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Abstract. Network-connected embedded devices suffer from easy-to-
exploit security issues. Due to code and platform reuse the same vulner-
ability oftentimes ends up affecting a large installed base. These circum-
stances enable destructive types of attacks, like ones in which compro-
mised devices disrupt the power grid.
We tackle an enabling factors of these attacks: software homogeneity. We
propose techniques to inject syntax mutations in application-level net-
work protocols used in the embedded/IoT space. Our approach makes
it easy to diversify a protocol into syntactically different dialects, at the
granularity of individual deployments. This form of moving-target de-
fense disrupts batch compromise of devices, preventing reusable network
exploits. Our approach identifies candidate program data structures and
functions via a set of heuristics, mutate them via static transformations,
and selects correctness-preserving mutations using dynamic testing.
Evaluation on 4 popular protocols shows that we mitigate known ex-
ploitable vulnerabilities, while introducing no bugs.

1 Introduction

Connectivity is now ubiquitous within smart and embedded devices—appliances
such as light bulbs, power meters and industrial control systems; and in the
near-future robot swarms, sensors and weapon systems. Such devices are already
deployed in large numbers, with glaring security vulnerabilities [21,29,33,41,49],
and outdated, hard-to-upgrade firmware [56]. Different devices may reuse the
same components and platform [39], resulting in replication of vulnerabilities.

The situation presents analogies with the early 2000’s, when worms like
CodeRed spread uncontrollably, exploiting widely-installed, vulnerable internet-
facing software [44, 45]. The same factors are now resulting in botnets such as
Mirai [16,31,43]. For now, large-scale embedded device compromise has resulted
in attacks that—while large—remain within reach of traditional cyberdefenses.

New attack models are however possible, and researchers are just beginning
to understand them. Ronen et al. [50] demonstrated an IoT worm targeting smart
public street lights. Possible attacks involve bricking devices, wireless jamming,
and inducing epileptic seizures at large scale. Other works suggest that with a
relatively small botnet of power-hungry IoT devices, an attacker could create a
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demand surge large enough to collapse a large power grid [57], or control energy
pricing [55]. In the industrial domain, highly damaging attacks have already
been observed [46]. And internet-connected robotic swarms, poised to becoming
commonplace in robotics and military applications [18,33], will need safeguards
too as the consequences of attacks are potentially catastrophic.

Even a single widespread vulnerability can enable attacks. For example, a
single 0-day affecting Huawei home gateway devices enabled cybercriminals to
create a 100,000-strong botnet in December 2017 [31]. It is therefore important
to reason about defense-in-depth techniques that can protect devices against
yet-unknown 0-day attacks. Authentication helps preventing basic attacks, but
it is ineffective in case of default or easily guessable credentials [21], or creden-
tial stuffing. Anomaly-based intrusion detection systems (IDSs) suffer from low
accuracy [27], while specification-based IDSs may miss stealth attacks [19].

To address this problem, we propose a novel form of moving-target defense for
embedded/IoT, based on protocol mutations. We address one of the fundamen-
tal problems of large-scale IoT deployments: software homogeneity. It can arise
when multiple deployments of devices all share the same vulnerable network-
facing code. We support the diversification of application-level network protocol
implementations, resulting in dialects which can be deployed at the granularity
of individual installations. Dialects can be made mutually incompatible, thus
communication with a device without knowledge of its mutations is impossible.
This approach works by statically analyzing and mutating protocol source code.

Our work is not meant to replace security best-practices; rather, it com-
plements them. It prevents one-size-fits-all exploits, thus avoiding rapid attack
propagation among embedded devices. Furthermore, it is easy to incorporate
as mutations are largely automated. The approach is also desirable in contexts
where encryption is difficult to deploy due to resource constraints. We note that
our work is not applicable to consumer/home IoT scenarios, where applying a
different mutation to each individual device sold quickly grows impractical. In-
stead, it targets Self-Contained Critical Deployments: military or infrastructure
deployments of homogeneous devices, all managed by the same organization.

Achieving our goal entails solving a number of challenges. First, modifying
sender and receiver of a network communication entails identifying code and
data structures used to create and parse messages. Unfortunately, to the best
of our knowledge no existing technique can identify and map this information.
Thus, we devise our own technique, which we name PaCo (Parser/Constructor
extractor), implementing a problem-specific static analysis heuristic. A second
component, named Aloja3, then selects candidate constructor/parser pair, ap-
ply mutations, and test the mutated implementation for correctness. The output
is a protocol implementation which incorporates a set of safe mutations.

Our results show that this approach results in mutation that are effective in
blocking paths to successful attack completion. Overall contributions:

1. We propose a static analysis technique to identify message-related structures
and functions in network protocol implementations.

3 In Catalan mythology, an Aloja is a mythical creature able to shape-shift into a bird.
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2. Based on the technique above, we propose static program transformations
to inject symmetric mutations in message generators/parsers.

3. We thoroughly evaluate the techniques above on 4 protocols. We achieve
93% accuracy in identifying relevant functions. Mutations successfully block
all reproducible CVEs we identified, and do not affect correctness.

4. We release a software artifact implementing our proposed techniques, en-
abling analysis and further experimentation by the community
(https://osf.io/9gc3n/?view_only=6da059eab07f4ffe934d6b59b49fee2b
https://github.com/TongweiRen/Aloja).

2 Background

2.1 Target Scenarios

We target a style of IoT and embedded systems that we term Self-contained
Critical Deployments (SCDs): deployments where (i) the set of devices belong-
ing to the deployment is known a priori; (ii) the devices perform a task where
loss of function can lead to significant disruption; and (iii) an attacker with in-
centives to cause disruption can communicate to the deployment. SCDs arise in
military and infrastructure-related settings. Compared to the consumer domain,
SCDs are self-contained within a single organization, so backward compatibility
is not critical. Furthermore, they are expected to survive for an extended period
while performing critical functions, which makes the (small) additional effort to
introduce mutations acceptable. We review two example scenarios.

Autonomous Robotic Swarms. A recent DARPA BAA, OFFensive Swarm-Enabled
Tactics (OFFSET), envisions a class of autonomous swarms of unmanned aircraft
and/or ground systems used to accomplish missions in urban environments [20].
US Army also funded the MAST project, aimed at autonomous collections of
intelligence-gathering robots [1]. A major issue with robotic swarms is attacks
where malicious robots can be injected into the swarm [33]. Consequences of a
cyberattack involve equipment damage, and failure to complete the task.

Infrastructure/Industrial. Increasingly, public and industrial spaces incorporate
network of internet-connected embedded appliances, such as street lights and
security cameras. These deployments are characterized by a large number of
identical devices within the same network. Attacks may create widespread dis-
ruption: if a firmware vulnerability exists, then all devices are susceptible to it.
In past work, Ronen et al. demonstrated a building-scale attack, where all the
smart lights in a large building fall under control of an attacker [50].

2.2 Software Diversity in SCDs

Best-practice security measures such as encryption and authentication can help
mitigate the risk of attackers infiltrating SCDs. However, past experiences demon-
strate that buggy code, leftover development accounts, and other high-level issues
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can allow the attacker to bypass these lines of defense [38]. Here, we propose the
use of software diversity as an additional line of defense that can provide addi-
tional security when paired with best-practices, in a defense-in-depth approach.

Software diversity [30, 40] consists in deploying, with each installation of a
given software, a copy which is functionally identical, but differs in the imple-
mentation from any other copy. Differentiation is typically envisioned using spe-
cialized compilation [22] or binary rewriting techniques [26], in some cases aided
by VMs [61]. Differentiation aims at preventing an attacker to devise a general
exploit by analyzing a single copy of the program. Introducing variations forces
the attacker to tailor their exploits to each copy of the program.

Diversity-based defenses however cannot be ported directly to the SCD do-
main. Any approach with large overhead—e.g., interposing a VM—has to con-
front the resource-constrained nature of many devices. Furthermore, some at-
tacks exploit vulnerabilities at levels of abstraction high enough to be impervious
to binary-level diversification (e.g. default factory passwords). Third, vulnera-
bilities are nearly exclusively triggered via network; it is therefore reasonable to
deploy diversity within components that deal with network communications.

A relevant question is whether diversification at the granularity of SCDs—
and not individual devices—provides enough variety to prevent standardized
exploits from spreading. Based on the large number of deployments for popular
embedded devices, we expect SCD-level granularity to still provide sufficient
diversity.

2.3 Goals and Threat Model

Our goal is to introduce software diversity by injecting mutations in the syntax
of network protocol messages, thus preventing standardized exploits. Since at-
tacks infect victims via malicious network input, we mutate protocols so that
different deployments speak different protocol dialects. Mutations can be made
incompatible: valid messages within one dialect are rejected by the network mes-
sage parser in another. By focusing on early rejection of input, our approach is
practical against both low-level binary exploits and high-level logic bugs.

We do not target protocols at layer-IV and below (e.g., WiFI, IP, 6LoWPAN,
TCP), as those are typically implemented within the operating system and/or
hardware. Instead, we focus on implementations of middleware protocols, such
as Cyclone DDS [11]. These typically provide services like publisher/subscriber
communication, and have wide applicability within the SCD domain. For ex-
ample, the DDS protocol is used in domains as diverse as smart cities [10],
robotics [42] and military applications [59].

In our current work, we mostly focus on off-path attackers. The attacker scans
the internet for vulnerable devices (e.g., using vulnerability search engines [8]).
They commandeer any vulnerable device which replies to their probes. For ex-
ample, the original Mirai botnet was built using similar techniques [16]. The
attacker can send traffic towards potential victims and receive replies, but can-
not observe the victim’s communication with other nodes.
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We also discuss on-path attackers. In addition to sending and receiving traf-
fic to/from victim, this attacker can observe communications between non-
compromised devices prior to the attack. The attacker may use its on-path capa-
bility to reverse-engineer wireless communications and identify vulnerabilities,
inject messages, and batch-compromise devices.

In general, off-path attackers can be targeted using static mutations, and
on-path attackers using dynamic mutations. We discuss both in the following.

2.4 Possible Mutation Types

We define different categories of protocol mutations, each being relevant to dif-
ferent types of attackers.

Static Mutations A static mutation is statically embedded into the proto-
col firmware at compile time. A given mutated binary always exhibits the same
mutation. The mutation behavior can evolve over medium time scales, by peri-
odically recompiling the firmware (e.g., with firmware updates).

Static mutations target off-path attackers, who must guess the particular
set of mutations in order to communicate. With an appropriately large set of
mutations and their parameters, the effort required to break into the device
is increased many-fold. Consider an attack which is carried over a sequence of
N messages. Assume each message is independently mutated by a randomly
selected mutation4 from a set S s.t. |S| = M . Without any additional informa-
tion, an off-path attacker must guess the correct mutation by trial-and-error;
worst-case and expected number of tries are respectively MN and M+1

2 N . A
multiplicative increase in the attack complexity raises the bar against casual
attackers, and has the advantage of simplicity. In this paper, we focus on static
mutations.

Dynamic Mutations A dynamic mutation is a one which can be reparametrized
or disabled without recompiling the program. Dynamic mutations become nec-
essary with an on-path attacker, who may be able to reverse-engineer mutations,
by comparing unmutated protocol executions to the mutated ones in the target
network. This attack can be mitigated by deploying a set of dynamic mutations,
which evolve according to a mutation schedule. Dynamic mutations introduce ad-
ditional complexity: two communicating peers must synchronize their mutation
schedules so that they are always speaking the same protocol dialect, without
leaking details of the schedule to the attacker. Our implementation of mutations
exports an API through which individual mutations can be enabled/disabled
at run-time, which provides a foundation for dynamic mutations. However, we
leave a full implementation of this concept to future work.

4 Note that a parametrized mutation with an n-bit parameter can be seen as a set of
2n possible distinct mutations.
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2.5 One-size-fits-all Exploits

Oftentimes protocol implementations in the wild are affected by various types of
bugs in the parsing logic. We performed an extensive review of historical parsing-
related security bugs from six protocol implementations: Mosquitto MQTT [3],
Wakaama [9], MQTT-C [6], Cyclone DDS [11], OpenDDS [7], and DSVPN [4].
Results show that these vulnerabilities can be categorized as follows: incorrect
buffer sizing, lack of sanitization, and invalid/improper assertions. For example,
a buffer sizing issue reported in CVE-2017-7651 causes a Mosquitto broker to
crash after receiving a crafted packet. CVE-2017-7653 causes a Mosquitto broker
to disconnect other clients, upon reception of an attack message with an invalid
UTF-8 string. This bug is due to lack of string checking. Our approach focuses
on early rejection of input, with the goal of containing this style of attacks.
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Fig. 1. Overview of Aloja

3 Approach Overview

Our approach receives as input the source of a network protocol implementation,
such as Mosquitto MQTT [3]. We assume that a single codebase contains both
components necessary to create and parse messages. We first analyze the code to
identify program components (data structures and functions) which are involved
in creating and parsing network messages. This task is performed by the PaCo
tool, discussed in Section 3.1. The information returned by PaCo is then used
to identify suitable locations for mutations, and to injects the actual mutations.
This is performed by the Aloja tool, described in Section 3.2. The overall
workflow is described in the following and outlined in Figure 1.

3.1 PaCo: Identification of Relevant Program Components

First, the PaCo tool identifies program functions and structures whose purpose
is to construct and parse network messages. PaCo’s overall algorithm receives
as input a program implementing a network protocol of interest, and return a
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structure graph describing message-carrying structs and protocol constructors
and parsers, which we define below. Our implementation is based on the LLVM
compiler toolkit, and works at the level of LLVM IR.

Definition 1 (Message-carrying struct). A message-carrying struct is a
composite data type which represents the structure and content of a network pro-
tocol message as a sequence of contiguous binary fields, to be serialized when the
message is sent. Such a struct s consist of a sequence of field types s = f1, ..., fn.

The notion of message as a sequence of binary fields is consistent with proto-
col reverse-engineering literature [28], and captures a large number of application-
level protocols used in the embedded/IoT space. Based on this assumption, the
definition of message constructor and parser follows:

Definition 2 (Constructor and Parser). Consider the IR-level representa-
tion R of the implementation of a protocol P , and the set S of message-carrying
structs in R. A message constructor function (constructor) fC : S → P is a func-
tion in R which receives as input a struct argument and returns a valid message
in the protocol P . Similarly, a message parser function (parser) fP : P → S is
a function which receives as input a message and returns a struct.

Unambiguous identifying the entities above in R is challenging, due to the
variety of parsing and construction techniques used in different network pro-
tocols. Rather than attempting to model the semantic of all possible protocol
implementations, PaCo’s algorithm is heuristic and returns an approximation
of the correct sets of structs, constructors and parsers. The approximation is
neither sound nor complete; however, Section 4 shows that it is highly accurate.

PaCo Workflow. First, PaCo collects all struct types appearing in the pro-
gram, and filters the result to remove standard library structs (e.g., __sigset_t)
unrelated to network messages. Further filtering retains only structs passed as
input or output to functions that either (i) read or write data from the network;
or (ii) perform memory copy (e.g., memcpy). Including the latter is necessary
as oftentimes protocol code will not send and receive directly from structs, but
copy parts of them into separate buffers. These operations, depicted in Step 1
of Figure 1, result in a set S of candidate message-carrying structs.

PaCo then proceeds to collect functions operating on structs in S and build-
ing a structure graph. The algorithm iterates over all functions in the program,
collecting each function that either reads or write to a variable whose type is in
S (Step 2 in Figure 1). This result in a set F of relevant functions. Intuitively,
the set F includes candidate constructors and parsers in R.

Finally, PaCo builds a structure graph G = (V,E) as follows. First, it defines
the set of vertices V as S∪F . Then, it establishes an edge between each function
node in F and the structs in S that the function reads and/or writes (Step 3).
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Mutation Description
Global/const refactoring Remap values of enum fields/globals/consts
Mutate field value Linearly combine field value with parameter
Encrypt field value Encrypt field value with pre-determined cipher/key

Table 1. Aloja’s Mutation Library

3.2 Aloja: Deployment of Mutations

Aloja uses the structure graph G to inject symmetric mutations in constructor
and corresponding parser functions.

Definition 3 (Mutation). Consider a message-carrying struct s ∈ S, defined
as in Definition 1. Further consider a constructor and a parser function fC , fP ∈
F which operate on s. A mutation is a transformation of fC and fP in such a way
that the mutated functions f ′

C , f
′
P exchange messages in a format s′ ̸= s different

from their non-mutated counterparts, but the result of the message exchange is
functionally identical.

Mutations must be invertible, i.e., it must be possible to reverse any trans-
formation applied to generated messages when those are received. This excludes
mutations that hash message fields, and similar applications of one-way func-
tions. Any mutation which removes data from messages is also non-invertible.

Intuitively, Aloja embeds a given mutation function into a constructor fC ,
and the inverse mutation into the corresponding parser fP . A desirable prop-
erty of invertible functions, or bijections, is that they are composable; i.e., the
composition of invertible functions is also invertible. It is thus possible to inject
multiple mutations by composing the corresponding mutation functions.

In practice, we meet the requirement above by restricting Aloja to mu-
tations which apply invertible transformations to individual fields. Supported
mutations, satisfying the property above, are detailed in Table 1. Our imple-
mentation, based on the injection of mutation templates into protocol code,
makes it easy to expand this set with arbitrary additional mutations.

Aloja Workflow. Aloja identifies candidate locations for mutations by an-
alyzing the structure graph G. First, it marks every function operating on any
struct member in G as parser, constructor, or both based on whether the function
reads/writes it. It also discards any struct member whose compiler-level type is
not compatible with any mutation. Then, applies a heuristic to remove parser
and constructor functions that are unlikely to directly affect wire-level protocol
messages. First, Aloja generates the function-level callgraph. Furthermore, it
removes each constructor (parser) which has a direct edge to (from) another
constructor (parser). The empirical insight is that values that affect network
messages are typically written (read) by low-level (high-level) utility functions,
which appear as leaves (non-leaf nodes) in the callgraph. This is represented
in Figure 1, Step 4. The output of this step is a pruned structure graph G′.
We remark that filtering candidates is a performance optimization, but it is not
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necessary for correctness—thus, we believe an heuristic approach is appropriate.
Our testing step, described below, can effectively remove mutants that involve
incorrectly selected parsers/generators. We further discuss the performance ben-
efits of filtering in Section 4.5.

In the next step, Aloja build all possible mutation candidates, where a
candidate c = (fC , fP ,M) is a tuple including a constructor fC and a parser fP
in G′ operating on the same struct s, and a mutation compatible with the type
of s. To deploy a candidate mutation, Aloja wraps the last write to the target
struct member in s within the constructor fC with a template which mutates
s prior to writing. Similarly, the parser fP is mutated by injecting a wrapper
implementing the reverse mutation before the first field read (Step 5).

For the same mutation strategy, our implementation will insert different IR
code into the application based on the type of field we choose to mutate. For
example, the code for changing int32 field and int64 field is syntactically dif-
ferent, but semantically same. This is to make sure our mutation will not change
the field length and cause errors.

Next, the mutated program is tested to evaluate correctness. This step is the
only one requiring (offline) user involvement, to specify a command executing a
test procedure to verify correctness. Note that the procedure may simply run unit
tests shipped with the codebase. For each mutation, Aloja first runs a mutated
server and client to check whether they can communicate correctly; then, it runs
a mutated server and an unmutated client to ensure that the communication
fails (Step 6). Aloja returns all mutations that pass both tests.

4 Evaluation

In this section, we evaluate Aloja against the following experimental questions:

– Question #1: can PaCo correctly identify message-related pro-
gram structures and functions? In Section 4.2, we show that PaCo can
identify relevant program elements with high accuracy.

– Question #2: do mutations lead to a measurable change in the dif-
ficulty to exploit a vulnerability? In Section 4.3, we show that Aloja’s
mutations can mitigate reusable attacks.

– Question #3: can Aloja correctly introduce mutations without af-
fecting program correctness? Extensive testing, discussed in section 4.4,
shows that Aloja did not introduce any new bug.

– Question #4: are Aloja filtering heuristics successful in limiting
the number of mutations to be tested? Section 4.5 shows that filtering
heuristic lead to up to a 41% reduction in the number of tested mutations.

– Question #5: do introduced mutations generate overhead in the
execution of mutated protocols? In Section 4.6, we show acceptable
compile-time and run-time overhead, thus our mutations are practical.
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Program Protocol #LOCs # Functions
Mosquitto [3] MQTT 79,859 338
Wakaama [9] LwM2M 28,040 302
MQTT-C [6] MQTT 12,845 98
Cyclone DDS [11] DDS 109,954 2,146

Table 2. Characterization of codebases

Program True Positives (Positives) True Negatives (Negatives) Accuracy
Mosquitto 2 (3) 26 (26) 96.6%
MQTT-C 1 (1) 17 (17) 100%
Wakaama 5 (5) 18 (18) 100%
CycloneDDS 42 (51) 291 (300) 97.3%
Overall 50 (59) 352 (361) 97.8%

Table 3. Accuracy of PaCo in identifying message-related structures

4.1 Implementation and Dataset

We created a prototype implementing the full pipeline described in Section 3. It
is implemented as a set of LLVM passes and Python modules used to statically
analyze IR files, perform mutation injection, and run the mutation test process.
In total, our pipeline consists of 1183 lines of C/C++ code (LLVM passes) and
7961 lines of Python code (IR analysis and test automation).

Dataset. Table 2 describes the codebases used for the experiments. We selected
these 4 projects as they are implementations of representative protocols com-
monly used in the IoT realm. Mosquitto [3] is an implementation of the popular
MQTT protocol, while MQTT-C [6] is another implementation stripped of all
extraneous features to provide a minimal install. We also evaluate Wakaama [9],
a C implementation of the LwM2M machine-to-machine protocol, and Cyclone
DDS [11], a C implementation of the DDS protocol. Although all applications
we evaluated are middleware protocol applications, our system can be used for
any upper-layer protocol applications using struct to construct messages.

4.2 Structure Graph Generation

Methodology. In this section, we evaluate the effectiveness of PaCo in identifying
message-related functions and structs. In order to identify false positives and
negatives, we performed a manual analysis of each codebase and compared the
correct sets of functions and structures to those generated by PaCo. Manual
analysis involved going through every function and struct, and verifying based
on their name and functionality if they were, in fact, parser- or constructor-
related. We envision PaCo as a general tool for code understanding; therefore
we use a broader notion of “message-related” than that used by Aloja. We
consider a function/struct message-related if it performs processing/stores data
which is directly or indirectly used to construct and/or parse network messages.
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Program True Positives (Positives) True Negatives (Negatives) Accuracy
Mosquitto 10 (11) 203 (203) 99.5%
MQTT-C 6 (6) 57 (57) 100%
Wakaama 32 (32) 60 (66) 93.9%
CycloneDDS 26 (39) 89 (102) 81.6%
Overall 74 (88) 409 (428) 93.6%

Table 4. Accuracy of PaCo in identifying message-related functions

Results-Structure Identification. Table 3 summarizes structure identification ac-
curacy. True Positives/Negatives are the numbers of network-related/non-network-
related functions PaCo successfully identified. Positives/Negatives represent the
numbers of actual network-related/non-network-related functions in each code-
base. Structure identification is heuristic and based on how a struct is used. False
negatives come from network-related structs not being directly used for memory
copy and network operations. False positives occur due to PaCo heuristics being
misled by the presence of syscalls that are frequently, but not always, network-
related, e.g. redundant recv functions when the application actually uses read
to receive messages. Overall, results show high accuracy across the codebases
(97.8%).

Results - Function Identification. Table 4 summarizes results regarding the ac-
curacy of function identification across our four evaluation codebases. Overall,
PaCo achieves 93.6% accuracy. Analysis of mistakes indicates that they occur
due to mislabeling of the corresponding structs, as discussed above.

Overall, we conclude that PaCo’s heuristics are effective in identifying message-
related structures and functions, providing actionable information to Aloja.

4.3 Exploit Mitigation

Methodology. For this experiment, we compare the behavior of unmutated com-
piled binaries with mutated ones. We identified reproducible vulnerabilities in
the protocols of interest, by picking older releases with known vulnerabilities,
and mutating them using Aloja. The mutation strategy we used for our ex-
periments was mutating a field value as shown in Table 1, row 3. This process
resulted in two versions of a vulnerable protocol implementation, without and
with the mutation. We first verified that the vulnerability could be successfully
reproduced in the non-mutated client/server. Then, we used the same client and
sent the same packets, as we did before, to the mutated server, to check that
the vulnerability could no longer be triggered. Because our mutations targets
parser/constructor functions, we look specifically at parser-/constructor-related
vulnerabilities that are triggerable by malformed network input. For example,
CVE-2017-7653 causes a Mosquitto broker to disconnect other clients, upon re-
ception of an attack packet containing an invalid UTF-8 string.

Collected vulnerabilities. For Mosquitto, we did an extensive review of relevant
Common Vulnerabilities and Exposures (CVE) reports. We found 17 vulnerabil-
ity reports of which 7 are parser-/constructor-related. We only show the results
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of three CVE reports which we could reliably reproduce, including CVE-2019-
11779, CVE-2018-12543 and CVE-2017-7653. We could not reliably reproduce
the remaining ones (e.g. CVE-2019-11778), as they are caused by heisenbugs. For
Wakaama, we reliably reproduced one relevant CVE report, CVE-2019-9004. For
MQTT-C and Cyclone DDS, we did not find recent relevant CVE reports.

Results. In the case of CVE-2019-11779, the reception of the attack packet in un-
mutated Mosquitto triggers the vulnerable function mosquitto_sub_topic_check.
The same attack against the mutated version results in the packet being dropped.
The vulnerability is not triggered, and the unmutated attacker’s client gets
forcibly disconnected. Our experiments for CVE-2018-12543, CVE-2017-7653,
and CVE-2019-9004, also resulted in successful exploit in the non-mutated ver-
sion, and failed exploit in the mutated one. These results show that Aloja’s
mutation approach is effective in mitigating network-based exploits.

4.4 Correctness

Methodology. In this section we evaluate the correctness of mutations applied by
Aloja. It is important to ensure that the mutations do not break any underlying
functionality. In order to do so, we run unit tests against the unmutated and
mutated version of each protocol, and compare the results of the two runs. The
mutation strategy we used for our experiments is mutating an existing field value,
shown in Table 1, row 2. All protocols include high-quality developer-provided
unit tests which we use for this purpose. We emphasize that these are not
the tests we used for selecting useful mutants. To avoid biasing the correctness
evaluation, for the latter purpose we develop our own test scenarios.

We also performed an in-depth case study on Mosquitto, by designing and
building a fuzzing MQTT client based on the Boofuzz fuzzer [5]. The fuzzer
generates protocol messages and directs them to a mutated Mosquitto binary.
To ensure extensive coverage, we do not generate completely random input, but
messages with a structure approximating MQTT’s specifications and sessions.

Results. Table 5 shows that 3 out of 1233 test cases failed. We manually analyzed
each failed test; in all cases, test failures were due to the tests expecting protocol
messages in the original (i.e., non-mutated) format. We ruled out these failures
as benign, as our mutation strategy is specifically designed to trigger failures
like these. Furthermore, our Mosquitto fuzz tester ran for 64.22 minutes without
triggering any unexpected behavior. Overall, these results suggest that Aloja
does not introduce any new bugs or vulnerabilities into the codebase it mutates.

4.5 Impact of Mutation Filtering Heuristics

Methodology. Aloja uses callgraph analysis to filter constructor and parser func-
tions unlikely to directly operate on message content (discussed in Section 3.2).
It is important to determine whether such heuristics (i) lead to a reduction in
the number of possible mutations to be tested; and (ii) do not lead to loss of
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Program #Tests #Failed Tests (benign)
Mosquitto 207 2 (2)
Wakaama 71 0 (0)
MQTT-C 18 1 (1)
Cyclone DDS 937 0 (0)
Table 5. Results of correctness evaluation tests.

Program W/O Heuristic (Useful)) W/ Heuristic (Useful)
Mosquitto 242(2) 142(2)
MQTT-C 116(7) 73(5)
Wakaama 340(3) 235(3)
Cyclone DDS 969(6) 795(2)

Table 6. Impact of Heuristic on Mutation Generation

potentially useful mutations. In order to evaluate the impact of heuristics, we
ran Aloja twice on each codebase, first with the heuristic deployment, and then
deactivated. We compared the runs on two aspects: number of useful mutants
and number of overall generated mutants.

Results. Table 6 show the number of useful and overall mutations across the three
codebases. The heuristic causes a best-case reduction of 41.3% (Mosquitto) in
the number of mutants, and an overall reduction of 25.3%. Only 6 out of
422 removed mutations are useful, which amount to losing 33.3% of useful
mutations. We conclude that the filtering heuristic selects and remove incorrect
mutations with reasonable accuracy.

4.6 Performance Impact of Mutations

Methodology. To evaluate the overhead incurred due to running a mutated pro-
tocol, we examined two aspects. The first is the compile-time overhead due to
running PaCo and Aloja, measured by timing the overall compilation without
and with the mutation process. We do not report detailed results on code size
increase due to mutation, as such overhead remains small—between 0.1% and
1%—for all codebases.

The second is the run-time overhead due the additional computation per-
formed by injected mutation templates. In order to estimate this, we measured
the latency overhead when sending batches of 10 messages per client, with a
fixed size of 10KB each, via the respective protocol with a set number of clients
in the network. Note that the impact of the number of clients in the network
on protocol performance depends on the design of the protocol itself. Therefore,
introduced overhead cannot be compared across different protocols; however, the
results still highlight general trends in the overhead introduced by mutations.
We evaluated this overhead using 10, 100, and 500 clients for each protocol. As
deploying a device network of this size on an experimental testbed is imprac-
tical, we simulated the setup by running the server and the client instances on
a dedicated machine. We acknowledge this approach is only an approximation
of an actual deployment; however we believe it is sufficient to derive high-level
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Program w/o mutations w/ mutations PaCo Aloja
Mosquitto 3m21s 11m36s 10s 8m05s
Wakaama 2.33s 15m21.33s 24s 14m55s
MQTT-C 1.85s 8m49.41s 0.56s 8m47s
Cyclone DDS 1m57s 152m12s 13m18s 138m54s

Table 7. Incurred compile time overhead. PaCo overhead includes structure graph
construction. Aloja’s overhead is dominated by testing of mutants.

Program 10 Clients 100 Clients 500 Clients
Mosquitto (mutated) 3ms (3ms) 47ms (58ms) 160ms (200ms)
Wakaama (mutated) 80ms (122ms) 120ms (230ms) 270ms (360ms)
MQTT-C (mutated) 15ms (15ms) 32ms (40ms) 120ms (190ms)
Cyclone DDS (mutated) 14ms (15ms) 139ms (149ms) 699ms (851ms)

Table 8. Incurred overhead of running n=10, 100, and 500 clients sending 10KB
messages in the original vs. mutated system

conclusions about mutation overhead. All performance evaluations were run on
an Ubuntu 20.04 VM with 4 3.7GHz cores and 10GB of RAM.

Results-Compile Time Across our 4 codebases, it took, on average, an additional
45.7 minutes to run the mutation-enabled compilation process. This includes all
stages of PaCo and Aloja. Table 7 compares the compile times achieved by
clang to that of our process, which also uses clang but applies mutations prior
to binary generation. Most of increased overhead is due to testing mutations in
Aloja. For each possible mutation, Aloja must run the mutated application
twice. The significant compilation time for Cyclone DDS indeed results from the
fact that its large codebases induces many candidate mutants, than must then
be vetted (on average, testing a mutant requires 10s). The process could be sped
up by better mutation filtering heuristics, which we leave as future work. Also,
multiple mutants could be tested in parallel, which would result in significant
improvement on modern multicore platforms. Finally, we emphasize that the
mutation overhead only need to be incurred once at compile time.

Results-Execution Time Table 8 shows the overhead in message send latency
introduced by Aloja. The overhead ranges from negligible to significant, al-
though the relative overhead generally increases sublinearly with the number of
clients, and notably decreases in the case of Wakaama when going from 100 to
500 clients! This fact in particular lead us to suspect that 100-client Wakaama
results may be affected by an experimental artifact, but were not able to trace
the source of the deviation. Future work should focus on further optimizing
mutations and better understanding their performance impact.

5 Discussion

Mutation vs Encryption. A possible way to diversify a protocol is to retrofit
it with encryption, and vary encryption keys across deployments. We deliber-
ately decided to design a more general approach based on field-level mutations,
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for the following reasons. Field-level mutations can be retrofitted automatically
during compilation, and do not change protocol state machine, packet size and
structure, thus maximizing compatibility with existing network infrastructure
and middleboxes. It is also worth noting that, if desired, field-level mutations
can be used to deploy encryption (supported by Aloja). However, they are not
limited to it, and can also implement more lightweight forms of obfuscation.
We believe this to be useful to control the performance impact of mutations.
For smart sensors, which have to operate for extended periods without battery
replacement, even a small increase in computation may translate in significant
reduction in device life. Summarizing, our goal is to provide software diversity,
not data secrecy. Consistently with the end-to-end principle [52], we believe this
is best served by evaluating a range of syntactic mutations, and let application
designers choose the most appropriate.

Mutation-agnostic Attacks. Other forms of mutation-based moving target de-
fenses have been shown to be vulnerable to mutation-agnostic attacks [51]. In
our context, such an attack would consist of a message which triggers a vulner-
ability regardless of the mutations. This may happen for example if the victim
parses each message field iteratively, and relevant mutations only affect fields
which are parsed after the malicious data. These attacks can be mitigated by
carefully choosing mutations, which always minimize the amount of code exe-
cuted in response to an non-mutated message.

Integration into Embedded Development Workflow. A relevant question is whether
incentives exist for embedded developers to integrate mutations into firmware,
since manufacturers have limited incentive to improving security. As discussed
in Section 2.1, we target self-contained deployments managed by same organi-
zation. Firmware for mission-critical devices such as robot swarms or military
is custom-developed and specified by contract, which simplifies requesting mu-
tation technology. Cheaper white-label devices, such as camera, may ship with
closed-source firmware. There, applying mutations may require re-flashing de-
vices with Open-Source, customizable firmware (e.g., OpenIPC [12] for cameras).

Limitations of Dynamic Analysis The dynamic testing techniques we employ,
such as unit tests, cannot guarantee correctness. However, we decided to use
them due to the intrinsic limitations of the alternative, which is static analysis.
Network protocol implementation exhibit a great variety of programming pat-
terns, which makes statically inferring mutation locations challenging. This is
exacerbated by the fact that core static analysis algorithms are in general unde-
cidable, and have precision limitations [54]. Thus, we consider dynamic analysis
as an acceptable trade-off.

6 Related Work

Moving Target Defense (MTD). Traditional MTD strategies can be divided into
two categories: operating system (OS)-, network-level. As MTD is a large area
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of research, we only discuss selected examples. At the OS level, Seibert et al. [53]
and Hu et al. [34] use Address Space Layout Randomization (ASLR) and Instruc-
tion Set Randomization (ISR) to prevent memory corruption vulnerabilities and
low-level code injection attacks. Pappas et al. [47] and Wartell et al. [60] in-
troduce schemes to prevent memory disclosure issues by randomizing the data
and code segments of each application [64]. At the network level, Al-Shaer [13]
proposes an architecture to enable network configuration changes without dis-
rupting network operations. Haadi Jafarian et al. [37] present a software-defined
network (SDN)-based MTD strategy that mutates IP addresses, while maintain-
ing configuration integrity. Huang and Ghosh [35] present an MTD scheme to
protect web services, by creating a set of diverse offline virtual servers to replace
online servers according to the rotation schedule. OS-level mutations do not pre-
vent many kinds of relevant high-level attacks (such as default password reuse).
Traditional network-level mutations affect the network configuration and are or-
thogonal to ours; they can be seen as an additional possible layer of defense. We
separately discuss software-level mutations below.

Software Diversification. Software diversification is a popular MTD strategy to
prevent application level attacks. Jackson et al. [36] propose a compiler-based
technique which uses instruction set and register randomization to generate a
large number of variants. This technique is designed for mobile apps. Franz [30]
similarly discuss a mobile-oriented approach to generate a unique version of an
app for each client which downloads it. Cabutto et al. [17] propose to store
chunks of executable binary on a trusted server, dynamically downloading them
at execution time. However, this method cannot prevent existed vulnerabilities
from being triggered since the attacker can still touch the vulnerable code. Wu
et al. [62] present LLVM-based binary software randomization, which apply a
number of IR-level transformations (e.g., instruction replacement) prior to com-
pilation. This technique has limitations similar to OS-level MTD. Beurdouche
et al. [15] propose a verified implementation of a TLS state machine that can be
embedded into OpenSSL to change the overall state machine. Our system focuses
on a broader set of protocol implementations. Collberg et al. [24] use a trusted
server to generate diverse code variants, which are then dynamically installed
within running clients. Our system injects the full mutation logic within the
client, thus simplifying deployment. Cui and Stolfo [25] propose a host-based
defense mechanism called Symbiotic Embedded Machines (SEM). They inject
SEMs into host software as an additional component providing monitoring and
defense. Compared with SEM, our method does not introduce an executable
middleware and does not impose significant overhead on the target application.
Pappas et al. [48] propose in-place code randomization, which breaks the se-
mantics of gadgets used in return-oriented programming attacks. Our technique
addresses a broader range of attacks.

Mutation Testing. Mutation testing, which aims at introducing errors in source
code to ensure effectiveness of test cases, can also generate different mutants dur-
ing the test process. Hariri et al. [32] present a toolset, SRCIROR, for achieving
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mutation testing at the C/C++ source code and LLVM intermediate represen-
tation (IR). Sousa and Sen [58] also present a LLVM IR-based mutation testing,
which changes integer constants, to improve the generation of Transaction Level
Modeling (TLM) testbenches. Although mutation testing applies mutations sim-
ilar to those used in MTD, its goal is orthogonal. Evaluating the applications of
Aloja to mutation testing is an interesting direction for future work.

Parser/Constructor Function Identification. Polytracker [2] is an LLVM-based
instrumentation tool for dynamic taint analysis, which we initially attempted to
use within our project. However, we found that, although taint tracking can be
used to locate parsing code, it is less suited for identifying message constructors.
Besides, it requires users to provide sufficient and comprehensive inputs. Cojo-
car et al. [23] propose PIE, a methodology to identify protocol implementation
parsers in embedded systems. Similar to Polytracker, PIE is also a parser iden-
tification approach and does not identify constructors. Bao et al. [14] and Yin et
al. [63] present binary-analysis-based function identification methods. Compared
to them, our function mapping leverages source code, and can provide a smaller
but more precise function set which includes parser/constructor functions.

7 Conclusion

In this paper, we described a technique for injecting mutations into implemen-
tations of embedded/IoT-oriented network protocols as a form of moving-target
defense. Our evaluation shows that we correctly identify message-generating and
parsing code and inject mutations which preserve functional correctness of a
protocol. Furthermore, mutations are effective in preventing one-size-fits-all ex-
ploits, and only introduce limited overhead. By automating program analysis
and transformations necessary for mutations, our work provides an important
foundation for moving-target defense based on protocol dialects.
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