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IoT firmware oftentimes incorporates third-party components, such as network-oriented middleware and media encoders/decoders. These

components consist of large and mature codebases, shipping with a variety of non-critical features. Feature bloat increases code size,

complicates auditing/debugging, and reduces stability. This is problematic for IoT devices, which are severely resource-constrained, and

must remain operational in the field for years.

Unfortunately, identification and complete removal of code related to unwanted features requires familiarity with codebases of interest,

cumbersome manual effort, and may introduce bugs. We address these difficulties by introducing PRAT, a system which takes as input

the codebase of software of interest, identifies and maps features to code, presents this information to a human analyst, and removes all

code belonging to unwanted features. PRAT solves the challenge of identifying feature-related code through a novel form of differential

dynamic analysis, and visualizes results as user-friendly feature graphs.

Evaluation on diverse codebases shows superior code removal compared to both manual feature deactivation and state-of-art debloating

tools, and generality across programming languages. Furthermore, a user study comparing PRAT to manual code analysis shows that it

can significantly simplify the feature identification workflow.

CCS Concepts: • Security and privacy→ Software security engineering; • Software and its engineering→ Software usability.
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1 INTRODUCTION

Like most modern applications, firmware for IoT devices generally includes a significant amount of third-party open-

source software components. Code reuse has many advantages, as it speeds up the development process and simplifies

the deployment of complex functionality. However, it also comes with drawbacks. For a firmware developer, including

third-party components implies bringing significant complexity into their codebase. Mature implementations of popular
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functionality—for example, publisher/subscriber communication and multimedia encoding/decoding—include a myriad

of features, not all necessarily relevant to every deployment scenario. This is an instance of a phenomenon common in

software development, where codebases over the years grow larger and larger due to feature creep [41]. A representative

example is Mosquitto, an IoT-oriented middleware that implements the popular publisher/subscriber MQTT protocol. A

review of its codebase reveals 19 discrete, optional features in addition to the core MQTT functionality. Several of them

(e.g., Websockets support) are relevant to very specific use cases and can be safely dropped in other scenarios.

While abundance—or overabundance—of features is not a problem per se, it comes with negative consequences.

Feature bloat generates larger binaries which in turn consume precious hardware resources, especially on resource-

constrained IoT devices. Furthermore, uncommon features tend to receive little scrutiny and—when exposed—have

long been used for attacks. A well-known example is the inclusion of outdated ciphers in TLS [18, 19]. Finally, smaller

codebases are more easily audited and vetted for bugs. Vetting is particularly important in the IoT domain, where

devices may operate in the field for years without updates [45]. For these reasons, it is critical to minimize the size and

functionality of third-party libraries integrated in IoT firmware, by removing unneeded features and their corresponding

code.

Unfortunately, manual feature identification and removal is a daunting task for codebases which consist of tens or

hundreds of thousands of lines of code, particularly if a given project must include multiple of such codebases. Automating

the task is also difficult, as none of the debloating and feature location techniques in literature can straightforwardly be

applied to the task at hand. Some [22, 26, 28, 37, 49] rely on the availability of test cases to identify features. Generating

such test cases is cumbersome for programmers (especially if unfamiliar with the codebases) and we found that, in

practice, not every codebase ships with suitable test cases. Others [20, 24, 29, 30, 36, 40, 52] rely on domain expertise or

externally-provided knowledge bases (e.g., through web mining or code annotations), which are unlikely to be readily

available for every program of interest.

In this paper, we tackle these issues by proposing PRAT (PRogram feature Analysis Toolkit): a novel approach to

feature discovery and removal in third-party code. At a high level, PRAT conducts automated feature discovery based

on the analysis of build configurations. It then performs differential dynamic analysis to map each feature to the related

lines of code and presents each mapping to the analyst in a concise, easy-to-understand graphical form. Once the analyst

selects features for removal, all related lines of code are pruned, and the result is tested for correctness.

Designing an effective approach to feature removal entails tackling several challenges. First, features must be discovered

without user assistance, which we achieve by deriving hints from build system flags. This is based on the fact that in

many cases developers expose discrete, optional functionality as build-time options. Interestingly, however, our analysis

(Section 8) finds that even if a feature is selectively disabled at compile-time via build flags, a significant amount of feature-

related code (up to 29% of LOCs in our experiments) may still end up in the compiled binary! This is because manual

deactivation of a feature simply excludes source files or libraries from compilation while leaving related functionality in

shared files untouched. This functionality is interleaved with useful code and is in general not identifiable via dead code

elimination. In order to ensure that we identify all feature-related code, we devise a new code pruning algorithm based

on differential coverage analysis. Our algorithm executes the code of interest on a variety of test cases, to identify lines

of code related to each build-exposed feature. To ensure that our approach works even for codebases that ship without

high-quality test cases (or none at all), we introduce automated, high-coverage test case generation via symbolic execution.

If the analyst deems a particular feature unnecessary, all related lines of code can thus be removed.

Another issue is that, while the problem of unused code removal has been studied in recent years (e.g., [38, 48]),

allowing an analyst to understand and control the process has received much less attention. Conveying the set of available
Manuscript submitted to ACM
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features, and the ramifications of each feature in the codebase is complex but crucial to enable the analyst to make informed

decisions. To solve this, we propose the novel formalism of feature graphs, to represent the complex dependencies

between program features and their implementation. We also evaluate the usability of PRAT as a code understanding tool,

by conducting a user study contrasting manual and PRAT-based analysis of code features.

PRAT’s initial design focuses on C/C++ codebases using Make or cMake, due to the popularity of these languages and

build systems in the IoT/embedded space. In order to validate this decision, we ranked GitHub projects by popularity

(based on March 2021 data) and retained the 30 most popular project which are IoT-related in nature (i.e., explicitly target

the embedded and/or IoT domains). We then determined language and build system for each of them; 18 out of 30 (60%)

were Make/cMake-based and developed in C/C++. However, we also emphasize that PRAT’s design is language-agnostic,

requiring only the ability to compute code coverage and perform symbolic execution on the compiled program where

there is a need for symbolically-generated test cases. Supporting a specific codebase requires the ability to parse that

codebase’s build system scripts, and the availability of tooling to compute code coverage (and additionally to perform

symbolic execution if there is a need for symbolically-generated test cases). In practice, we found that implementing

support for a language/build system is a low-effort task; to demonstrate this, we extended our prototype beyond C/C++

codebases by supporting Rust code using the Cargo build system.

Overall contributions:

(1) We present PRAT, a novel tool for the identification and removal of features from a program. Feature identification

is based on the analysis of build system configurations, while feature removal uses a novel dynamic analysis

algorithm leveraging comparison of code coverage data.

(2) We propose the use of feature graphs to represent available program features and their implementation within a

protocol implementation’s source code.

(3) We evaluate PRAT on diverse codebases, showing that it removes significantly more code than manual analysis

and state-of-the-art automated tools, w/o introducing bugs.

(4) We demonstrate generality by applying PRAT to codebases developed in different languages (C, C++, and Rust)

and using different build systems (Make, cMake, autoconf, and Cargo).

(5) Through extensive fuzzing and symbolic testing, we verify that PRAT does not introduce unexpected bugs.

(6) We conduct a user study comparing feature identification via manual analysis and PRAT. Results suggest that

using PRAT can result in a streamlined workflow for a developer performing feature identification tasks.

Our PRAT prototype’s source code is publicly accessible; see Section 14 for details.

2 CASE STUDIES

In this section, we motivate our work by reviewing the issue of software bloat w.r.t. various IoT-relevant codebases.

2.1 Communication Protocols

Smart, embedded appliances such as cameras, locks, thermostats, and a variety of sensors, are oftentimes equipped with

the ability to connect to other devices and the Internet. For example, temperature sensors may be connected in a wireless

network to collect temperature information in a large building automatically. Designers use a variety of low-overhead,

application-level network protocols for communication between embedded devices; examples include MQTT, AMQP, and

DDS. Many of these protocols have robust and well-maintained open-source implementations, for example, Mosquitto [1]

Manuscript submitted to ACM
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Name Description #Features
Mosquitto [1] Implementation of MQTT: a publisher-subscriber messaging protocol based on

brokers
19

azure-uamqp-c [2] Implementation of AMQP: a protocol for messaging queuing and routing, sup-
porting both publish-subscribe and point-to-point communications

16

OpenDDS [9] Implementation of DDS: a publish-subscribe messaging protocol supporting
discovery and quality-of-service

9

libzmq [10] Implementation of ZeroMQ: a message-oriented middleware supporting both
broker-less and broker-based communications

20

LoRaMac-node [7] Reference implementation of LoRaWAN stack for low-power wide-area networks 12
LibCoAP [8] Implementation of CoAP: a REST-based protocol for resource-constrained devices 8
LibNyoci [4] Implementation of CoAP 10
Quiche [12] Rust implementation of the QUIC transport protocol 4
FFmpeg [14] Collection of audio/video codecs and algorithms 32
rav1e [15] Fast and safe AV1 encoder written in Rust 14
libaom [11] Alliance for Open Media video codec implementation 20

Table 1. Examples of relevant programs and their respective number of user-configurable features

for MQTT, and OpenDDS [9] for DDS. We also include Quiche, a userspace implementation of the QUIC transport

protocol and HTTP/3, due to the current industry interest in applying QUIC to the IoT space [25].

Features. Table 1, lines 2-9, summarizes a set of popular protocol implementations in the IoT space. For each, we

manually inspected source code and determined the number of optional features (column 3). Table 1 corroborates our

insight that IoT-related software comes equipped with a significant amount of non-core functionality. For example,

Mosquitto implements support for Websockets, which simplifies communication between a web browser and a server. If

an IoT installation does not include a browser UI, the feature—whose implementation consists of 800+ LOCs—can be

deactivated.

2.2 Multimedia Encoders/Decoders

Many IoT sensors incorporate media capturing and streaming capabilities. Audio/video codecs are extremely complex

pieces of software and reuse of standardized implementations is common; we therefore consider leading open-source

implementations of multimedia codecs and streaming logic as a relevant case study. We include three popular and actively

maintained codebases: FFmpeg [14], an extensive, multiplatform collection of audio/video codecs and related tools; and

two implementation of the industry-standard AV1 video codec: rav1e [15] (written in Rust), and libaom [11] (C/C++).

Features. Based on lines 10-12 of Table 1, the three programs in this category include, in aggregate, 66 discrete build-

exposed features. This is not surprising as media tools tend to implement support for optional optimizations, algorithms,

and subcomponents (e.g., video post-processing routines in FFmpeg). This result underlines the importance of customizing

these codebases for embedded applications.

2.3 Motivation of Our Work

The abundance of optional features, and the difficulty of fully removing them, are undesirable. First, when building

firmware for highly resource-constrained IoT devices, it is essential to avoid unnecessary use of storage space for useless

functionalities. Feature-level removal goes beyond dead or unreachable code and is focused on reachable code that is
Manuscript submitted to ACM
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Fig. 1. System overview

not used or needed. It is worth pointing out that leftover code may also offer attackers additional avenues (larger attack

surface) to mount attacks, such as ROP and code reuse [42].

Second, optional features present opportunities for vulnerabilities to lurk in a codebase. To validate this, we performed a

survey of CVE reports [13] related to a subset of programs in Table 1 (Mosquitto, azure-uamqp-c, OpenDDS and FFmpeg).

We sampled approximately 100 results, and eliminated those which did not apply to feature-related functionality based on

description. For the remaining ones, we identified the lines of code where the vulnerability lies, and confirmed that these

lines are removed by PRAT when disabling the relevant feature. This analysis resulted in eight CVEs: CVE-2018-12546

in Mosquitto, CVE-2019-1535 in OpenDDS, and CVEs 2018-13303, 2017-16840, 2019-9721, 2019-9718, 2019-11339,

2018-1999015 in FFmpeg. Five of those are rated “medium”, two “high”, and one “critical”, for an average CVSS score

of 7.3. While these features can be manually deactivated, PRAT simplifies the process of discovering and disabling them,

encouraging and streamlining their removal.

Code removal (or debloating) at the feature-level directly answers the need for methods to keep IoT firmware small in

code size and minimize attack surface. It also facilitates static and dynamic analyses. Refining the code by removing

all unnecessary features makes analysis scope smaller, complexity lower, and precision higher. Compared with feature-

unaware debloating, feature-level debloating is more user-friendly, explainable, and tractable. It is easier for users to

understand what is being removed and why; it guides and takes inputs from the analyst through the debloating process.

We believe that an easy-to-use IoT feature-based software debloating tool is an important—yet missing—building

block towards optimized, reliable IoT firmware. Our core goals are therefore to: (i) identify available features, and their

ramifications within a codebase, (ii) ensure that deactivation of a feature at build time results in removal of all code solely

associated with that feature, and (iii) ensure the process results in functionally correct binaries.

3 SYSTEM WORKFLOW

In this section, we demonstrate PRAT via a concrete use case: feature pruning of the popular MQTT broker, Mosquitto.

Sections 4-7 describe each step in detail.

3.1 Mosquitto Overview

Mosquitto is a popular implementation of the MQTT publisher/subscriber communication protocol. It is a mature codebase

that has incorporated several features over time, summarized in Figure 1(b). In general, not all such features are necessary

for a given deployment. In our scenario, we assume an analyst uses our tool to prepare a Mosquitto build for a Linux-based

sensor network. Devices have limited storage which must suffice for the OS and additional custom code. The network
Manuscript submitted to ACM
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exists in a controlled power generation building, and it is not connected to the Internet. The function is non-critical

(environmental monitoring rather than process control) but access to the network nodes is difficult (most of the monitoring

network exists within a reactor containment building) so software reliability is important. The process of feature selection

is carried in 5 steps, described in the following and depicted in Figure 1(a).

3.2 Step 1: Feature Identification

First, PRAT identifies all features available within the source code. Feature information is not readily available or always

documented, and therefore PRAT infers features by analyzing and filtering the build system options. We implement

parsers to analyze the build system of the project and return a list of available features.

We term the remaining set of build options as the candidate feature set—in other words, those are options that are

likely to control activation/deactivation of optional protocol features. As part of the feature identification step, we also

have a process that filters out certain features from being displayed to the analyst. The default behavior—and that used in

our running example—is to display all features to the analyst so they can determine which are important or not. However,

if we want to simplify the process for the analyst further, we filter out features that would otherwise inundate the analyst

with options. The feature identification step is described in greater detail in Section 4. In our example, the tool would

identify the set of features in 1(b).

3.3 Step 2: Feature-to-Code Mapping

In the second step, PRAT identifies lines of code exclusively associated with each feature (i.e., lines of code whose purpose

is to implement a given feature but are not associated with/necessary for any other functionality). This is necessary

since, as outlined in Section 1, simply deactivating a build option associated with a feature does not guarantee full

removal of all associated code. The process builds a set of binaries, each with a different build option—among those

identified in step 1—turned off. All binaries are instrumented to collect code coverage data and executed on a set 𝑇 of

symbolically-generated tests. Differential analysis of code coverage allows PRAT to determine which code is associated

exclusively with each feature. Because all the binaries are instrumented to track coverage information when we run a test

against the binary, all code that gets executed is marked in corresponding coverage files. Seeing code being executed

with one feature activated but not another means that the code block pertains to the feature being tested. Results of these

tests are gathered and used to determine the lines of code associated with each feature (the process is described in detail

in Section 5. The feature-to-code mapping is then converted to a graphical representation we call a feature graph. For

a given source tree, a feature graph lists high-level features and associates each with source files and individual LOCs.

Figure 2 shows a simplified view of the feature graph for Mosquitto’s Websockets feature.

3.4 Step 3: Feature Selection

Feature graphs—described in detail in Section 6—constitute an easy-to-use decision-support tool for feature selection.

Using a feature graph, the analyst: (i) identifies the set of available optional features; (ii) assesses the amount of code

associated with each; and (iii) delves into the specifics of each feature’s implementation. As the output of this step, the

system receives back a set 𝑅 of features that the analyst wishes to be fully removed from the code. In our example, the

analyst identifies Websockets and possibly TLS, TLS_PSK as superfluous (browser connectivity is not required, and the

analyst decides that, given the controlled setting, encryption may be unnecessary and even hamper debugging).

Manuscript submitted to ACM
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3.5 Steps 4-5: Feature Removal and Testing

PRAT removes from the source tree all lines of code associated with the features in 𝑅. The modified source is then

compiled into the final binary. The three identified features in our example still have code artifacts remaining in the source

code when deactivated via build options. By using our tool, on average we remove an extra 46,396 LOCs, which amounts

to an additional 2.9 MB reduction in the size of the compiled binary. The program binary is once again run through the set

𝑇 of test cases as well as rounds of fuzzing to ensure its functional correctness. We note that the extensive use of dynamic

analysis, both in feature identification and testing, comes with some limitations. We further discuss these limitations, and

motivate why we deem them acceptable, in Section 10.

4 FEATURE IDENTIFICATION

First, PRAT identifies a set of discrete, high-level features that can be selectively deactivated without breaking a software’s

core functionality. While many possible definitions of features are used in literature, we converged on one which is both

practical and relevant to the user. Often, build options are used by developers to enable activation/deactivation of various

pieces of functionality, which are important but not needed by all users of a software. This is a common practice in

software development, and we use for our definition:

DEFINITION. A feature is a set of lines of code which can be selectively activated or deactivated by operating on a

single build configuration option.

This definition has the advantage of encompassing portions of the source code which have been implicitly marked as

optional—by defining them as toggleable via build-time options—by the software developer. This approach fits well with

our workflow, as our goal is to operate on discrete features which do not have the potential to break core functionality of

the program. Indeed, by definition none of the features which are exposed via the build system are necessary, and they can

freely be removed should the analyst decide to do so.

It should be noted, however, that there may be additional code related to such a feature that remains in the source even

when the related build option is turned off: the code associated with a build option generally represents a subset of the

code that can be removed if the related feature is not needed. Indeed, our evaluation in Section 8 shows that—somewhat

counter-intuitively—a significant percentage of feature-related code may remain even when the relevant feature is disabled

at build time.

Given these considerations, identifying features begins by analyzing build configuration files. Such analysis must, by

necessity, be based on heuristics, which encode expert understanding of how configurations are created and used. We built

specialized analyzers for two of the most popular build systems for C/C++, Make/cMake, and autoconf, and Cargo for

Rust:

cMake. The analyzer builds the root project in the source tree using cmake -LA | grep BOOL, which returns a

list of toggleable options. We posit that a feature which can only assume boolean values true or false corresponds to a

user-defined feature (further post-processing is applied; see below).

Autoconf. The analyzer obtains a list of build-time options by executing configure -help, and retains those whose

description includes the words “feature” or “optional”.

Cargo. The analyzer parses Cargo.toml to find any defined features and returns a list of those that are non-default.

Manuscript submitted to ACM



8 Ryan Williams, Tongwei Ren, Lorenzo De Carli, Long Lu, and Gillian Smith

Discussion. A possible issue is that of false positives. Build configurations typically intermix options related to high-level

functionality with ones that control low-level aspects of the compilation, which are not directly related to lines of code

(e.g., shared library location, optimization level). Most of these spurious options are standard across codebases and are

automatically discarded by our parser. We further apply filters to hide features that are meant for debugging or other

developer-specific options. These features are identified using simple heuristics about naming conventions for in-line

directives.

Another issue is false negatives, since relevant features may exist that are not exposed to the build system. However, a

detailed analysis of representative codebases (discussed in Section 8.2) did not yield any such feature, suggesting that

PRAT’s feature discovery is robust.

The output of the feature discovery step is a set 𝐹 = {𝑓1, ..., 𝑓𝑛} of 𝑛 discovered features.

Algorithm 1 Feature-to-code mapping

Input: Program source 𝑃
Input: Set 𝐹 = {𝑓1, ..., 𝑓𝑛} of features in 𝑃

Input: Set 𝑈 of provided unit tests (if any)
Output: Set D = {𝐷1, ..., 𝐷𝑛}, where 𝐷𝑖 is the set of LOCs associated to feature 𝑓𝑖 ∈ 𝐹

1: D ← ∅;
2: 𝑆 ← SYMBOLICTESTGENERATION(𝑃);
3: 𝑇 ← 𝑈 ∪ 𝑆;
4: 𝐵𝑎𝑙𝑙 ← COMPILE(𝑃);
5: 𝐿𝑎𝑙𝑙 ← COVERAGEANALYSIS(𝐵𝑎𝑙𝑙 , 𝑇 );
6: for each 𝑓 ∈ 𝐹 do
7: 𝑃𝑓 ← DISABLEFEATURE(𝑃 , 𝑓 );
8: 𝐵𝑓 ← COMPILE(𝑃𝑓 );
9: 𝐿𝑓 ← COVERAGEANALYSIS(𝐵𝑓 , 𝑇 );

10: 𝐷 𝑓 ← 𝐿𝑎𝑙𝑙 \ 𝐿𝑓 ;
11: D ← D ∪ {𝐷 𝑓 };

5 FEATURE-TO-CODE MAPPING

To ensure full removal of feature-related code from the target program, once the set 𝐹 of features is available, PRAT

proceeds to identify the subsets of source code that are exclusively associated with each feature. We perform this mapping

at the granularity of individual lines of source code (LOCs in the following). We find that working with LOCs has two

important advantages: (i) it is sufficiently fine-grained to be useful in practice, and (ii) it makes analysis results easily

readable and understandable to a human analyst.

Our mapping algorithm uses dynamic analysis. The core idea is to compare code coverage achieved by instrumenting,

compiling, and executing the same binary with and without a particular feature. After mapping back the executed binary

instructions to the respective LOCs, LOCs that are only executed when a given feature is active are inferred to be

exclusively related to that feature.

Like any dynamic analysis approach, the correctness of our algorithm is crucially dependent on exploring as many

different code paths as possible. Therefore, we give considerable attention to accruing a comprehensive set of test cases,

using symbolic execution to extend the unit tests that are typically distributed with a program’s source code. The rest

of this section describes our code coverage analysis and symbolic test generation. The overall procedure is outlined in

Algorithm 1.
Manuscript submitted to ACM
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mosquitto_broker_internal.h

Memory	TrackingEPOLLUUIDSYS_TREE

struct	libwebsocket_context	*ws_context;
	 char	*http_dir;

	 struct	libwebsocket_protocols	*ws_protocol;

int	websockets_log_level;
	 bool	have_websockets_listener;

if	defined	(LWS_LIBRARY_VERSION_NUMBER)
struct	lws_context	*mosq_websockets_init

(struct	mosquitto__listener	*listener,	int	log_level);
#		else

struct	libwebsocket_context	*mosq_websockets_init
(struct	mosquitto__listener	*listener,	int	log_level);

Fig. 2. Simplified feature graph example (from Mosquitto)

5.1 Per-feature Builds

Given the set of features 𝐹 , PRAT builds 𝑛 + 1 separate versions of the target program binary. First, our system builds a

version of the binary with all features enabled (line 4 of Algorithm 1). Next, it builds additional 𝑛 versions where the

𝑖 − 𝑡ℎ build has all features enabled except feature 𝑓𝑖 (lines 6-8 in Algorithm 1). This is typically the most time-consuming

step in the feature removal process, as it requires re-compiling a potentially large codebase multiple times. Overall, the

entire PRAT analysis pipeline takes on average 12.8 minutes to complete on the codebases evaluated in Section 8. We

consider this acceptable as manually identifying all features in an unknown codebase, and tracking all the locations in the

code where each feature is implemented, is likely to take significantly longer. Additionally, tools like ccache [3] could be

applied to further speed up the process via memoization. At this stage, we also discard build options that result in a failed

compilation. This step outputs a set of 𝑛 + 1 binaries 𝐵𝑎𝑙𝑙 , 𝐵1, ..., 𝐵𝑛 , where 𝐵𝑎𝑙𝑙 has all features enabled, and each binary

𝐵𝑖 has all features enabled except 𝑓𝑖 .

5.2 Code Coverage Analysis

The next step (lines 5 and 9-11 in Algorithm 1) leverages code coverage analysis to identify lines of code associated

with each feature via an exclusion process. Code coverage instruments compiled binaries to determine which lines in

the source code correspond to binary instructions that were executed in a given run. Consider the set 𝐿𝑖 of lines of code

returned by the tool when running 𝐵𝑖 , i.e., the binary with feature 𝑓𝑖 disabled. We posit that lines in 𝐷𝑖 = 𝐿𝑎𝑙𝑙 \ 𝐿𝑖 (where

𝐿𝑎𝑙𝑙 is the set of lines of code returned with all features enabled) represent the logical implementation of feature 𝑓𝑖 .

5.3 Symbolic Test Case Generation

Code coverage, to be successful, requires the availability of tests that make use of as many features as possible. We rely

on a set of test cases 𝑇 , to provide the highest-fidelity results.

First, this set includes the set of unit tests 𝑈 shipped with the code, if any. For example, both azure-uamqp-c and

OpenDDS ship with a comprehensive suite of unit tests which we used without modifications. However, other software

tools (e.g., Mosquitto) may not ship with sufficiently comprehensive tests.

In order to ensure that the analysis can proceed regardless of the availability of 𝑈 , we leverage symbolic execution to

generate an additional set 𝑆 of high-code-coverage tests.

It should be noted that, in general, symbolic execution is not the only approach that can be used to carry such task,

however we found it to be the most effective one in our domain. Beyond symbolic execution, we investigated using

state-of-the-art testing tools, namely the concolic executors QSYM [50] and Driller [46]. However, both are based on
Manuscript submitted to ACM
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Parameter Option(s)
libc uclibc
runtime posix-runtime
sym-args 0 3 4
sym-files 2 4
max-fail 1
max-time 60

Table 2. General parameters used for test case generation via KLEE

AFL [17], which is not designed for fuzzing network protocols (network protocol implementations constitute some of the

most relevant targets for our analysis in the IoT space). Integrating AFL file-based interface with network code requires

either modifying the target program in non-trivial ways or engineering complex test harnesses [27]; while network-specific

forks of AFL have been developed [16], they are not integrated with concolic engines. Furthermore, we want the executor

to generate a single test case for each new path explored in the codebase, which we can then simply replay against any

variants of the same implementation.

Based on the considerations above, we leverage the KLEE symbolic execution engine [21] to generate high-quality

tests. KLEE is a symbolic virtual machine built on top of the LLVM compiler infrastructure, which aptly suits our needs.

In particular, we use its capability to generate a test case for every new path that it explores. By running KLEE against a

target, we can generate a suite of high-coverage test cases, 𝑆 , even in the absence of bundled unit tests. Overall, the final

set 𝑇 of tests consist of 𝑇 = 𝑈 ∪ 𝑆 .

The test generation process is summarized in lines 2-3 of Algorithm 1. In particular, the SYMBOLICTESTGENERATION

procedure in line 2 consists of the following steps:

(1) Compile source code to LLVM bytecode

(2) Run KLEE on the bytecode with a given set of parameters. When KLEE explores a new path, it generates a test case

with the concrete inputs needed to traverse that path.

During code coverage analysis, KLEE-generated tests can be replayed against the actual protocol binary by using

the klee-replay utility. This approach requires no modification of source code; the analyst can set the number (and

corresponding size) of the symbolic variables and files that KLEE uses. To balance our tradeoff between runtime for test

generation and code coverage achieved through our tests, we set parameters for max-fail and max-time. We run

KLEE against our target protocols for 60 minutes and, on average, generate 4,369 tests.

5.4 KLEE Configuration and Alternatives

Running KLEE requires setting arguments for the symbolic environment. However, PRAT strives to automate the entirety

of the testing process so it is opaque to the analyst. Through testing various permutations of candidate parameters to

KLEE, we settled on a default parametrization (given in Table 2) that provided generally comprehensive results across

different projects. If the operator desires to maximize code removal and has sufficient domain knowledge, it is possible to

refine the set of symbolic arguments and files passed to the LLVM executable.

Given our domain knowledge of the protocols under test, we can run the LLVM executables with a targeted set

of symbolic arguments and files. For example, if we want to exercise the functionality of starting a broker using a

configuration file instead of command-line arguments, we can pass -sym-files <NUM> <N> where NUM is the

number of files of size N. Using knowledge of the system under test, we can target KLEE much more precisely; however,
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since this knowledge cannot be assumed, we run KLEE using a standard set of parameters that tend to result in generally

comprehensive coverage. In all cases, our targets were tested using the same set of parameters, shown in Table 2.

We also explored the option of augmenting the base unit tests in 𝑈 , by making some of their inputs symbolic and

“amplifying” their coverage. This requires much more manual effort, as the analyst needs to understand how the code base

and unit tests work in order to properly flag variables in the source as symbolic. Results in Section 8.3 suggest that this

additional effort does not result in improved code coverage. Therefore, we do not consider this approach further.

Instead, to avoid requiring the user to manually modify the source code for symbolic execution purposes, we dismissed

the idea of making individual variables symbolic for testing and instead left the target codebase untouched. This means

that we run KLEE against our target binary with the aforementioned set of parameters without needing to manually insert

any klee_make_symbolic calls. Utilizing KLEE in this way circumvents the need for manual instrumentation of the

target codebase, and simplifies the overall workflow.

5.5 Correctness

By design, Algorithm 1 removes code conservatively, removing only those LOCs that are executed when the relevant

feature is active, but not when the same feature is disabled. The algorithm does not remove LOCs that are never executed

regardless of whether the feature is active or not. Thus, in the event that some feature-specific LOCs are not covered by

the tests, they will not be removed through this process. This design purposely strives for soundness over completeness. It

contains the effects of incomplete coverage, which thus results in the algorithm failing to remove all unused LOCs, but

not in the removal of non-feature-related LOCs.

Overall, feature-to-code mapping outputs the sets 𝐷1, ..., 𝐷𝑛 of lines of code associated with each feature 𝑖 = 1, ..., 𝑛;

and a feature graph (described in the next section).

6 FEATURE SELECTION

In the feature selection step, PRAT presents the results of feature identification and feature-to-code mapping to the analyst,

who selects the features to be removed prior to deployment. A significant problem here is how to present the analyst with

easy-to-understand and actionable information.

To address the problem, we devised the novel formalism of feature graphs. Despite its simplicity, we found this concept

to be effective to quickly grasp both the set of available features and their footprint within a larger codebase. A feature

graph is a directed acyclic graph (DAG) 𝐹 = {𝑉 , 𝐸}. The set of vertices 𝑉 includes nodes representing features, source

files, and sets of lines of code. The set of edges 𝐸 is constructed as follows. Consider a feature node 𝑓 ∈ 𝑉 , a source

file node 𝑠 ∈ 𝑉 s.t. the file 𝑠 contains the implementation of 𝑓 , and a set of 𝑛 lines of code (also represented by nodes

𝑙1, ...𝑙𝑛 ∈ 𝑉 ) which reside in 𝑠 and are executed only when 𝑓 is enabled. Then, we establish an edge (𝑓 , 𝑠). Furthermore,

for each line of code of interest 𝑙𝑖 , we establish an edge (𝑠, 𝑙𝑖 ). In practice, contiguous lines of code are merged in a single

node to limit the complexity of the graph. Informally, this results in a DAG where the roots are features, intermediate

nodes are source files, and leaves are lines within source files. Figure 2 presents a simplified example of DAG, restricted to

a single Mosquitto feature. In this case, the graph links Websocket support to the mosquitto_broker_internal.h

header file and some of its content. Using the graph, a user can quickly descend from a feature into the source files where

it is implemented, and—if necessary—examine the code implementing it. After completing the assessment, the analyst

passes back to the system the set 𝑅 of features marked for removal.
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Program #LOCs #Source Size [MB]
files

Mosquitto [1] 79,859 953 27
azure-uamqp-c [2] 90,570 506 38
OpenDDS [9] 2,589,799 5,457 380
Quiche [12] 1,177,473 2,037 325
FFmpeg [14] 1,241,433 7,196 341
rav1e [15] 135,727 264 23
libaom [11] 452,822 1,158 273

Table 3. Characterization of codebases

7 FEATURE REMOVAL

In this step, PRAT receives the set of features to be removed, 𝑅, and the set of lines of code associated with each feature.

It then performs feature removal by removing from the source the lines in
⋃

𝑖∈𝑅 𝐷𝑖 , and rebuilds the program binary.

To ensure that the program continues to work correctly after feature removal, the system then re-runs the test suite, 𝑇 ,

generated during feature-to-code-mapping and monitors the program’s output for crashes and unexpected behavior.

8 EVALUATION

In this section, we evaluate PRAT in light of the following experimental questions:

• Question #1: can PRAT identify all features within a codebase? In section 8.2, we show that our feature

analysis produces no false negatives and low false positives with no impact on the final binary.

• Question #2: does our approach to test generation create tests that achieve high code coverage? In Sec-

tion 8.3 we show that test generation based on symbolic execution results in high code coverage, providing

confidence in PRAT’s dynamic analysis approach.

• Question #3: does our feature removal approach lead to a measurable reduction in unused code? In Sec-

tion 8.4, we show that PRAT results in the removal of up to an additional 29% lines of code, compared to the

amount of code removed by manual deactivation of features at build time.

• Question #4: how does our approach compare to related work in the domain of software debloating? In

section 8.6, we compare PRAT to Piece-Wise [38], a state-of-the-art debloating tool. PRAT leads to an additional

significant reduction in code and binary size.

• Question #5: do programs retain correctness after feature removal? In section 8.7 we show the results of

extensive testing via both symbolic tests and fuzzing on Mosquitto. Our analysis reached on average 84% code

coverage without revealing any removal-related bugs.

• Question #6: is our approach generalizable? Sections 8.2 and 8.4 include evaluation of Rust codebases, demon-

strating generalizability beyond C/C++. We further discuss support for multiple languages in PRAT in section 10.

We further conducted a user study to evaluate the effect of using PRAT on a developer’s feature identification workflow.

We separately discuss the study and its results in Section 9.

8.1 Implementation and Dataset

Tooling. To evaluate our approach, we created a prototype implementing the PRAT pipeline described in Sections 3-7.

Internally, the prototype leverages gcov (for C/C++) and kcov (for Rust) to generate code coverage reports. The
Manuscript submitted to ACM
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Program All features No features (manual) No features (PRAT)
Code size [LOC] Binary size [B] Code size [LOC] Binary size [B] Code size [LOC] Binary size [B]

Mosquitto 18,983 1655112 18,345 (-3.4%) 1245648 (-24.7%) 14,273 (-25%) 498156 (-70%)
azure-uamqp-c 49,629 1250716 49,311 (-0.64%) 749564 (-40.1%) 35,293 (-29%) 701524 (-44%)
OpenDDS 207,936 47176232 206,514 (-0.68%) 46995256 (-0.38%) 202,498 (-2.6%) 39786816 (-15.7%)
Quiche 488,247 20237216 479,545 (-1.8%) 12714298 (-37.2%) 476,771 (-2.4%) 10533152 (-48%)
FFmpeg 1,122,317 30400928 945,890 (-15.7%) 26057568 (-14.3%) 674,620 (-40%) 19361728 (-36.3%)
rav1e 130,010 24480350 128,950 (-0.82%) 20382662 (-16.7%) 128,054 (-1.5%) 18060592 (-26.2%)
libaom 344,554 3517928 336,944 (-2.2%) 3444112 (-2.1%) 309,216 (-10.3%) 3188680 (-9.4%)

Table 4. Code reduction for target programs (% represent reduction in LOCs and bytes compared to “All features”)

prototype has been publicly released (ref. Section 14). To validate the correctness of feature removal on the Mosquitto

broker codebase (Section 8.7), we built a fuzzing MQTT client based on the Boofuzz fuzzer [6]. We provide details on

the fuzzer in Section 8.7.

Program Dataset. Table 3 describes the program codebases used for the experiments (large codebase sizes are due

to the inclusion of tests and other resources). We selected these seven codebases after an extensive review of open-

source middleware protocols and multimedia tools. Ultimately, we converged on codebases that represent stable, popular

implementations of mature functionality relevant to the IoT space.

8.2 Feature Analysis

Methodology. In this section, we evaluate the effectiveness of PRAT in identifying optional features embedded in a

codebase. We identify false positives and negatives by manually analyzing each codebase and collecting available features,

and comparing the result with the list returned by PRAT. Manual identification of features was carried by two of the

authors using the process detailed below. On average, each person spent 30 minutes per codebase. The union of these

two sets of features was used as a reference for evaluating false positives and negatives. In order to collect features, we

first obtained the list of build system flags, retaining those matching the definition of a feature described in Section 4.

Further, to ensure that no hidden features (i.e., features not accessible to the build system) exist, we parsed and collected

#define directives within the source code of all programs, manually comparing such variables with the identified

features. This analysis did not reveal any features existing in the code but not accessible to the build system. Overall, our

target codebases include 115 optional features. We were unable to support a total of 7 features across the targets; 2 of

them were Windows-specific and thus incompatible with our framework, while 5 of them triggered various compilation

bugs, which we determined to be unrelated to our infrastructure. The most interesting case was a bug we uncovered in

azure-uamqp-c, where if no SSL implementation is specified to use, the code defaults to using OpenSSL. However, in the

checks for the defined SSL implementation, in the unspecified, default case, the appropriate headers for OpenSSL are not

imported. This results in compile-time errors, which were found through our feature extraction process. Following this

discovery, we reported the bug to developers.

Results. In principle, feature identification could generate false negatives in two cases: (i) features configurable via the

build system are not recognized; and (ii) features exists which are not exported to the build system. Mosquitto’s build

system defines 20 build-time options, azure-uamqp-c 32, OpenDDS 10, Quiche 5, FFmpeg 34, rav1e 16, and libaom 26.

Of those, respectively 19, 16, 9, 4, 33, 14, 20 are features according to our definition. Our feature analysis (ref. Section 4)

identifies all 115 true features.
Manuscript submitted to ACM



14 Ryan Williams, Tongwei Ren, Lorenzo De Carli, Long Lu, and Gillian Smith

TLS

sys
tem

d
Brid

ge
W

rap

Pers
ist

en
ce

W
eb

soc
ke

ts

Mem
ory

_T
rac

kin
g

TLS_P
SK

EPOLL
UUID

SYS_T
REE

use
_h

ttp

mem
ory

_tr
ace

use
_w

sio

use
_m

be
dtl

s

use
_d

efa
ult

_u
uid

no
_lo

gg
ing

use
_c

on
dit

ion

use
_w

olf
ssl

use
_b

uil
tin

_h
ttp

ap
i

pe
rsi

ste
nc

e-p
rof

ile

ow
ne

rsh
ip-

kin
d-e

xc
lus

ive

qu
ery

-co
nd

itio
n

co
nte

nt-
filt

ere
d-t

op
ic

ow
ne

rsh
ip-

pro
file

100

101

102

103

#R
em

ov
ed

 L
O

C
s

Manual
Our approach

Fig. 3. Code reduction per feature

False positives can be generated if feature analysis confuses non-feature build options for features. In our analysis, this

only happens in 1 case. The lone misidentified feature is the option to build with or without a shared library. However,

this build option does not affect the program binary and has no source code associated with it; therefore, including it in

the analysis does not affect the final result.

8.3 Symbolic Test Generation

Before evaluating feature removal, we briefly discuss PRAT’s approach to generate test cases using symbolic execution.

As in any dynamic analysis-based system, we rely on exercising as much code as possible. Comprehensive tests allow our

approach to identify feature-related code accurately.

In our case, symbolic execution can be implemented in one of the two variants discussed in Section 5.3. First, KLEE

can be directly run against our program binaries. Second, existing unit tests (if any) can be manually modified to turn

some of the concrete inputs into symbolic ones. We evaluated both approaches. Running KLEE directly against the binary

results, on average, in 80.2% LOC coverage, while symbolizing existing tests results in 39.6% LOC coverage. Direct

binary execution via KLEE achieves superior coverage; therefore, we do not further consider the symbolization of existing

unit tests.

8.4 Feature Removal: PRAT vs Manual Removal

Methodology. In this experiment, we compare the effectiveness of PRAT in removing unwanted feature code, compared

to manual removal. For each codebase in our set, we do the following. First, for reference we compile each codebase to

a binary with all features activated. Then, for manual feature deactivation, we conservatively assume that the user can

manually identify and turn off all optional features (except those resulting in compilation bugs, as discussed in 8.2). After

doing so, we compute both the #LOCs that actually get compiled, and the size of the compiled binary. Finally, we run

PRAT on the codebase and configure it to remove all identified optional features, measuring both the resulting #LOCs

and compiled binary size.

Results. Table 4 describes, for each program in our evaluation set, source code size, and compiled binary size for a version

of the program with all features enabled (columns 2-3). It then compares code reduction obtained by manual feature

deactivation (columns 4-5) and our approach (columns 6-7). Figure 3 provides a more in-depth look into the impact of our

approach on the removal of individual features (for clarity, we randomly select 25 features across codebases). Note the

log-scale y-axis; missing bars represent #LOC values of 0. In most cases, our approach results in a significant reduction
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static void unpwd__free_item(struct
mosquitto__unpwd **unpwd, struct
mosquitto__unpwd *item) {
mosquitto__free(item->username);
mosquitto__free(item->password);
mosquitto__free(item->salt);
mosquitto__free(item);

}

Fig. 4. Example block of code which is not removed by toggling the TLS build-time option but is removed by PRAT (from
mosquitto/src/security_default.c). The code implements a utility function which frees items in memory which
correspond to a username/password. This is only enabled when using TLS, so PRAT removes the function when the TLS
feature is disabled.

in the size of the program source compared to manual feature deactivation. Overall, PRAT resulted in up to 29% more

LOCs being removed compared to manual deactivation of feature-related options.

8.5 Characteristics of Code removed by PRAT

The code that is additionally removed by PRAT tends to look like what might typically be contained within a preprocessor

conditional group. In other words, it is code whose execution is predicated upon the availability of a feature. Determining

why such code was not marked by conditional preprocessor directives (e.g., #ifdefs) is beyond the scope of our

work. However, we suspect that this may be related to the presence of numerous developers on the same project, which

creates ambiguity wrt. the purpose of specific blocks code. In other words, developers may not single out those blocks as

belonging to a feature, out of concern that core functionality may depend on it. Incidentally, this observation highlights

the potential applications of PRAT as a code understanding tool, as PRAT can quickly infer and display the ramifications

of a given feature with the codebase. An example of code removed by PRAT is shown in Figure 4.

8.6 Feature Removal: PRAT vs Piece-Wise

Methodology. In this section, we compare PRAT to a state-of-art debloating algorithm, Piece-Wise by Quach et al. [38].

Differently from PRAT, Piece-Wise is a binary debloating technique and focuses on unguided unused code removal. It

works by generating a fine-grained program dependency graph and only loading code that is truly needed at runtime. In

order to evaluate Piece-Wise, we manually de-activate all optional feature, compile the code, and run Piece-Wise on the

resulting binary for additional code reduction. We execute PRAT using the same procedure as in Section 8.4.

It should be noted that the above is an imperfect comparison. Much like in the manual removal case, when using

Piece-Wise the burden of manually discovering and disabling optional features is placed on the user. Conversely, PRAT

performs this function with high accuracy and automatically, as elucidated in Section 8.2. It is also important to point out

that PRAT can complement a binary debloating tool such as Piece-Wise, rather than replacing it. Feature removal at the

source code and binary level work at different levels of abstraction. Therefore, each approach is able to identify “bloat”

which is not visible to the other one. In our last experiment, we examine the advantages of the combined approach by

performing the removal of all features via PRAT and further debloating the resulting binary with Piece-Wise.

Results. Table 5 compares the size of binaries generated by PRAT (column 3) with those debloated using Piece-Wise

(column 4). We omit rav1e and Quiche, as they are written in Rust and Piece-Wise does not currently support this
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Program Binary size [B]
All features PRAT Piece-wise Combined

Mosquitto 1655112 498156 (-70%) 569632 (-65.6%) 468080 (-71.7%)
azure-uamqp-c 1250716 701524 (-44%) 743492 (-40.6%) 701332 (-44%)
OpenDDS 47176232 39786816 (-15.7%) 40232032 (-14.7%) 38487792 (-18.4%)
FFmpeg 30400928 19361728 (-36.3%) 24632584 (-19%) 18796480 (-38.2%)
libaom 3517928 3188680 (-9.4%) 3189304 (-9.3%) 3187944 (-9.4%)

Table 5. Comparison of PRAT and Piece-wise (% represent reduction in bytes compared to “All features”)

language. Binaries generated by PRAT are up to 17% smaller than those generated by Piece-Wise, which validates the

principle of feature-aware code removal as an effective debloating technique. Column 5 in Table 5 summarizes final

binary size for each program in our dataset, when using both PRAT and Piece-Wise. Results show that using both tools in

combination results in a modest improvement over PRAT alone, suggesting that it may be useful to combine source code-

and binary-based debloating.

8.7 Correctness

Methodology. In this section we evaluate the correctness of PRAT’s output using Mosquitto as a case study.

First, when mapping LOCs to a certain feature, PRAT must avoid false positives and minimize false negatives. To verify

this, we parsed the output of code coverage analysis to generate code comparison reports which display, side-by-side, the

original code and the code post-debloating, highlighting feature-relevant code. We then manually inspected these reports

to identify inconsistencies.

Second, even when LOCs are correctly mapped to features and removed, it is important to ensure that the final compiled

binary still works correctly. We evaluated the correctness of the codebase using a testing-based approach. First, we run

available tests against the debloated codebase, which did not evidence any newly introduced bug. Second, we carry further

analysis on Mosquitto by complementing existing tests with fuzzing. In particular, we built a custom MQTT fuzzing

engines based on the popular Boofuzz fuzzer [6]. Fuzzing as a testing strategy was not considered or employed during the

design and implementation of PRAT; therefore, we consider it a useful “sanity check” with potential to uncover issues not

otherwise identified. To keep execution times practical, we did not test all possible combinations of features; rather, we

generated 8 variants of Mosquitto. We started with a binary that includes all features, which represent variant 0. This also

gives us a baseline for #crashes present in the source prior to feature removal. We generated variants 1 to 7 in this way:

variant 𝑖 is obtained from variant 𝑖 − 1 by selecting and deactivating a feature that was active in variant 𝑖.

Finally, in principle, it is possible for features to be dependent on each other in such a way that removing a feature

may break another one. Throughout the analyses of all the target programs, there have not been instances of multiple

features utilizing or overlapping the same code blocks. They are outside of the core components of the project, and are

fairly compartmentalized in that fully removing a given feature will not break the build. Should this situation arise, we

expect that removing a feature without removing dependent features would result in breaking the build, which would still

prevent an incorrect implementation from being generated.

Results. Review of code comparison reports did not provide evidence of any incorrectly identified or missing lines of

code; we, therefore, conclude that our approach successfully identified all code related to the target features in Mosquitto.

Table 6 shows code coverage results obtained via fuzzing, including the time for which each fuzzing session was run.

Diminishing execution times are due to the fact that removing a feature entails that related code paths no longer exist,
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#Removed Features Lines of Code Functions Total Time [min]Total Covered Coverage Total Covered Coverage
0 10087 6428 63.7% 377 319 84.6% 108
1 9666 6209 64.2% 370 314 84.9% 105
2 9232 5870 63.6% 339 289 85.3% 67
3 8819 5532 62.7% 332 281 84.6% 62
4 8079 4841 59.9% 326 261 80.1% 59
5 8013 4853 60.6% 324 260 80.2% 56
6 7112 4566 64.2% 296 251 84.8% 41
7 6927 4380 63.2% 292 247 84.6% 36

Table 6. Results of fuzz testing for 8 variants of Mosquitto

resulting in a shorter fuzzing session. For all but one variant, fuzzing covered >60% of LOCs and >80% of functions,

without identifying any bug that was not originally present prior to feature removal. While dynamic testing does not

guarantee functional correctness, or the complete absence of bugs, supplementing unit tests with fuzzing provides extra

assurance that our feature removal did not inadvertently break another component. These results give us confidence that

our approach results in functionally correct source code.

9 USER STUDY

An important experimental question concerns the usability of PRAT and the information it generates, including feature

graphs. To evaluate this question, we carried an IRB-approved user study designed to compare how participants would

interact with PRAT versus how they would go about the process of feature identification and removal manually. The goal

of the study was to answer the following high-level research questions:

• Question #1: Does the notion of “feature” as used by PRAT align with the intuitive notion of feature used by
expert during code analysis? While discrepancies exist, semi-structured interviews show that most participants

used a working definition which directly matches the one used in PRAT’s design.

• Question #2: Does PRAT provide information useful to simplify code understanding? Participants’ impres-

sions of the tool were largely positive and show that PRAT has potential to simplify the feature identification

workflow, and provides useful information to human experts.

• Question #3: Can PRAT improve human performance in feature identification tasks? While we acknowledge

that performance is expected to be highly dependent on expertise and the specific codebase under examination,

results using PRAT show significant improvement in accuracy over manual code analysis.

9.1 Overall Study Design

The primary goal of the study is to understand whether software developers are likely to find PRAT useful and easy to use.

As such, each participant in the study was asked to complete two tasks: (1) identifying code pertaining to a given codebase

feature via manual analysis; and (2) completing the same task using PRAT. Tasks were conducted using a think-aloud

protocol. Through observing the participant during the task, we could follow their intuition for defining what a feature is

and determining where a given feature is implemented in a code base. Further, after completing the tasks, each participant

was involved in a semi-structured interview in which we asked the following four questions:

• Was there a discrepancy between your definition of a feature and PRAT’s? Defining what a feature is can

vary from person to person. It is important that PRAT’s definition of a feature is commonly held.
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• How did PRAT impact your workflow for feature identification and removal? When evaluating the usability

of PRAT, we need to guarantee that the benefits of using PRAT are worth learning a new toolchain.

• Is PRAT’s notion of a feature graph/web page output intuitive? The artifacts that PRAT outputs are important

for guiding a user through feature removal. Thus the reports need to be intuitive to users.

• What are some pros and cons of using PRAT over manual identification and removal? An open question for

potential improvements to PRAT is useful to see if there are common improvements users would like to see.

During the experiments, we also measured human performance as number of lines of code correctly identified

(discussed below).

9.2 Participant Recruiting

Initial participants were recruited via email and word-of-mouth advertisement among the CS graduate student population

at Northeastern University and Worcester Polytechnic Institute; the rest were recruited through snowball sampling. We

consider this user population (predominantly young graduate students) appropriate to test given our goals; as it ensures that

participants are generally familiar with software development, but unlikely to have prior experience with the codebases

under examination (which could skew results). Prior to the actual study, we conducted pilot testing with two subjects. For

the actual experiment, we recruited 10 participants, consisting of 3 women and 7 men aged 24-35. One participant worked

in industry while the remaining were graduate students. According to best practices, this sample size is appropriate for a

semi-structured interview design like ours [33].

The recruiting materials indicated that the study would take 30-60 minutes and focus on the usability of a new tool

used for program debloating. Participants were asked for consent to being recorded and compensated with a $15 gift card.

9.3 Study Protocol

At the beginning of each session we explained the task and the participant’s role at a high level. We asked that the

participants talk aloud to explain their thought process for each of the subsequent tasks. We presented the study to the

participants as a task asking them to define what would constitute a feature agnostic of code base, and once they defined a

feature, how would they go about finding all the implementation locations withing a given code base.

We then gave participants the Mosquitto [1] code base for experimenting with. They first started by proposing a

definition of a feature as it relates to Mosquitto. Next, we asked them to explain how they would find all the implementation

locations for one of the features they selected. Finally, we asked them to go about manually removing a given feature

using the methodology they outlined.

After we gave participants the task of manually removing a feature from Mosquitto, we introduced them to PRAT. Once

we explained PRAT to the participants, we asked them to use the tool to remove the same feature they had previously

removed manually. Next, we asked the participants to examine the feature graph that PRAT generated, and explain

whether the artifacts were intuitive or otherwise useful to the process. We visualized feature graphs as hierarchical HTML

documents. The reports listed each files containing relevant lines; clicking on a filename would display a colorized

representation of the lines located by PRAT.

While our experiments are within-subjects, we did not compensate for learning effects as we postulate that such effects

do not arise. In our design, we asked each participant to carry manual analysis first, and then use PRAT. Because the set of

lines identified by PRAT is independent of the user understanding of a given feature, the experience gained during manual
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analysis is irrelevant to the output and performance of PRAT. Conversely, a different design involving using PRAT before

manual analysis would risk incurring in such effects.

9.4 Data Collection

Due to the impact of the COVID pandemic, 7 sessions were conducted in person, and 3 were conducted remotely.

The procedure was identical in both cases: during interviews, notes of user responses to our questions were taken; the

subsequent analysis and results were generated based on these notes. We also recorded task completion time and number

of lines correctly identified for each user and task.

9.5 Interview Results

We now present the results from our study’s four questions.

Feature definition. Of the 10 participants, 3 defined the notion of a feature differently than the definition used by PRAT.

One participant defined a feature as any component used by the codebase. This did not imply that the user had control

over its configuration. Another participant said a feature was any formatting properties of a codebase such as ordering of

fields in a packet. A third participant stated a feature to be the overview of an application. This would be the application’s

UI, name, or contents returned by running man against the target. The remaining 7 participants defined a feature in the

same way as PRAT.

Impact on workflow. When asked how using PRAT would impact a participant’s workflow, 6 participants responded by

saying it speeds up the process of feature removal significantly. 3 other users did not explicitly comment on workflow

speed-up, and 1 qualified that PRAT could speed up the workflow on large codebases, but smaller codebases could be

analyzed more quickly by hand. 2 participants stated that PRAT is helpful for removal of useless code beyond what

compiler optimizations can typically capture. According to 3 participants, PRAT may produce output that could be

difficult for non-technical users to understand, and in instances of small codebases it may be easier to manually grep

through the project to find code to remove. Another 2 participants stated that PRAT makes code understanding much

simpler as the tool shows what the code to remove looks like, as opposed to just showing how many LOCs to remove.

Seeing the context of the code block is a helpful aid for feature removal.

Feature graph and reports. All 10 of our participants responded that they thought the HTML-based reports PRAT

generates are useful for guided feature removal. Of those, 3 participants stated that the feature graph can be unnecessary,

especially if the user is unfamiliar with code. Another 4 of the participants said that the HTML reports give a simple, and

effective overview of the targeted feature in the context of its source files. One participant preferred PRAT’s stdout

output, but followed by saying the HTML report is good for someone less familiar with the code as it is easier to

understand. Three participants also suggested that the HTML reports be made to look a little more like code commit diffs

on GitHub, since our reports are similar to that already.

Pros and cons. 3 participants responded that the automation is one of the biggest advantages of PRAT; with one participant

specifically mentioning that an automated and complete workflow provided by PRAT makes the results more reliable than

trusting a user’s manual work. All of participants said that PRAT is fast and can save users a lot of time. But 2 participants

also mentioned that large codebases may increase PRAT’s running time because of multiple compilations PRAT needs

when it analyzes programs in order to generate coverage diffs. Two of the participants stated that PRAT is easy to use, and
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another 2 participants also suggested that it will be better if PRAT can provide a UI window for users to not only view

results, but to interact with it during the removal process. Although one participant responded that they think PRAT’s

results are reliable, 3 participants said that PRAT still has the risk of introducing new bugs into programs, like breaking

other features by removing incorrect code. Furthermore, the 3 users which provided a definition of feature different from

PRAT’s consistently stated that they would consider PRAT useful as a code understanding tool, but not as a debloating

tool. One further qualified that they would prefer performing the actual debloating by hand, relying on their own skills.

9.6 Performance Results

We measured time for manual and PRAT-based feature identification; to avoid ambiguities, all times were rounded

to the minute. However, we did not use these measures to quantify performance for two reasons: (i) due to the think-

aloud protocol, it is likely that actual times would be lower in a non-lab setting; and (ii) performance of PRAT-based

identification is dominated by compilation time and thus codebase-dependent. We report the measures for completeness:

the mean manual tasks completion is 12 minutes (standard deviation is 4 minutes); all PRAT-based tasks completed in 2

minutes.

A more interesting question concerns accuracy, in terms of number of lines of code identified. On average, participants

identified 2% of relevant lines of code (standard deviation 2%). All PRAT-based tasks identified all relevant lines of code,

as verified in our correctness evaluation (ref. 8.7).

9.7 Take-Aways

Review of the semi-structured interviews evidences that PRAT’s definition of feature aligns with most user’s intuitive

understanding. They also suggest that PRAT can simplify code removal and understanding and save developer’s time,

and feature graphs are a useful output format for the relevant information. However, a small number of participants also

expressed concerns about clarity of the output, and the possibility of introducing bugs. This suggests that the most useful

direction for future work may be providing further context, to increase user confidence in the correctness of PRAT’s

determinations.

In terms of performance, PRAT-aided removal appears to significantly improve human performance over manual

analysis alone. One may argue that a user willing to invest time and practice into code understanding may eventually

achieve the same result as PRAT; however, one of the benefits of PRAT is precisely to avoid the need for investing time in

such activities.

Overall, we found the results of the study encouraging, as they show that PRAT has the potential to significantly

simplify feature identification and removal.

10 DISCUSSION

Limitations of Dynamic Analysis and Testing. PRAT leverages dynamic analysis both for feature identification and for

evaluating correctness. This comes with well-known limitations.

The extent to which PRAT can correctly identify unused code depends on the test set being sufficiently extensive

and representative. In order to evaluate correctness, we performed extensive examination of the output of PRAT (ref.

Section 8.7); results suggests that our test case generation strategy correctly identify feature-related code.

We also acknowledge that our approach to evaluating correctness has its own limits. Fuzzing and unit-testing alone

cannot be taken as a guarantee of correctness, due to the intrinsic limitations of completeness of dynamic analysis. To
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alleviate some of those concerns, we performed manual review of debloated code to flag instances of lines of code

incorrectly associated to features, as discussed in Section 8.7. This analysis found no issues. While static analysis could

in principle provide stronger guarantees than either dynamic or manual analysis, it comes with its own set of problems:

relevant operations such as code reachability and points-to analysis are in general undecidable, and have in practice

precision limitations [43], that limit the scope of the conclusions that can be extracted. Thus, we consider our current

approach acceptable.

Integrating additional sources of information. Our approach shows that build system options are valuable in identifying

non-essential features. For generality, PRAT assumes that these are the only sources of feature information, but in some

cases, additional sources may be available. Well-maintained codebases frequently come with in-source documentation,

such as Doxygen [5], which is both highly structured and explicitly associated with code entities (functions, variables,

etc.). Parsing it using NLP techniques could enable the identification and removal of features at a finer level of granularity

than based on build options alone. Another source of information is technical documentation associated with a software

tool (e.g., standards, manuals, FAQs). While this data may not be sufficiently structured to support code analysis, it may

contain information useful for understanding the purpose of different features. Identifying and integrating this information

within feature graphs is an interesting future direction.

Generalizability. In order to demonstrate the applicability of PRAT beyond C/C++ codebases for which it was originally

designed, we extended it to support Rust programs by using the Cargo build system and kcov code coverage tool.

Furthermore, we included Quiche and rav1e, both written in Rust, in our evaluation set. PRAT’s results on Quiche and

rav1e (Sections 8.2 and 8.4) are comparable to those on the rest of the programs in our set, suggesting that the PRAT

algorithm has general validity and results do not depend on the particular language in which a codebase is written.

11 THREATS TO VALIDITY

The main threat to internal validity is the lack of uniformity within build systems of projects. Since there is no definitive

schema, the build systems tend to be free-form so long as they work. And when a large project has a commensurate number

of contributors, the contents of the build system may become even more inconsistent (Section 4). Inconsistent/inaccurate

build configurations could cause PRAT to silently fail to identify relevant features and/or lines of code in our experiments.

To strengthen the internal validity, we reviewed the Mosquitto codebase in detail, to identify: (i) features missed by our

approach; (ii) lines of code associated with relevant features, but not identified by PRAT; and (iii) lines of code wrongly

associated with a feature. Our manual analysis did not find any such issue.

Another concern relates to external validity, given the variety of codebases within the scope of PRAT’s goals. To

mitigate issues of external validity, we applied our approach to a set of projects which differ in purpose, language, and

build systems. Results suggest that PRAT adapts well to a diverse set of projects.

12 RELATED WORK

Program Debloating and Minimization. Quach et al. [38] present a debloating framework to identify and remove

unused shared library code from memory. Rastogi et al. [48] use dynamic analysis to remove components in a Docker

container that are not necessary to support the container’s core application. These approaches are orthogonal to ours as

they do not incorporate the notion of feature-driven code removal.
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Another line of work focuses on the specific problem of minimizing failure-inducing test cases. Hierarchical delta-

debugging [35], C-reduce [39], and Perses [47] are based on conceptual extensions to delta debugging [51]. They are

generally designed to minimize a program while preserving a failure-triggering property, a goal that is orthogonal to ours.

Test Case-driven Debloating. CHISEL [28] aims to accelerate program reduction via online learning. The system

works on source code and builds and refines a statistical model by repeated trial and error, which determines how much

it is likely that each candidate program supports the desired functionality. RAZOR [37] performs code reduction for

deployed binaries. Starting from test-cases, RAZOR uses several control-flow heuristics to infer complementary code

that is necessary to support user-specified functionalities. Koo et al. [32] remove the shared libraries unnecessary for a

user-given run-time configuration. Their system uses code coverage analysis to identify the association between run-time

directives and libraries. Similar to Koo et al., TRIMMER [44] specializes an application to its deployment context by

using user-provided configuration data. TOSS [22] starts from feature-related test cases and employs dynamic tracing and

symbolic execution to identify feature-related code from the original program binary. These approaches differ from our

system in that they require the user to provide expressive test cases precisely identifying the features of interest, while we

use a higher-level, explicit notion of features automatically inferred from build configurations along with synthesized test

cases for more comprehensive coverage.

Other Feature-Oriented Specialization Approaches. [29] proposes feature-based program customization based on

static data flow analysis and program slicing to remove unnecessary components from Java bytecode. The user describes

features of interests by specifying a set of seed methods within the callgraph. Also, CARVE [20] leverages fine-grained,

developer-provided code annotations to bind LOCs to features, and uses a code analyzer to deactivated unwanted features.

In contrast to these works, our system retrieves the features defined in the build configuration and maps the corresponding

lines of code to the feature by performing a coverage diffing-driven approach. Therefore, it does not require the user to

provide code-level feature specifications.

Feature Location and Variability Mining. There exists a significant body of work that focuses on locating software

features within a codebase. As discussed in Section 1, much of these works rely on either the availability of test

cases [26, 49] or externally provided knowledge [24, 30, 36, 40, 52], which make them unsuitable for our task. Also,

these approaches tend to require that features are known a priori.

Test Case Synthesis. KLEE [21] is a symbolic execution tool that is capable of generating high-coverage test cases on

C-based programs. This is the engine that we utilize for the generation of test cases due to how it functions with minimal

user input. There have been other tools built on KLEE that aim to extend its functionality (e.g., KLOVER [34]).

In lieu of traditional design practices of static analysis, and extensive testing is formal verification. Formal verification

of IoT devices is essential for the detection of vulnerabilities and guaranteeing functional correctness [31]. Model

checking [23] can be used to ensure the accuracy of an implementation and show via proofs that it conforms to a given

specification. However, this requires significant manual effort and extensive domain-specific knowledge of the system

under test.

13 CONCLUSION

In this paper, we presented PRAT, a novel approach for the identification and removal of features from IoT-oriented

third-party software components. PRAT automatically identifies available features by analyzing the build system and

Manuscript submitted to ACM



Guided Feature Identification and Removal for Resource-Constrained Firmware 23

visualizes features and their implementation details in a succinct form using the novel representation of feature graphs.

Once the analyst has indicated which features they wish to remove, PRAT applies a form of debloating based on code

coverage analysis. Based on the results, our approach is both fast and effective at removing all code related to features to

be removed, without introducing new bugs. It also has potential to simplify developers’ workflow by streamlining feature

identification/removal compared to manual code analysis. By providing both decision support tools (feature graphs) and a

practical debloating algorithm, we believe our proposed approach makes a significant contribution towards simplifying

unwanted feature removal.

14 ARTIFACT RELEASE

We publicly released the code of our PRAT prototype on the OSF platform. The code can be accessed at https://osf.io/

5n4zf/?view_only=0f1496d4918d499a9f5f9a05becb7aea.
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