.4

0.6

0.8

1.0

Ev
as

io
n 

ra
te

(b) Evasion rates on CSPAutoGen

Fig. 3: Evasion rates for subtree editing attack

Attacks against JaSt While the performance of our current toolchain is prac-
tical for attack generation (see Section 6.7), the unoptimized nature of the code
and the file-based interface used for some operations result in high sample gen-
eration times for some combinations of attacks/domains. To keep experiment
times manageable, we used different randomly selected sets of malicious scripts
in each attack: 1291 malicious scripts for subtree editing, 34 for script stitching,
and 100 for gadget compositions. For gadget composition, we also limited the
number of considered domains to 100. Figure 2 depicts, for each malicious script,
the number of domains for which the corresponding JaSt classifier is vulnerable.
We consider a domain to be vulnerable to a script if one or more adversarial vari-
ants of that script successfully go undetected. Figure 2a depicts the results for
script stitching, and Figure 2b for gadget composition. On average, script stitch-
ing results in a 15% evasion rate (considering adversarial scripts only) across
domains. Gadget composition achieved 47% evasion rate across domains.

In practice, the low evasion rate result for script stitching is misleading as
the attack generates numerous variants of each malicious script; even if most
of those variants are not successful, the attack is still effective when at least
one working variant is found. Indeed, on average script stitching can generate
at least one successful adversarial variant for 68% of all considered scripts. The
percentage is 46% for gadget composition (note that gadget composition only
generates one variant per script per domain, so this result is identical to the
evasion rate above.)

We do not plot per-script results for subtree editing as that attack only
generates successful adversarial samples from 8 scripts out of 1291. 7 of these
scripts generate one or more samples for 237 (out of 304) domains, and 1 for
236 domains. The set of vulnerable domains is the same for each script. On
aggregate, this attack achieves 46% evasion rate across domains against JaSt.
Figure 3a shows evasion rate per domain for subtree editing.



Assessing Adaptive Attacks Against Trained JavaScript Classifiers 15

Attacks against CSPAutoGen To analyze the robustness of CSPAutoGen to
adversarial samples, we only considered the subtree editing attack. By construc-
tion, CSPAutoGen looks at the structure of the AST itself and not at feature
counts, therefore feature-based attacks like stitching and gadget composition are
largely ineffective (moreover, access to a set of CSPAutoGen templates does not
provide useful guidance for the gadget composition attack). The price for this
increased robustness is the high false positive rate highlighted in Section 6.2.

Figure 3b shows the evasion rate per domain for this attack. Overall, this
attack achieves 3.1% evasion rate across domains against CSPAutoGen. Note
that this value, and the evasion rates shown in Figure 3b, are likely to underes-
timate the attack effectiveness. The implementation of CSPAutoGen appears to
have a bug that occasionally results in partial crash and a reported evasion rate
of 0% for some domains.

Number of Variants We now consider the overall number of successful vari-
ants generated by each method, i.e., the number of malicious scripts that success-
fully get misclassified as benign by the victim classifier. For the attacks against
JaSt, we found, on average 891 working attack variants per domain using sub-
tree editing, 606 using script stitching, and 47 using gadget composition. For
CSPAutoGen, subtree editing generated on average 43 successful variants per
domain. While the ability to generate even a single working variant per domain
is troubling, these numbers indicate a highly-effective set of attacks.

6.4 Per-domain Analysis

Given that the attacks above prove to be effective in a significant percentage
of cases, we move to looking at how these attacks affect different domain. We
first evaluated JaSt. We only consider the 34 attack scripts and 49 domains on
which we executed all attacks in our evaluation. Figure 4a plots the cumulative
distribution of the number of adversarial scripts per domain which go undetected
by JaSt. In this case, we aggregate scripts produced by all three attack methods.
Overall, 47 out of 49 domains (96%) are vulnerable to one or more attacks.
The maximum number of working attack scripts per domain is 16515.

We then performed the same evaluation for CSPAutoGen; in this case we only
considered the subtree editing attack. Our data cover 227 domains. Figure 4b
plots the cumulative distribution of number of working attack scripts per domain.
Overall, 62 out of 227 domains (27%) are vulnerable to at least one attack
script. The maximum number of working attack scripts per domain is 702.

6.5 Knowledge of Dataset vs Model

The final part of our evaluation asks whether knowledge of both the training
dataset D and a victim model F can provide an attacker with an advantage over
knowledge of D only. For this, we look at our results for both the stitching and



16 N. Hansen et al.

the gadget composition attack, considering a set of 34 scripts and 50 domains
on which both attacks were executed.

Due to its simplicity, our gadget composition attack is likely to achieve a
lower bound for a model-aware attack. In particular, the current version of the
algorithm attempts to generate at most one malicious variant per domain; due to
this limitation, gadget composition generates less working adversarial variants
per domain than the simpler script stitching attack4. Even with this limitation,
we find 45 combinations of script and domain for which stitching could not
generate any working adversarial variants, while gadget composition could. We
therefore conclude that knowledge of F can provide an attacker with additional
power to generate undetectable script mutations.

6.6 Impact of Adversarial Training

While a full discussion of defenses is outside the scope of this paper, we briefly
consider the approach which is most readily available to a defender, which is
adversarial training. With adversarial training, adversarial scripts generated via
an attack method of interest are added back into the training dataset and labeled
as malicious. The typical drawback of adversarial training is that it tends to
decrease the discerning power of a classifier, increasing the false alarm rate, due
to the fact that some malicious samples in the dataset have features are by
construction very similar to those of benign samples.

In order to assess the effectiveness of adversarial training, we evaluate JaSt
against subtree editing, before and after adding a subset of the generated attack
scripts to the training set. Since it is unrealistic to assume that a defender
could generate all possible adversarial samples of interest, we used 10-fold cross
validation on the dataset.

While adversarial training does allow the classifier to identify most adversar-
ial samples, it also causes the (already high) false alarm rate to double from 6%
to 12%. Since false alarms have the potential to break website functionality
(by preventing legitimate scripts from being served), this result suggests that
adversarial training cannot protect against this class of attacks.

6.7 Execution Times

Our subtree editing can compare a malicious script with a candidate benign host
(and embed the malicious script in the benign one, if successful) at a rate of 1
comparison per second. For script stitching, adversarial scripts can be generated
at 1 per 5.7 seconds, and for gadget composition, 1 per 57 seconds.

6.8 Analysis of Results

The results in this section highlight two important observations. First, exist-
ing state-of-the-art AST-based classifiers are extremely effective in identifying

4 It is in principle possible to extend the algorithm with backtracking during the
gadget search process, enabling it to generate an arbitrary number of variants.



Assessing Adaptive Attacks Against Trained JavaScript Classifiers 17

0 5000 10000 15000
#working attack scripts

0.00

0.25

0.50

0.75

1.00
CD

F 
(f

ra
ct

io
n 

of
 d

om
ai

ns
)

(a) JaSt vs all attacks

0 200 400 600
#working attack scripts

0.00

0.25

0.50

0.75

1.00

CD
F 

(f
ra

ct
io

n 
of

 d
om

ai
ns

)

(b) CSPAutoGen vs subtree editing

Fig. 4: CDF of successful number of attacks per domain

non-adversarial malicious scripts, although they also appear to incur a high false
positive rate which may hamper their use in practice. Second, the same classifiers
appear to be relatively fragile to low-complexity adversarial attacks. The con-
sidered attacks were able to generate tens to hundreds of successful adversarial
scripts per domain, without requiring any customization of the source code of
the seed scripts. There are also specific findings related to the type of classifier:

Structural Classifiers As we show in Section 6, mimicry of structural proper-
ties of benign scripts can frequently be achieved on a variety of sites. Through the
use of our subtree editing attack, we show that 27% of sites can admit a struc-
tural replacement that is undetectable by our representative structural classifier.
We also note that the only successful attack against the structural classifier was
the subtree editing attack, which uses the threat model of the reconnaissance
attacker, which relies on a weak set of capabilities. Indeed, note that denying
the attacker the capabilities requires restricting the access of a visitor to benign
scripts on a page, which is likely to break the public functionality of the site.

Feature-Based Classifiers In the conceptual framework proposed by Maiorca
et al. [18], classifiers may exhibit learning vulnerability, feature vulnerability,
or both. Learning vulnerabilities stem from artifacts of the training process:
if the region of feature space mapped to benign classes is unnecessarily large,
an attacker has significant freedom in generating malicious samples. However,
this vulnerability can generally be remediated by adversarial training (which
causes the boundaries of benign classes to tighten around actual practical benign
samples). Feature vulnerability instead derives from the classifier features being
intrinsically unable to separate benign and malicious classes; i.e., it is possible
for an attacker to generate malicious samples that are, for the classifier purpose,
indistinguishable from benign ones. This second class of vulnerabilities cannot
be prevented without changing the features themselves. Results in Section 6.6
suggest that the feature-based classifier under consideration may suffer, at least
in part, of the latter type of vulnerability (i.e., there exist some attack scripts
which are feature-wise indistinguishable from benign ones).



18 N. Hansen et al.

7 Related Work

To our knowledge, our work is the first to systematically build and apply a
system of threat models against JavaScript syntactic detectors. We also believe
that our attacks constitute novel techniques to cause misclassification by existing
JavaScript detectors. In this section, we discuss previous work that is similar in
spirit or approach to various aspects of this paper.
Malicious JavaScript Classifiers. Our work is inspired by the proliferation
of tools to identify malicious JavaScript. While we focus on [19, 9], we use these
tools as representative of a broad range of previous work in the area. Some re-
lated tools include the feature-based Bayesian analysis classifier [4, 13], which
operate over features of the AST or lexical tokens. Cujo [20] uses Support Vec-
tor Machines (SVM) trained over static script features. Synode [24] is another
template-based JavaScript security tool, though it is intended to work server-
side to identify malicious NPM packages. Although Synode is a multi-component
system for defending from injections, it does use a template-based mechanism
to restrict what code can be run by injection. Although we note that the SyN-
ode templates may fall victim to the same attacks we describe, defeating other
components (such as script injection sanitization) is out of scope for this work.

Ultimately, we focused on CSPAutoGen and JaSt because they represent the
most recent and distinct work. We believe that our results are likely to translate
to these other systems, though we leave the analysis to future work.
Mimicry Attacks. Attempts to fool automatic security classification tools are
by no means new. Wagner et al. introduced the term mimicry attacks to de-
scribe an intrusion that is obfuscated in order to avoid detection [26] and au-
tomatic mimicry attacks have also been used to mask malicious system call se-
quences [11]. Conceptually-related attacks have also been demonstrated against
PDF [23] and Flash-based [18] classifiers. Ersan et al. [6] evaluate AST-based
evasion of detectors for HTML-based malware; however their approach by design
does not guarantee that semantic correctness of malicious code is preserved.

Finally, HideNoSeek by Fass et al. [8] is a work of which we became aware
immediately after it was published, and subsequently after the development of
our attacks. The HideNoSeek attacker fits within the general framework of
our reconnaissance attacker (ref. Section 3), but their paper does not consider
the other threat models. The HideNoSeek attack itself is conceptually similar
to the subtree-editing attack described here (the differences are discussed in
Section 4.1). A preliminary evaluation of HideNoSeek on a subset of our data
suggests that their attack has a higher success rate than subtree editing (on a
set of 100 randomly-selected malicious/benign scripts pairs, HideNoSeek found
one or more embeddings in 66 cases), at the price of a higher execution time (2
orders of magnitude slower than subtree editing, with execution times affected
by script size; we discarded one additional pair on which HideNoSeek executed
for 17 hours without terminating). This is consistent with the designs of both
algorithms: HideNoSeek can split a malicious AST into subtrees and embed
each separately; this relaxes the constraints on the candidate benign host but
increases complexity and computation time. Conversely, subtree editing needs to



Assessing Adaptive Attacks Against Trained JavaScript Classifiers 19

find a near-exact AST match for the malicious script, but can leverage decades
of research in efficient tree-edit distance algorithms to quickly find a candidate.
Adversarial Machine Learning. Related work in AML has already shown
the fragility of program classifiers in other domains [12, 5, 18, 15]. However, fea-
tures in these work typically consist of presence/absence of context-independent
entities—such as specific system calls [15] or entries in an application’s mani-
fest [12]. In these cases, there tend to be trivial mappings between an adversarial
feature vector and a concrete attack program (e.g., add appropriate entries to
a malicious manifest to masquerade it as a benign one). In our case, features
include presence or absence of specific subtrees in a program’s abstract syntax
tree. When restructuring a program to alter its features, the set of transforma-
tions is bound by the requirement that the resulting AST must be correct. For
example, it is not possible to alter features by appending a function subtree to
a integer variable, as the latter is bound to appear exclusively as leaf node. Our
solution is to ensure that the procedure used to generate candidate adversarial
programs guarantees correctness by construction.

Finally, there exist a number of works that focus on altering dynamic program
behavior in order to evade classifiers [14, 22, 21]. None of these works focus on
JavaScript, and they are orthogonal to the goal of this paper.

8 Conclusion

In this work, we show that adversaries can leverage their knowledge of the target
to better disguise malicious JavaScript code as benign, and propose a framework
of threat models to capture different real-world adversarial capabilities. We be-
lieve that this work makes an important contribution in motivating the creation
of new defensive measures and best practices for classifiers in realistic settings.

9 Acknowledgments

We thank the anonymous reviewers and our shepherd, Yuan Zhang, for their
insightful comments. We further thank: Louis Narmour and Devin Dennis for
their help in building infrastructure and dataset; Bruce Kapron and Somesh Jha
for informative early discussions on the problems tackled in this paper.

References

1. GitHub - geeksonsecurity/js-malicious-dataset (Dec 2019),
https://github.com/geeksonsecurity/js-malicious-dataset

2. Biggio, B., Roli, F.: Wild patterns: Ten years after the rise of adversarial machine
learning. Pattern Recognition 84, 317–331 (Dec 2018)

3. Calzavara, S., Rabitti, A., Bugliesi, M.: Content Security Problems?: Evaluating
the Effectiveness of Content Security Policy in the Wild. In: CCS (2016)

4. Curtsinger, C., Livshits, B., Zorn, B.G., Seifert, C.: Zozzle: Fast and precise in-
browser javascript malware detection. In: USENIX Security Symposium (2011)



20 N. Hansen et al.

5. Demontis, A., Melis, M., Biggio, B., Maiorca, D., Arp, D., Rieck, K., Corona, I.,
Giacinto, G., Roli, F.: Yes, Machine Learning Can Be More Secure! A Case Study
on Android Malware Detection. IEEE Transactions on Dependable and Secure
Computing pp. 1–1 (2018)

6. Ersan, E., Malka, L., Kapron, B.M.: Semantically non-preserving transformations
for antivirus evaluation. In: FPS (2016)

7. Falleri, J.R., Morandat, F., Blanc, X., Martinez, M., Monperrus, M.: Fine-grained
and accurate source code differencing. In: ASE (2014)

8. Fass, A., Backes, M., Stock, B.: HideNoSeek: Camouflaging Malicious JavaScript
in Benign ASTs. In: CCS (2019)

9. Fass, A., Krawczyk, R.P., Backes, M., Stock, B.: JaSt: Fully Syntactic Detection
of Malicious (Obfuscated) JavaScript. In: DIMVA (2018)

10. Fredrikson, M., Jha, S., Ristenpart, T.: Model inversion attacks that exploit con-
fidence information and basic countermeasures. In: CCS (2015)

11. Giffin, J.T., Jha, S., Miller, B.P.: Automated discovery of mimicry attacks. In:
RAID (2006)

12. Grosse, K., Papernot, N., Manoharan, P., Backes, M., McDaniel, P.: Adversarial
Examples for Malware Detection. In: ESORICS (2017)

13. Hao, Y., Liang, H., Zhang, D., Zhao, Q., Cui, B.: Javascript malicious codes anal-
ysis based on naive bayes classification. In: International Conference on P2P, Par-
allel, Grid, Cloud and Internet Computing (2014)

14. Hu, W., Tan, Y.: Black-Box Attacks against RNN based Malware Detection Algo-
rithms. arXiv:1705.08131 [cs] (May 2017), http://arxiv.org/abs/1705.08131

15. Hu, W., Tan, Y.: Generating Adversarial Malware Examples for Black-Box Attacks
Based on GAN. arXiv:1702.05983 [cs] (Feb 2017)

16. John Leyden: Payment-card-skimming Magecart strikes again:
Zero out of five for infecting e-retail sites (Oct 2018),
https://www.theregister.com/2018/10/09/magecart payment card malware/

17. Kantchelian, A., Tygar, J.D., Joseph, A.D.: Evasion and hardening of tree ensemble
classifiers. In: ICML (2016)

18. Maiorca, D., Biggio, B., Chiappe, M.E., Giacinto, G.: Adversarial Detection of
Flash Malware: Limitations and Open Issues. arXiv:1710.10225 [cs] (Oct 2017)

19. Pan, X., Cao, Y., Liu, S., Zhou, Y., Chen, Y., Zhou, T.: CSPAutoGen: Black-box
Enforcement of Content Security Policy upon Real-world Websites. In: CCS (2016)

20. Rieck, K., Krueger, T., Dewald, A.: Cujo: efficient detection and prevention of
drive-by-download attacks. In: ACSAC (2010)

21. Rosenberg, I., Shabtai, A., Elovici, Y., Rokach, L.: Query-Efficient GAN Based
Black-Box Attack Against Sequence Based Machine and Deep Learning Classifiers.
arXiv:1804.08778 [cs] (Apr 2018), http://arxiv.org/abs/1804.08778

22. Rosenberg, I., Shabtai, A., Rokach, L., Elovici, Y.: Generic Black-Box End-to-End
Attack Against State of the Art API Call Based Malware Classifiers. In: RAID
(2018)

23. Srndic, N., Laskov, P.: Practical Evasion of a Learning-Based Classifier: A Case
Study. In: IEEE S&P (2014)

24. Staicu, C.A., Pradel, M., Livshits, B.: Synode: Understanding and automatically
preventing injection attacks on node. js. In: NDSS (2018)

25. Szegedy, C., Zaremba, W., Sutskever, I., Bruna, J., Erhan, D., Goodfellow, I.J.,
Fergus, R.: Intriguing properties of neural networks. In: ICLR (2014)

26. Wagner, D., Soto, P.: Mimicry attacks on host-based intrusion detection systems.
In: CCS (2002)


