
Beyond Typosquatting: An In-depth Look at Package Confusion

Shradha Neupane
Worcester Polytechnic Institute

Grant Holmes
University of Kansas

Elizabeth Wyss
University of Kansas

Drew Davidson
University of Kansas

Lorenzo De Carli
University of Calgary

Abstract
Package confusion incidents—where a developer is misled
into importing a package other than the intended one—are
one of the most severe issues in supply chain security with
significant security implications, especially when the wrong
package has malicious functionality. While the prevalence of
the issue is generally well-documented, little work has studied
the range of mechanisms by which confusion in a package
name could arise or be employed by an adversary. In our
work, we present the first comprehensive categorization of
the mechanisms used to induce confusion, and we show how
this understanding can be used for detection.

First, we use qualitative analysis to identify and rigorously
define 13 categories of confusion mechanisms based on a
dataset of 1200+ documented attacks. Results show that, while
package confusion is thought to mostly exploit typing errors,
in practice attackers use a variety of mechanisms, many of
which work at semantic, rather than syntactic, level. Equipped
with our categorization, we then define detectors for the dis-
covered attack categories, and we evaluate them on the entire
npm package set.

Evaluation of a sample, performed through an online survey,
identifies a subset of highly effective detection rules which
(i) return high-quality matches (77% matches marked as po-
tentially or highly confusing, and 18% highly confusing) and
(ii) generate low warning overhead (1 warning per 100M+
package pairs). Comparison with state-of-the-art reveals that
the large majority of such pairs are not flagged by existing
tools. Thus, our work has the potential to concretely improve
the identification of confusable package names in the wild.

1 Introduction

Modern, language-based software ecosystems (LBEs) contain
expansive repositories of third-party code that can be conve-
niently downloaded and installed by developers. The pack-
ages1 of code contained in these repositories supply ready-

1Although various LBEs use specialized names for the units of code that
they serve, such as “gems” [2] or “crates” [11], we refer generically to each

made, diverse functionality to be used as part of a larger
codebase. The popularity of package repositories is apparent
through their usage: The package ecosystems npm for node.js,
RubyGems for Ruby, and PyPI for Python collectively host
millions of distinct packages and serve billions of package
downloads weekly [66].

Tooling and automation has eased the task of finding and
deploying packages. A simple invocation of the install com-
mand for the package manager frontend tool can be responsi-
ble for the cascading download of hundred of distinct pack-
ages, as (transitive) dependencies are discovered, fetched, and
installed. The ease of use built into package ecosystems also
increases the likelihood of a developer completing the entire
installation process on a package that they did not intend to
download. Should an error be made when invoking the name
of an intended package, a completely different package name
will downloaded and deployed. This set of circumstances al-
lows the use of the LBE as a vector for software supply chain
attacks. An adversary might publish a malicious package that
attacks a developer when the package is installed, or deliv-
ers malicious functionality to end-users when the malicious
package is used as part of a larger project.

In order to realize the type of incident described above, a
victim developer needs to download the malicious package.
Thus, the adversary’s goal is to carry out a package confu-
sion attack, in which a malicious package is created that is
designed to be confused with a legitimate target package and
downloaded by mistake. Such attacks have been shown to
occur in practice [56], effecting developers that mistakenly
install the package directly, and any other deployments that
includes a malicious package in its transitive dependencies.

Confusion attacks can leverage the long tail distribution
of packages. The top 1% most popular packages are respon-
sible for over 99% of downloads [58]. Since LBE package
managers fetch a package based on its name, the attacker can
upload a package with a name that is easily confused with a
legitimate popular package and passively launch the attack

distinct unit as a package in this paper.

when their uploaded package name is mistakenly fetched.
Previous work [26, 58, 67] is largely based on intuitive

notions of the types of confusion that can occur— such as
typosquatting, which consists of mistypings of package names.
However, this does not characterize the myriad other ways
in which a developer might be confused by an alternative
name. For example, developers may assign connotations to
the words in a package name (“guard” vs “watchdog”), or
be misled by grammar stems (“swaggerize” vs “swaggerify”)
upon which the adversary could base an attack.

In this work, we provide a rigorous study into characteriz-
ing how package confusion attacks have occurred in the past
and may continue to occur in the future. To this end, our con-
tribution consists in answering two main research questions:
RQ1: What types of package confusion attacks exist
among previously discovered attacks? We evaluate this
question with a rigorous, manual evaluation of over 1200
historical package confusion attacks over the past 6 years,
ultimately deriving a set of 13 categories.
RQ2: What types of package confusion exist in the wild?
Through the use of manual and automated analysis, we per-
formed a large-scale analysis of the current state of the npm
package repository, and tested the feasibility of algorithmic
detection of package confusion in the field.

We describe the existence of a number of attack categories
ignored by existing tools. We also show that some of these
categories can be identified with high accuracy by the tooling
developed as part of this project, while others require addi-
tional data to be fully addressed. Thus, we believe that our
work provides practical contributions to the understanding
and detection of package confusion attacks in the wild.

In the rest of the paper, we present the background neces-
sary to understand the context of package confusion attacks,
describe our research infrastructure to explore the above re-
search questions, and detail the results of our measurements.

2 Background

2.1 Supply-chain Security

Language-based software ecosystems (LBE) are large-scale
repositories of software packages written in a single lan-
guage [61]. Examples include npm for JavaScript, PyPI for
Python, RubyGems for Ruby and others. These large LBEs
enable rapid prototyping and development of software by en-
abling developers to quickly and easily import external code
in their project in the form of dependencies. npm, the largest
ecosystem, alone has 1,826,912 packages as of April 2022.

The biggest strength of these ecosystems, the ability to im-
port dependencies, is also a significant vector for software
compromise. Even simple packages may import a large num-
ber of dependencies, each of which in turn imports their own;
as a result, the dependency tree of a package may be many

levels deep, and include hundred of packages [70]. This cre-
ate a fertile ground for attackers, as the attack surface of a
package includes not only the package itself, but all of its
dependencies, given rise to software supply chain attacks. In
such an attack, rather than directly attempting to compromise
a popular package/library, an attacker may attempt to inject
malicious code into one of its dependencies. This is particu-
larly effective if the dependency is an obscure package, hidden
deep in the dependency chain of a popular one, and subject
to less scrutiny. Supply chain attacks are rapidly emerging
as one of the chief issues in modern software security, origi-
nating a large number of incidents and being recognized as
critical by industry and government entities [4, 56].

2.2 Package Confusion Attacks

As noted in Section 1, a package confusion attack is a form of
supply chain attack where an attacker uploads into an ecosys-
tem a malicious package which is confusable with another,
benign package. It should be noted that there are documented
cases of package confusion happening without malicious in-
tent. A concerned developer may create a confusable package
to prevent a threat actor from creating a malicious package
with the same name. In this case, the confusable package
may be empty, or may simply duplicate the original’s pack-
age code. This is for example the case of the npm package
loadsh, which targeted the benign package lodash but did
not contain any malicious code, and was intended to prevent
anyone else from creating a package with the same name [58].
Confusable packages may also be created inadvertently. De-
velopers frequently duplicate packages for various purposes,
oftentimes creating confusable package clones [66]. Finally,
someone may simply create a package whose name happens
to be similar to another one, without realizing it.

Nevertheless, importing a confusable but non-malicious
package wastes developer time, may cause degraded function-
ality, and may actually still create security issues. Many such
packages lag behind in making security updates, resulting
in long-lived latent vulnerabilities [66]. Even if confusable
packages can be created by accident, in many documented
instances post-facto analysis of incidents did reveal malicious
or at least ambiguous intent. Indeed, one of the datasets used
in this paper (described in Section 3), aggregated from public
sources and covering the last 6 years, contains over 1,200
documented malicious package confusion instances.

In order to ensure consistent terminology without implying
malicious intent (as this may not always exist as discussed
above), we term an benign popular package as target, and
a package with a name confusable with that of the target
as confuser. Furthermore, we mark packages as potential
confusers against a target using confusability potential rated
by humans, rather than attempting to infer malicious intent.

Source #samples

ReversingLabs [45] 721
JFrog [16] 207
snyk.io [13] 172
GitHub advisories [7] 100
Publication [64] 17
SonaType [55] 5
npm advisories [9] 3
ZDNet [23] 3
BleepingComputer [17] 2
The Record [24] 2
Total 1232

Table 1: Sources of attacks in dataset

3 Datasets

Our work involves analyzing known package confusion at-
tacks (Section 4), and building upon the results to estimate
the footprint of package confusion in the wild (Sections 5 and
6). This section describes our datasets.

3.1 Package Confusion Attacks Dataset

Definitions. Our dataset consists of past documented attacks.
Our definition of documented attack requires that an estab-
lished source publishes information calling out a package
as a security risk, and explicitly characterizes the attack as
involving package confusion. An established source may be:
a generalist advisory program (e.g., CVE [5]); the advisory
feed of one of the ecosystems analyzed (e.g., npm [9]); a peer-
reviewed publication (e.g., [64]); a specialized media outlet
(e.g., zdnet [23]); a public post or press release from a threat
intelligence company (e.g., ReversingLabs [45]). Character-
izing the attack as involving package confusion means that
the description either includes representative keywords (e.g.,
“typosquatting”), or describes the mechanism of the attack as
inducing confusion in developers due to the package name.

Dataset construction. The set of attacks was built as fol-
lows. First, we compiled a list of well-known generalist and
ecosystem-specific advisory programs including CVE/NVD
feed [5], snyk.io [13], GitHub advisories [7], npm secu-
rity advisories [9], the PyPI community-maintained advi-
sory database [10], and RubyGems advisories [12]. We then
searched all advisory lists above starting from 2016, using a
set of relevant keywords (e.g., “typosquatting”, “name confu-
sion”, etc.) and vetting the results to ensure they matched our
criteria for inclusion. Furthermore, we performed a literature
search in relevant computer security academic venues to iden-
tify papers focusing on supply chain security, which included
datasets or mentions of specific attacks. Finally, we carried
Google searches with a list of relevant keyphrases (e.g., “npm

malicious software”, “PyPI typosquatting”), collecting and
manually vetting results. We continued the search process un-
til we determined that new sources failed to contribute attacks
not already in our dataset. We note that some commercial
sources may have vested interests in framing unrelated at-
tacks as package confusion, to promote their services. We
mitigate this risk by choosing a diverse set of sources; and
manually inspecting incident descriptions.

Results. The result consists of 1232 documented attacks. Ta-
ble 1 summarizes the source of attacks in our dataset. Revers-
ingLabs contributed a large campaign against the RubyGems
ecosystem. JFrog contributed a similar campaign against npm.

3.2 Package Dataset
The dataset we used to estimate the prevalence of package
confusion in the wild consists of a snapshot of all npm pack-
age names, taken in April 2022. The snapshot consisted of
1,826,923 package names. We selected npm as our analysis
target as it is the largest among popular software ecosystems.
As such, we expect the results to be both representative, and
relevant to the Open Source developer community.

As we will detail in Section 6.1.1, our analysis logic pre-
filters package pairs based on popularity (measured as down-
loads per week). Download counts for each package in the
dataset were obtained by using the npm public API. Overall,
we collected 1,752,424 package names and their download
counts. The remaining 74,499 packages in the snapshot and
weekly downloads had no download count. This meant the
74,499 packages that existed in the npm snapshot did not exist
in the npm repository when we got the download counts.

4 Categorizing Package Confusion Attacks

Virtually all previous investigations of package confusion
attacks [58, 64] are based on expert, but observational, under-
standing of the phenomenon. As a result, existing tools use
detection rules that "make sense" to domain experts. While
this approach is intuitive, we believe a comprehensive under-
standing of the phenomenon requires a rigorous assessment
of all available data on past package confusion incidents. In
turn, we expect that such comprehensive understanding will
result in more effective detection procedures.

4.1 Methodology
We analyze the attack dataset described in Section 3.1. Our
initial goal is to produce a comprehensive categorization of
package confusion attacks, to answer RQ1 from Section 1
(What types of package confusion attacks exist among previ-
ously discovered attacks?) As package confusion is arguably
a social engineering attack aimed at confusing humans, we
perform categorization using human experts.

Round 1

1-step D/L distance

Keyboard locality

Alternate spelling

Asemantic substitution

Delimiter modification

Familiar term abuse

Brandsquatting

Grammatical substitution

Homographic replacement

Prefix/suffix augmentation

Scope confusion

Semantic substitution

Sequence reordering

Simplification

Round 2

1-step D/L distance

Keyboard locality

Alternate spelling

Asemantic substitution

Delimiter modification

Familiar term abuse

Grammatical substitution

Homographic replacement

Prefix/suffix augmentation

Scope confusion

Semantic substitution

Sequence reordering

Simplification

Homophonic similarity+

Round 3

1-step D/L distance

Keyboard locality

Alternate spelling

Asemantic substitution

Delimiter modification

Familiar term abuse

Grammatical substitution

Homographic replacement

Prefix/suffix augmentation

Scope confusion

Semantic substitution

Sequence reordering

Simplification

Homophonic similarity

Round 4

1-step D/L distance

Alternate spelling

Asemantic substitution

Delimiter modification

Familiar term abuse

Grammatical substitution

Homographic replacement

Prefix/suffix augmentation

Scope confusion

Semantic substitution

Sequence reordering

Simplification

Homophonic similarity

⍺ = 0.81 (0.77,0.84) ⍺ = 0.75 (0.68,0.82) ⍺ = 0.79 (0.74,0.84)
⍺ = 0.96 (0.94,0.99)

Figure 1: Evolution of codebook and inter-coder agreement per round

Labeling and categorizing textual data according to human
interpretation is traditionally the purview of qualitative re-
search methods. Processes such as grounded theory [25] and
thematic analysis [59] establish methodology to ensure exper-
imenters follow a repeatable and rigorous process. Thematic
analysis is a process for qualitative data analysis due to Braun
and Clarke [19], which has found application in the usable
security domain (e.g., [37, 44]). We pick this approach to
categorize attacks in our dataset due to its emphasis on induc-
tive reasoning, which is necessary in our cases due to lack of
prior knowledge on the nature of package confusion attacks.
While such methods are typically applied to expressive, long
form text (e.g., interview data [27], program snippets [57]),
we decided to use it to provide methodological rigour to the
process of deriving attack categories.

Our process, established prior to coding, implements a sim-
plified version of thematic analysis as follows. Five mem-
bers of the research team (two senior researchers, one senior
graduate student, and two junior students) review the same
sample of 100 incidents, each coming up with an initial set
of codes. These are then discussed until everyone agreed on
the same set. Subsequently, all coders code the same set of
50 yet-uncoded incidents, using Krippendorff’s α to measure
inter-coder agreement. This step is repeated until α ≥ 0.8
(commonly used in literature to denote strong inter-coder
agreement). In each round resulting in α < 0.8, we follow up
by requiring all disagreements to be resolved. After reaching
α ≥ 0.8 we split the remaining incidents among the coders.

4.2 Coding and Results

We performed coding following the above pre-established
methodology, with only two minor changes. First, we noticed

that 722 out of 1232 attacks originate from a RubyGems
campaign, which batch-generated a large number of package
names by altering delimiters. We marked all such cases as
Delimiter modification without further analysis. Furthermore,
the first round of coding resulted in α = 0.81, however we
agreed that finalizing the set of codes at this early stage would
have been premature. Therefore, we continued coding in par-
allel. In hindsight, this decision appears appropriate as the
second and third round of coding resulted in α below 0.8
and various changes to the initial codebook. We terminated
parallel coding in round 4, with α = 0.96 and a set of codes
we collectively deemed stable. Figure 1 displays the evolu-
tion of the codebook; it also displays, under each round of
coding, inter-coder agreement α and its 95% bootstrapped
CI. We generated our categorization of package confusion
attacks simply by interpreting each code as an attack category.
Table 2 describes the final 13 categories.

4.3 Discussion

The main events in the evolution of the codebook are instances
of merging two categories into one. In the first instance, we
merged Brandsquatting — intended as the use of a popular
brand in a package name to attract installs — into the more
general Familiar term abuse. In the second case, we merged
Keyboard locality — referring to a confuser name with a 1-
character difference that can be introduced as the result of a
typo — into the more general 1-step Damerau/Levenshtein
distance. The reason to do so is that the potential for typos
depends on the specific keyboard layout being used.

The relationship between categories requires further discus-
sion. Every confuser name can theoretically be transformed
into the target name by a sequence of edit steps. Under this

Id Category name Description
1 Prefix/suffix augmentation A prefix or suffix has been added to the target package name. The added term may refers to

the ecosystem, language of the package, a specific functionality, or version number. Examples:
dateutil → python3-dateutil; genesis → genesisbot.

2 Sequence reordering The target package can be divided into multiple segments of consistent meaning, which have been
reordered in the confuser package name. Example: python-nmap → nmap-python; libhtml5
→ html5lib.

3 Delimiter modification Character based-changes in the target package name where delimiters have been added, removed or
swapped with a different type. Examples: workarea-gift_cards → workarea-gift-cards;
active-support → activesupport.

4 Grammatical substitution The confuser package substitutes terms in a different grammatical forms of the target package’s
terms (singular/plural, different verbal form). Examples: serialize → serializes; learnlib
→ learninglib.

5 Scope confusion The confuser package name is unscoped, but resembles the name of target scoped package. Example:
@cicada/render → cicada-render.

6 Semantic substitution The confuser package substitutes the target package name (or a segment therein) with terms
that have the same meaning. Example: bz2file → bzip; electron-native-notify →
electron-native-notification.

7 Asemantic substitution The confuser package substitutes terms in the target package that are familiar to the developers.
The replacement terms do not match the original ones in meaning. Examples: discord.js →
discord.app; libcurl → pycurl.

8 Homophonic similarity The confuser package and the target packages differ in spelling or letters but sound the same.
Similarity is based on homophones. Examples: uglify-js → uglyfi.js; asinc → async.

9 Simplification Removal of prefix/suffix, such that: the target package name can be divided into multiple segments
of consistent meaning, and any of the segments have been removed, without altering the overall
semantic meaning of the name. Examples: pwdhash → pwd; urllib3 → urllib.

10 Alternate spelling Target and confuser package names differ due to different local spellings but there is no change in
the meaning of the target package name. Examples: colorama → colourama; colour-string
→ color-string.

11 Homographic replacement Character based change in the target package name where the exchanged characters look similar.
Examples: django → diango; jellyfish → jeilyfish.

12 1-step Damerau/Levensh-
tein distance

The target and confuser package names have 1-step Damerau/Levenshtein distance. The difference
may involve character substitution, omission, addition, or swapping. Examples: crypto → crypt;
express -> experss.

N/A Familiar term abuse The confuser package name includes terms that are familiar to the user, such the name of a company
or a popular technology. Differently from other attacks, this one does not postulate the existence of a
target package. Examples: plutov-slack-client; applogger-ruby.

Table 2: Package confusion categories

interpretation, every attack is a composition of multiple in-
stances of Damerau/Levenshtein distance (Rule 12 in Table 2);
however, this interpretation is not very useful. Instead, we use
Rule 12 as a fallback for all cases that cannot be interpret as
part of another, more specific category. There are a number
of similar instances of the same problem; for example, one
can envision attacks which could be classified both as Ho-
mophonic replacement and Homographic replacement. We
resolve this issue by defining a priority order between cate-
gories; categories in Table 2 are listed by decreasing priority.
The priorities were attributed empirically, going from what
we perceived to be more specific categories to less specific
ones. Familiar term abuse has no priority as, unlike other cat-
egories, it does not assume a target package. We acknowledge
that priority assignment is subjective. However, our main goal
here is to generate comprehensive categories; the specific
choice of priorities is inconsequential to those.

We also allow rules to be composed. The choice of whether
labeling a sample as a composition of categories rather than
a new category is again based on the coders’ perception of
the attack. An example is pymongodb being mutated into
python-mongo; we classified this pair as a combination of
Semantic substitution (py → python), Delimiter modifica-
tion (add "-"), and Simplification (mongodb → mongo).

4.4 Nature of attacks

Figure 2 depicts the distribution of category labels across
the attack dataset. Note that the number of labels is higher
than the number of attacks as composite attacks have multi-
ple labels. Figure 2(a) breaks down all attacks by category
and ecosystem. Furthermore, the distribution of attacks is
highly dependent on what we term confusion campaigns in
our dataset. Specifically, we define such a campaign as the

0

10

20

30

P/s
au

gm
en

tat
ion

Sim
pli

fic
ati

on

Gram
mati

ca
l s

ub
st.

Hom
og

rap
hic

 re
pl.

Seq
ue

nc
e r

eo
rd.

Fa
m. te

rm
 ab

us
e

Sem
an

tic
 su

bs
t.

Ase
man

tic
 su

bs
t.

Hom
op

ho
nic

 si
m.

Alte
rna

te
sp

ell
ing

co
un

t

(a) (b)

0

5

10

15

P/s
au

gm
en

tat
ion

Sim
pli

fic
ati

on

Hom
og

rap
hic

 re
pl.

Gram
mati

ca
l s

ub
st.

Hom
op

ho
nic

 si
m.

Seq
ue

nc
e r

eo
rd.

Fa
m. te

rm
 ab

us
e

Sem
an

tic
 su

bs
t.

co
un

t

0

200

400

600

Deli
mite

r m
od

if.

Sco
pe

 co
nfu

sio
n

1−
ste

p D
/L

dis
t.

P/s
au

gm
en

tat
ion

Sim
pli

fic
ati

on

Hom
og

rap
hic

 re
pl.

Gram
mati

ca
l s

ub
st.

Hom
op

ho
nic

 si
m.

Seq
ue

nc
e r

eo
rd.

Fa
m. te

rm
 ab

us
e

Sem
an

tic
 su

bs
t.

co
un

t

Campaign
Azure scope confusion
Chinese IP addr. upload
Ethereum mining
Hacktask typosquatting
Package info exfiltration
Ruby delimiters
System info exfiltration

0

200

400

600

Deli
mite

r m
od

if.

1−
ste

p D
/L

dis
t.

Sco
pe

 co
nfu

sio
n

P/s
au

gm
en

tat
ion

Sim
pli

fic
ati

on

Gram
mati

ca
l s

ub
st.

Hom
og

rap
hic

 re
pl.

Seq
ue

nc
e r

eo
rd.

Fa
m. te

rm
 ab

us
e

Sem
an

tic
 su

bs
t.

Ase
man

tic
 su

bs
t.

Hom
op

ho
nic

 si
m.

Alte
rna

te
sp

ell
ing

co
un

t

Ecosystem
npm
pip
RubyGems

Figure 2: Distribution of manually-generated category labels across ecosystems (a) and campaigns (b)

coordinate upload of 10 or more packages by the same entity.
Our dataset include 7 such campaigns [16, 22, 29–31, 36, 45]
(1077 incidents total out of 1232). Figure 2(b) breaks down
attacks by campaign. For 5 out of 7 campaign, uploaded pack-
ages predominatly fall within one category.

Package confusion is oftentimes referred to as typosquat-
ting. This carries the implicit assumption that the confuser
package attempts to capture some of the target’s package
installs by exploiting typing errors. In practice, this is not sub-
stantiated by our analysis. A way to interpret our categories
is that Rules 1-11 are arguably based on various forms of
semantic confusion; while Rule 12 acts as a fallback for cases
where no semantic mechanism is apparent. Together, Rules 1-
11 make up 82% of our attack dataset (43% when excluding
the RubyGems campaign). This suggests that giving consid-
eration to semantic-based confusion attacks is important.

5 Detecting Package Confusion

We now turn to RQ2 from Section 1: What types of package
confusion exist in the wild?. To answer this question, we
design detection rules to identify instances of package pairs
belonging to the categories in Table 2.

Our categories are qualitative and descriptive, and thus
cannot be directly used for detecting new instances. Our de-
tection rules are designed to approximate the categories while
achieving broad performance goals (discussed in Section 5.1).
Below we describe the design of the detection rule for each
category. We decided not to detect Familiar term abuse, since
the mere presence of a popular brand or term (e.g., “Twilio”,
“MariaDB”) without additional context, is too weak of a sig-
nal to identify cases likely to arise confusion. As our goal is
to measure semantic package confusion beyond basic local
textual differences, we also excluded the 1-step D/L category
from measurements.

5.1 Design process and evaluation
To design the detection rules discussed below, we created
initial prototypes which we then iteratively refined. At each
iteration, we measured rule precision, recall, and F1-score on
the attack dataset (1232 packages). To do so, we interpreted
human-generated labels as ground truth.

Consistently with literature [58], we did not strive to maxi-
mize an aggregate metric (such as F1 score). Instead, we treat
ours as a multi-objective optimization problem, prioritizing
precision over recall. The rationale is that confusing packages

Rule #TP #TN #FP #FN Precision Recall F1

P/s augmentation 21 1193 1 9 0.95 0.70 0.81
Sequence reord. 7 1215 1 1 0.88 0.88 0.88
Delimiter modif. 717 483 0 24 1 0.97 0.98
Grammatical subst. 7 1215 1 1 0.88 0.88 0.88
Scope confusion 188 1016 0 20 1 0.90 0.95
Semantic subst. 2 1219 0 3 1 0.4 0.57
Asemantic subst. 3 1219 1 1 0.75 0.75 0.75
Homophonic sim. 3 1182 38 1 0.07 0.75 0.13
Simplification 7 1208 5 4 0.58 0.64 0.61
Alternate spelling 2 1222 0 0 1 1 1
Homographic repl. 7 1209 7 1 0.5 0.88 0.64

Table 3: Performance of detection rules

are rare due to the scale of software ecosystems. Thus, poor
precision leads to detectors overwhelmingly returning false
positives (a form of the base rate fallacy [18]). Therefore
our goal is to maximize the chances of identifying actually
confusable packages, at the cost of missing some instances.

This approach is not always applicable, however, as our
dataset is significantly imbalanced; for some categories, only
< 5 samples exist. In those circumstances, even a small number
of false positives can significantly affect precision. For those,
we relax our requirement to maximize precision to ensure a
recall of at least 33% (a rule that does not detect anything has
100% precision, but it is not useful). We believe this limitation
is acceptable, since our analysis of potential package confu-
sion instances in the wild entails manual review of matches
(Section 6). Table 3 details true and false positives/negatives,
precision, recall, and F1 scores for all rules. Note the total
in Table 3 are less than 1232 because they exclude package
pairs where the target was undefined or ambiguous (5 cases
of Familiar term abuse, and 3 cases where the attack report
did not disambiguate the specific victim package).

5.2 The Language of Package Names
When we set to implement detection rules, one of our earliest
findings was that package names tend to largely consist of jar-
gon: acronyms (e.g., “html”, “npm”) and other various types
of textual tokens (e.g., “js”, “db”) many of which are not valid
words in any human language, but assume a valid connota-
tion in the context of the language-based software ecosystem.
Many package names consist of “sentences” resulting from
concatenation of such tokens, sometimes interspersed with
English words (e.g., “js-sha3”, “hw-transport-u2f”, etc.), and
we found it impossible to productively creating rules without
building a model of the jargon first.

Our model consists of a list of jargon tokens, each anno-
tated with its frequency in the corpus. To do so, we run 1.9
million package names from PyPI and npm through a to-
ken extraction pipeline. The pipeline splits each name across

Figure 3: Package token frequency VS rank.

common delimiters to generate initial tokens, then attempts
to further split those using a English word segmenter [33].
This last step serves to split strings such as "easyinstall" into
"easy" and "install". To reduce noise, tokens that occur in less
than 100 package names are removed. This process results in
10425 unique tokens, that form the “Jargon” corpus. 5110 of
these tokens are not present in the standard English corpus.
Figure 3 illustrates extensive reuse of a very small percentage
of the tokens across many package names. The primary use
of this corpus is for delimiterless tokenization.

5.2.1 Delimiterless Tokenization

A number of the detectors need to transform a package name
into a sequence of tokens. However, many package names
omit token delimiters; e.g., "html5lib", "easyinstall", "setup-
tools" and many more. This common practice means that tok-
enizing a package name requires a more complex approach
than simply splitting along a set of known delimiters. This is
further complicated as many of the tokens are not present in
a standard English corpus, such as "html", "lib", and "dev".

Algorithm 1 Delimiterless tokenization
Input: Word w
Input: Set of corpuses C = {CE ,CJ}
Output: Tokenization S

1: T = /0

2: for each c ∈C do
3: T = T ∪ForwardPass(w,c)
4: T = T ∪BackwardPass(w,c)
5: if #(Lengths(T))> 2 then return /0

6: T2 = {T ∈ T | ∀t ∈ T, t ∈CE ∪CJ}
7: T3 = {T ∈ T2 | #T = Mode(Lengths(T2))}
8: T4 = {T ∈ T3|T ⊇ MostCommonSequence(T3)}
9: return argmaxS∈T4(min(Lengths(S)))

Thus, we developed a delimiter-less tokenization algorithm
that makes use of both a standard English word corpus from
the NTLK framework [8], and our jargon corpus.

Tokenization algorithm. Given a string without delimiters,
Algorithm 1 returns a sequence of one or more tokens. The
algorithm first uses a sliding window matcher to identify
substrings from the input word w which match the corpus.
The matcher uses such substrings as boundaries to create a
tokenization. The process is repeated using both a forward-
and backward-sliding window, for both the English corpus CE
and the jargon corpus CJ (lines 1-4 of Algorithm 1). The result
is a set of candidate tokenizations T . Next, the algorithm
computes the lengths of all T ∈ T , and returns if there exists
more than 2 different lengths (line 5). This is because we
found that widely differing tokenizations is a strong predictor
of a non-segmentable word.

Next, the algorithm applies a simple heuristic to filter candi-
date tokenizations and select the winner (lines 6-9). First, all
tokenizations including substrings that are not present in any
corpus are discarded (line 6), as “gibberish” tokens are a pre-
dictor of poor tokenization. Second, only tokenizations whose
length is equal to the mode of all remaining tokenization
lengths are retained (line 7). Third, the algorithm computes
the most frequent token subsequence within all tokenizations,
and only retain tokenizations containing that sequence (line 8).
These two rules reward tokenizations which were identified,
with small variations, across multiple passes. Finally, if ties
exist they are resolved by picking the tokenization which the
longest shortest token length (line 9). This heuristic is mo-
tivated by the empirical observation that poor tokenizations
tend to contain many short substrings.

5.3 Detection Rules

Prefix/Suffix Augmentation describes cases where the con-
fuser package adds a prefix or a suffix to the target. The
detector for this rule marks package pairs where the target

package is a substring of the confuser package, and all tokens
in the target package are uncommon. We consider a token
uncommon if its frequency in package names is less than 15%
that of the most common token. This constraint is due to the
fact that augmentation of a very common term is likely not
confusable. To limit false positives, this detector only triggers
if the length of both the confuser and target name is greater
than 3; and the length of the confuser is less than twice the
length of the target.

Sequence Reordering consists of a confuser package rear-
ranging the order of tokens in the target package. The detector
tokenizes both package names into token sequences, and then
checks if the sorted sequences are equal.

Delimiter Modification consists of a confuser package that
modifies delimiters from the target package name. Modifi-
cation includes the omission, addition, or transformation of
delimiter sequences. The detector first tokenizes both package
names across their delimiters. Next, for each token sequences,
a set is constructed by iterating over the possible concatena-
tions of token subsequences into a single string. A non-empty
intersection of these two sets results in a match.

Grammatical Substitution involves a confuser making
changes to the grammar of words in the target name. The
detector tokenizes both package names, then use the NLTK
lemmatizer [8] to normalize each token to its root (e.g.
“loader”/“loading” to “load”). Depending on how may tokens
have the same root format, it then checks if one is a simple
plural form of the other token. Eg. handle and handler. If all
tokens in both packages match but one which differs by being
a plural form of the other, then the grammatical substitution
detector returns positive.

Scope Confusion consists of a confuser package which is
confusable with a scoped target name. The detector checks
for two different cases. In the first, the confuser has the same
name as the target, but only the target is scoped. The detec-
tor works by removing the scoping markers(“@” and “/”)
from both package names. The package names are split at “/”.
If both the package names are equal, with the target being
scoped and confuser being unscoped, the detector flags the
pair as a match (e.g., @cadl-lang/openapi3 (target) and ope-
napi3). In the second case, the detector removes the scoping
delimiters and creates a list of all package tokens. The de-
tector then checks if the confuser and target tokens are equal
(e.g., @cicada/render (target) and cicada-render.)

Semantic Substitution occurs when a token in the target
name is replaced by one of similar meaning in the confuser.
We approach it using the pre-trained FastText word embed-
ding model [6,47] to evaluate semantic closeness. The seman-
tic substitution detector tokenizes both package names. It then
checks whether at least one token is the same for both the
confuser and target package names. For each differing tokens
in the target and confuser, word similarity is calculated on all

possible token pairs. The similarity ratio is then calculated
as sum of word similarities / number of combinations. If the
similarity ratio is greater than a predefined threshold, then the
package pair is flagged. We used a linear search to identify
the similarity threshold (0.65) leading to the best precision
on our attack dataset (1) (in doing so, we were limited by the
limited number of examples in the dataset).

Asemantic Substitution occurs when a token with in the
target is replaced with another token, without the tokens be-
ing semantically close (e.g., “discord.js” → “discord.dll”).
The detector first tokenizes target and confuser names, and
checks whether there exist one or more common tokens. It
then checks if the remaining tokens’ similarity ratio is less
than 0.65 using the same word model as semantic subsitution.
To limit false positives, we only allow a single token to be
substituted. Also the length of the token in the confuser must
be less than twice the length of the token in the target.

Homophonic Similarity describes instances where the con-
fuser name sound similar to the target’s name. The detec-
tor checks whether any token in the same position in the
sequence are homophonically similar, with the rest of the
package names being equal. The similarity between token is
assessed by evaluating them against the Metaphone [43] and
Soundex [3] algorithms. The two tokens must have the same
encodings for both algorithms, as different encodings implies
uncertainty. Furthermore, the token coming from the target
must be present in either the English or the jargon corpus (a
token not present in either is unlikely to be confusable.)

Simplification describes a confuser name removing a prefix
or a suffix from the target. The detector checks if the confuser
package is a prefix or a suffix of the target package, with a
restrictions: the length of the target package cannot be greater
than three times that of the confuser package.

Alternate Spelling describes the existence of different re-
gional spellings of common English words (e.g., “colour-
string” and “color-string”.) To detect such occurrences, the de-
tector leverages a dataset of 1706 British English to American
English translations. The detector looks for package names
that are identical except for one or more position-matched
tokens being translation of one another. A limitation of this
detector is the focus on English.

Homographic Replacement. consists of potential confusion
caused by similar-looking letters in the package names. To
detect such patterns, the detector is given a list of ASCII and
Unicode homoglyphs of the keyboard characters [a-z, , ., _,
-]. Then for each character in the target name, candidate pairs
are created by replacing the character with its homoglyph
counterpart, e.g m → n. If the candidate pair matches the
confuser package, then the pair is flagged.

Rule composition. Detecting instances consisting of the com-
position of multiple rules is in general unsolvable as it requires
to test for the composition of any possible combination of

rules, with repetitions. We chose a compromise to detect sim-
ple compositions of up to three selected rules. We develop
normalizers approximating Delimiter Modification (converts
all common delimiters to “_”), Sequence Reordering (alpha-
betically sorts all tokens separated by delimiters), and Scope
Confusion (removes all scoping markers). We apply combina-
tions of normalizers to package names prior to piping them
to selected other rules, allowing detection of specific cases of
the three rules above in combination with others.

6 Measuring Package Confusion in the Wild

In this section we aim at detecting the extent to which package
confusion occurs in the wild. To do so, we break our high
level RQ2: What types of package confusion exist in the wild?
in three specific sub-questions:

• How many potential instances of package confusion
exist in the npm ecosystem? Results detailed in Sec-
tion 6.1 show a significant number of potential instances
(360,333, with 2,779 matching multiple detection rules)

• What is the confusability of matches identified by our de-
tection rules? Results shown in Section 6.2 paint a com-
plex picture, showing that while some high-yield rules
consistently identify highly confusing matches, others
encompass a high number of matches with low confusion
potential.

• Are existing detectors able to identify our identified at-
tack categories? Results in Section 6.3 show limited
overlapping between state-of-art tools and our tools, sug-
gesting that it would be useful to integrate the high-yield
subset of our rules into existing detectors.

• What is the relationship between package confusion and
malicious code? Results in Section 6.4 show that, al-
though the presence of name confusion by itself is not
sufficient to conclude maliciousness, packages whose
name is confusable with that of a target have greater like-
lihood to be flagged as malicious than other packages.

6.1 Package confusion instances in npm
In this experiment, we execute our rules against package pairs
in the npm snapshot detailed in Section 3.2.

6.1.1 Methodology

Even after excluding 1-step D/L and Familiar term abuse,
there are still 11 rules to be applied to (1.7e6)2 package
pairs, which is impractical. In order to ensure the measure-
ment terminates in acceptable computation/time, we apply an
optimization proposed by TypoGard [58]. Highly impactful
confusion incidents arise when a benign popular package is

Rule #Instance

P/s augmentation 143864
Asemantic subst. 139160
Simplification 27743
Homophonic sim. 24735
Semantic subst. 9610
Delimiter modif. 7183
Scope confusion 4247
Grammatical subst. 2461
Homographic repl. 2393
Sequence reord. 1734
Alternate spelling 21

Table 4: Matches in npm for each category

confusable with a malicious unpopular package. The insight
is that a popular package is a more damaging target than an
unpopular one, and more likely to be chosen as target.

Following the established methodology described above,
we partition the npm package set between popular and unpop-
ular packages using a threshold of 15,000 downloads/week,
as proposed by TypoGard’s authors. As we only consider pop-
ular packages as targets and unpopular ones as confusers, the
number of matches is reduced to 1,727,553×24871 making
ecosystem-scale analysis practical. We execute the analysis
on a SLURM cluster at our institution, consisting of 1000+
x86 CPUs and 8+ TB of aggregated RAM.

6.1.2 Results

Overall, our rules flagged 360,333 package pairs, which
amount to 0.00087% of all considered pairs (i.e., one pair
every 114,470.) On average, analysis took 0.22ms/pair2. Ta-
ble 4 shows the number of matches per category. The total
number of matches is higher than the total number of packages
as there are 2779 pairs matching multiple rules concurrently.
The most common rule combinations in composite matches
are Homophonic similarity & Prefix/ suffix augmentation, De-
limiter modification & Sequence reordering, and Delimiter
modification & Grammatical substitution.

While these results suggest a high upper bound on the num-
ber of instances of semantic confusion, it is important to point
out that the rules by necessity approximate the mechanism
that may induce confusion in humans. As such, not all the
matches may be confusing to humans in practice. The next
section explores this issue.

6.2 Confusability Analysis of Matches
In this section, we perform an analysis of a random sample
of package pairs flagged by our detection rules, to determine

2We could not analyze 4% of all package pairs due to a SLURM-related
issue we were unable to resolve.

their potential to induce confusion in developers. As discussed
in Section 2.2, confusable packages may generate security
issues even without explicit intent. Thus, we investigate pack-
age confusion as a separate consideration from maliciousness,
which we explore in Section 6.4. Hence, this section focuses
on the confusability potential of analyzed package pairs.

6.2.1 Methodology

We designed an online survey assessing perceived confusabil-
ity of randomly selected package pairs, by participants with
software development experience. This methodology has the
advantages of being assumption-free (i.e., it focus on pack-
age names, without making assumptions on the context were
developers may encounter such packages), and efficient. The
survey underwent ethics review and approval.

Participant Recruiting. To ensure an appropriate popula-
tion, we advertised the survey via email to computing-related
majors at our institutions, further extending reach through
snowball sampling. Applicants were then vetted via a pre-
screening survey. We excluded applicants with no software
development experience, and/or who could not correctly name
one ecosystem/package. All applicants entered a raffle award-
ing one $50 gift card. Participants who completed the study
also received a $10 gift card.

Study Protocol. Participants were directed to a survey pre-
senting the following Likert-scale question: On a scale of 1 to
6, how likely are you to misremember or mistype the package
in column P instead of the corresponding package in column
V?. The column P contains the confuser package names and
column V contains the target package names. The question
was followed by a list of 50 package pairs, randomly sorted
and selected from a sample generated as follows. We included
100 randomly selected samples for each detection rule, ex-
cept for Alternate spelling which only returned 21 matches
across the whole ecosystem. At the conclusion of the study,
we only retained pairs for which three or more ratings had
been received (to guarantee analysis consistency, if more than
three ratings had been received, we randomly selected three).
Furthermore, we also included limited samples from a con-
trol set of 100 package pairs generated by randomly pairing
benign package names. Prior to data analysis, we removed
incomplete and improperly completed answers (e.g., answers
which gave the same score to all package pairs).

6.2.2 Results

After data cleanup we retained results for n = 64 participants,
rating 784 packages. Empirically, we observed that results
may still contain noise (e.g., some high confusability ratings
to randomly paired and semantically different names). To
avoid cherry-picking data, we decided to exclude only obvi-
ously incorrect answers (e.g., answers giving the same rat-
ing to all entries) and retain everything else. Ultimately, this

Rule Rating Distribution (1-6) Median Distribution(1-6) n samples %(2+r≥ 4) %(3r≥ 5)

P/s augmentation 79 44% 2.5%

Sequence reord. 58 79% 10%

Delimiter modif. 78 56% 7.7%

Grammatical subst. 77 74% 18%

Scope confusion 84 52% 4.8%

Semantic subst. 83 31% 0.0%

Asemantic subst. 86 21% 0.0%

Homophonic sim. 78 24% 3.8%

Simplification 78 29% 1.3%

Alternate spelling 21 81% 38%

Homographic repl. 62 39% 6.5%

Overall 62 45% 6.1%

Table 5: Confusability ratings for samples from each category. Column 2 shows the distribution of all ratings per category.
Column 3 shows the distribution of medians computed for each packet pair. “%(2+r ≥ 4)” expresses the fraction of samples
receiving a confusability rating of 4 or above from at least two rater. “%(3r≥ 5)” expresses the fraction of samples receiving a
confusability rating of 5 or above by all raters.

dataset suffices for our main purpose, which is high-level
quantitative analysis of our detection rules.

Packages per category vary between 58 (excluding Alter-
nate spelling) and 86. We also obtained 69 single-rater ratings
for packages in the control group (scores for such packages re-
main fairly consistently low, thus we limited their presence in
the survey, in the interest of maximizing the number of scores
collected for confusable packages). Table 5 presents results.
For matches labeled with multiple categories, we map each
match to the highest-priority category according to Table 2.
For each detection category, we show (i) the rating distribu-
tion for each rater, (ii) the percentage of packages marked
≥ 4 by two or more out of three raters (interpreted as being
potentially confusing), and (iii) the percentage of packages
marked ≥ 5 by all raters (highly likely to be confusing).

6.2.3 Review of results

Three categories exhibit non-negligible ratios of highly con-
fusable pairs (> 10%). Those include Sequence reordering,
Grammatical substitution, and Alternate spelling. The same
category also exhibit > 70% pairs being rated potentially or
highly confusing. Delimiter modification and Scope confu-
sion return limited matches which meet the “highly confusing”
criterion, but > 50% of their matches meet the “potentially
confusing” criterion.

Intuitively, it appears that the most effective rules aim at
relatively simple textual modifications, which can be accu-
rately modeled by our detectors. To further investigate, we
measured Spearman correlation between number of matches
MP meeting the “potentially confusing” criterion, and preci-
sion, recall and F1-score of each detection rule on the attack
dataset (ref. Table 3). We do the same for number of matches
MH meeting the “highly confusing” criterion. MP exhibits

strong correlation with recall (r(11) = .71, p = 0.014) and
F1-score (r(11) = .82, p = 0.002). Likewise, MH exhibits
strong correlation with recall (r(11) = .83, p = 0.002) and
F1-score (r(11) = .71, p = 0.014). This is consistent with
our hypothesis that simpler rules that more accurately model
the underlying confusion lead to higher-quality matches.

To determine which rules pick up any confusability po-
tential at all, we conducted pairwise comparisons between
ratings in the control group and each category. To account
for the fairly complex dependencies between samples (same
rater scoring multiple pairs/categories, multiple raters scoring
the same pair), we fit an ordinal regression model to the data,
and performed post-hoc pairwise comparison between groups
(rules) using Tukey’s HSD method (we also performed a sim-
pler permutation test with Holm-Bonferroni correction, with
qualitatively identical results). We found that 8 out of 11 cat-
egories exhibit a statistically significant difference from the
control group, i.e., those related to randomly paired benign
packages (details omitted for brevity). The only exceptions
are Semantic Substitution Asemantic Substitution, and Homo-
phonic Similarity, which is consistent with those being the
lowest-performing categories. This result suggests that pack-
age pairs identified by all but the lowest-yield rules exhibit
some degree of confusability.

Finally, we performed a manual review of the lowest-
performing rules. The quality of matches seems to de-
pend on factors, such as the word structure of similar-
sounding names. For example, in “Homophonic similarity”,
babel-jest/buble-jest meets our “potentially confusing”
criterion, but lazy.js/lice-js does not. Building a detector
that considers such perceptual nuances is future work.

6.3 Comparison to State-of-the-art detectors

In this section, we compare our detection rules with two state-
of-the-art package confusion detection systems: Taylor et al.’s
TypoGard tool [58], and Microsoft OSSGadget’s typosquat-
ting detection component [1]. Like our work, these detectors
apply checks to package pairs to identify package confusion
candidates. However, these tools focus on small syntactic
differences for detection, as opposed to our emphasis on se-
mantic confusion. Thus, the goal of our evaluation is not
to asses whether our rules subsume these tools. Rather, we
consider whether our rules complements them by returning
matches that those tools fail to identify.

6.3.1 Methodology

In order to carry out our comparative analysis, we execute
both previous tools on the set of package pairs described
in Section 6.1.1. For both tools, we use the public imple-
mentation from GitHub. We made minor modifications to
OSSGadget’s public implementation (which do not affect the
detection logic) to adapt it to our evaluation harness. Similar

Rule Matches TG Ov. OG Ov.

P/s augmentation 143864 96 1484
Sequence reord. 1734 407 0
Delimiter modif. 7178 300 847
Grammatical subst. 2461 169 1084
Scope confusion 4247 8 0
Semantic subst. 9610 3 33
Asemantic subst. 139160 1 32
Homophonic sim. 24735 374 2680
Simplification 27743 74 792
Alternate spelling 21 1 8
Homographic repl. 2393 115 1913

Table 6: Overlap between matches returned by our rules
(“Matches”), and matches returned by TypoGard (“TG Ov.”)
and OSSGadget (“OG Ov.”).

to our tooling, both TypoGard and OSSGadget associate each
match to a specific detection category. After execution, we
consider the overlap between each TypoGard/OSSGadget cat-
egory and our categories. Overlap is defined as the fraction of
matches returned by one of our rules which is also returned by
a given TypoGard/OSSGadget rule. Furthermore, we analyze
differences in user ratings between matches returned by both
our approach and OSS, and by our approach only (TypoGard
did not flag any package pair for which we have user ratings).

6.3.2 Results

Overall, TypoGard returned 3690 matches, and OSSGadget
returned 31501 matches. Of those, respectively 1924 (52.1%)
and 8386 (26.6%) are also returned by our rules; however, the
majority of matches returned by our rules were not returned
by either tool.

Table 6 presents, for each one of our rules, overall number
of matches (column 2); matches also returned by TypoGard
(column 3); and matches also returned by OSSGadget (col-
umn 4). We further discuss relevant overlap instances below.

Figure 4 summarizes the degree of overlap between our
rules and individual TypoGard/OSSGadget rules as a heatmap.
Our Grammatical substitution rule exhibits a moderate (25%)
overlap with OSSGadget’s Suffix added; this is unsurprising
as some (but not all) grammatical alterations involve adding
a suffix to the base word. The only combination with ma-
jor overlap is between our Homographic replacement rule
and OSSGadget’s Ascii Homoglyph. Upon close inspection,
both rules aim at detecting homographic stand-ins (i.e., differ-
ent characters that look similar), but are engineered slightly
differently, leading to 80% overlap. We further discuss the
implications of these results in Section 7.

Table 7 characterizes user ratings of matches returned by
both OSSGadget and our rules, and those returned by our
rules only. Overall, these results suggest that the design space

TypoGard OSSGadget

Homographic repl.
Alternate spelling

Simplification
Homophonic sim.
Asemantic subst.
Semantic subst.

Scope Confusion
Grammatical subst.

Delimiter modif.
Sequence reord.

P/s augmentation

Com
mon

 ty
po

s

Omitte
d c

ha
rs

Rep
ea

ted
 ch

ars

Swap
pe

d w
ord

s

Ve
rsi

on
 nu

mbe
r

Afte
r s

ep
ara

tor

Asc
ii h

om
og

lyp
h

Bit f
lip

s

Cha
rac

ter
 re

mov
ed

Clos
e l

ett
ers

Dou
ble

 hi
t c

ha
r

Le
tte

r d
up

lic
ate

d

Le
tte

r d
up

 re
pl

Le
tte

rs
sw

ap
pe

d

Pref
ix

ad
de

d

Sep
ara

tor
 ch

an
ge

d

Sep
ara

tor
 re

mov
ed

Suff
ix

ad
de

d

Swap
 w

ov
el NA

TypoGard and OSSGadget rules

O
ur

 ru
le

s

0.00

0.25

0.50

0.75

1.00
Overlap

Figure 4: Degree of overlap between our rules (Y-axis) and TypoGard/OSSGadget rules (X-axis). Darker hues corresponds to
larger overlaps (i.e., closer to 1.0).

of certain rules may allow trade-offs between precision and re-
call. OSSGadget focus on simple textual modifications results
in high fraction of potentially or highly confusable matches,
among overlapping matches. However, for the same reason
the tool also fails to capture a significant amount of potentially
relevant package pairs. We leave exploring combination of
techniques from different tools as future work.

6.4 Security analysis of packages

In this section, we perform an analysis of the maliciousness
of potentially confusable packages to determine the security
risks they pose to developers. We gathered data from sources
of known malicious packages, to determine which flagged
packages had been taken down as malicious. We then com-
pared malicious package density in the set of packages flagged
by our rules, vs the population of not flagged packages.

Methodology. We leveraged Snyk, a popular third-party
database which is commonly used in related work [15, 69].
We further requested malicious package data sets from a
number of previous publications [51, 54, 58]. We matched
all the unique perpertrator packages returned by our tool
(n = 210,741) against the datasets described above, collect-
ing all packages matching any dataset. To provide a control
group, we also matched n = 150,000 packages not flagged
by our tool against the same datasets. Using Snyk poses an
internal validity issue as the same resource is part of the data
sources used to define the rules, however it is necessary due to
the scarcity of open dataset of software supply chain attacks.
We consider this limitation acceptable as the purpose of this
experiment is to characterize known malicious behavior in
confusable packages, rather than measure intrinsic accuracy
of our detection rules (the latter would require ground truth

for the 210,741 packages, which is impractical). Packages
flagged by Snyk may not appear in our attack dataset for two
reasons: (i) they were not present in the Snyk database at
the time of collection; or (ii) they were present in the Snyk
database but not clearly characterized as package confusion
(although they are confusing according to our rules).

Further, we categorized flagged malicious packages accord-
ing to the taxonomy of Duan et al. [67]. We find it necessary
to extend the taxonomy with two new categories: Cryptotheft,
which steal crypto currencies from wallets, and Downloader
which downloads malicious payloads on a system. Finally,
some packages were flagged as malicious without further
description, and we marked those as Unknown.

Results. Overall, 168 confuser packages flagged by rules
1-11 presented known malicious behavior (0.080% of all con-
fusers). Detailed results are showed in Table 8. If we also
consider packages matched by 1-step D/L (not detailed in the
table), we obtain 278 malicious packages out of n = 275,910
(0.1%). Furthermore, 40 packages in the control group where
flagged as malicious (0.027%). While the numbers are small
in absolute terms, they also evidence that a package marked
by our rules is 3 times more likely to be flagged as malicious
than an unmarked package (3.8 when also including 1-step
D/L). This suggests that name confusion is a relevant compo-
nent in supply chain attacks, and both syntax- and semantics-
based confusion contribute to it. Thus, we believe identifying
confusable package pairs has a place in a broader security
strategy, both for detection and for decision support.

6.5 Disclosure

Package confusion incidents represent a grey area of security
issues when the content of a confuser package is not overtly

Rule OSS total OSS 2+r≥ 4 OSS 3r>5 NO total NO 2+r≥ 4 NO 3r>5

P/s augmentation 0 N/A N/A 79 44% 2.5%
Sequence reord. 0 N/A N/A 58 79% 10%
Delimiter modif. 20 85% 0.0% 58 47% 10%
Grammatical subst. 42 81% 24% 35 66% 11%
Scope confusion 0 N/A N/A 84 52% 4.8%
Semantic subst. 0 N/A N/A 83 31% 0.0%
Asemantic subst. 0 N/A N/A 86 21% 0.0%
Homophonic sim. 9 78% 33% 69 17% 0.0%
Simplification 0 N/A N/A 78 29% 1.3%
Alternate spelling 8 75% 38% 13 85% 38%
Homographic repl. 48 46% 8.3% 14 14% 0.0%

Table 7: Characterization of user ratings between overlapping (“OSS”) and non-overlapping (“NO”) matches. “Total”: total
number of matches, “2+r≥ 4”: % of potentially confusing matches, “3r>5”: % of highly confusing matches

.

Attack Category # pkgs # in attack set

Stealing 70 48
Backdoor 9 9
Sabotage 2 1
Cryptojacking 2 2
Virus 1 1
Maladvertising 2 1
PoC 1 0
Cryptotheft 33 31
Downloader 1 0
Confusion 2 0
Unknown 45 18

Table 8: Breakdown of malicious packages flagged by our
rules. # pkgs is the number of flagged packages per category,
while # in attack set is the number of such packages present in
the attack dataset upon which the rules are based (Section 3)

malicious. Such a package may still degrade the quality of
a project in which it is accidentally used, by unintentionally
introducing potentially unmaintained, vulnerable code into a
project [66, 70].

We disclosed the results of our package confusion analy-
sis directly to npm so that they could apply an appropriate
mitigation. The Trust and Safety team acknowledged our sub-
mission, but they have not rendered a final decision by the
time of publication. We note that the security issue presented
by package confusion does not fit well into the existing re-
porting and takedown mechanisms of package repositories.
The npm staff advised us to use the Report Malware feature
in our reports, and categorize the incidents as Typosquatting.
They also noted that investigations rely on determining viola-
tions of npm’s Open Source Terms, which does not include
preclude confusing content. Furthermore, a confuser package

may be confusing unintentionally, and may not contain any
malcious code. We believe that mitigating package confusion
is a complex issue that requires future work.

6.6 Data/Artifact Release

Our datasets, results, and tooling are available at
https://osf.io/nfkts/?view_only=
b56d63194ef84ce4ba85ec00ee57cd05 and
https://github.com/ldklab/typomind-release.

7 Discussion

In this section, we discuss the results of our previous experi-
ments, and describe their implications.

Importance of Broad Package Confusion Detection. The
results of our confusability analysis demonstrates that each of
the categories have potentially-confusing entries in practice
and that some methods are highly capable of confusability
(c.f. Section 6.2.3). This result implies that our categories do
capture actual methods by which an adversary might induce
a developer to download a package. This data emphasizes
that the problem of package confusion attacks are a credible
threat, and that our categorization can help to specify how the
attack might occur in practice.

Uniqueness of Package Confusion. One of the key results
of Section 6 is that complex contortions of package names are
less effective than simple textual replacement. As such, we
tested whether an expanded notion of package confusion is
subsumed in practice by state-of-the-art detectors that focus
on typosquatting. Our comparative analysis against the Ty-
poGard and OSSGadget’s tools indicate that our categories do

https://osf.io/nfkts/?view_only=b56d63194ef84ce4ba85ec00ee57cd05
https://osf.io/nfkts/?view_only=b56d63194ef84ce4ba85ec00ee57cd05
https://github.com/ldklab/typomind-release

add a new dimension to package confusion, and that package
confusion is not captured by typo detection alone.

Feasibility of Automated Detection. Our results have im-
plications for automatic detection of package confusion at-
tacks to alert users. We note that the detectors for Sequence
reordering, Grammatical substitution and Alternate spelling
work quite well in practice, resulting in an aggregate 77%
matches marked as potentially confusing or highly confus-
ing and 18% being extremely confusing. Cumulatively, these
detectors also flag less than one package pair per 100M, lim-
iting the risk of warning fatigue [21]. These detectors may be
immediately applicable in proactively preventing these types
of confusion (whether malicious or unintentional). However,
several of the other detectors would require additional data
(construed as vetted attack examples) to better refine their
design. For example, Semantic substitution and Asemantic
substitution resulted in matches unlikely to generate confu-
sion. This is in a sense unsurprising, as designing complex
detectors based on very limited sets of examples is a signifi-
cant challenge. Nevertheless, we believe our work may serve
as a call to arms for future study on incidents and detectors
for these categories.

Deploying Package Confusion Prevention. The results
of our experiment on package confusion instances on npm
shows that relatively few of the packages within the ecosys-
tem (0.00087%, c.f. Section 6.1.2) are likely to be package
confusion attacks. However, as with the narrow threat of ty-
posquatting, package confusion attacks have an outsized im-
pact on the overall security of the repository, especially since
such attacks have historically exposed many users to their
effect. Based on the low overall alert rate of our rules, deploy-
ing such tools in practice is unobtrusive. Since our tooling
aims to detect potential confusion, it is best served as a warn-
ing mechanism rather than a irrevocable blocking policy to
prevent package installation.

8 Related Work

Supply-Chain Security: Our work represents an entry in
the growing body of literature on characterizing an detecting
supply-chain security issues [28,34,52,53,62,63,65]. Related
to our work is also the literature on software bill of materials
(SBOM), which seeks to track the developers and compo-
nents of software [46, 49]. Other relevant works focus on
community repository security [39, 60], binary transparency
[14], and integrity verification [50]. Ecosystem maintainers
have also been involved in security, including shipping hard-
ware verification keys to popular projects [32]. The body of
work detailed above does not specifically address package
confusion as an issue within the software supply chain.

Other works focus specifically on npm security. Xiao et al
[67] study vulnerabilities in the Node.js programs through
hidden property abusing. Sejfia et al. [54] build a practical au-
tomated detection technique to find malicious npm packages.
Zahan et al. [68] analyze the metadata of 1.6 million npm
packages, identifying various signals of security weakness.
Our research complements these investigations by providing
a rich, in-depth characterization of package confusion.

Ohm et al. [51] analyze 174 malicious packages in npm,
ruby and python libraries and found that almost 64% utilize
typosquatting, which is consistent with some of our findings.
Zerouali et al. [69] and Alfadel et al. [15] analyze vulnerable
packages in PyPi and npm and Rubygems respectively, by
leveraging the Snyk database. We perform similar analyses
as an evaluation criteria for our results.

Namesquatting: The problem of name confusion in other
contexts, broadly referred to as namesquatting, is similar in
spirit to name-based package confusion attacks. Ladisa et.
al [40] define Create Name Confusion with Legitimate Pack-
age as one of the taxonomy for OSS supply chain attacks.
Our work details ways we can detect such confusing pack-
age names and tests it in the wild. Moubayed et al. propose
a technique for detecting DNS squatting [48], and Hu et al.
propose similar work for detecting squatting in mobile app
markets [35]. Burt et al. studied brand-name confusion in
the context of trademarks, noting that confusion can arise in
a variety of circumstances but offering no concrete catego-
rization or automated mitigation/detection [20]. Our research
focuses specifically on categorizing known package confusion
instances and builds detection rules to detect these categories
in the wild and uses domain-specific information, such as a
targeted jargon dictionary.

Package Name Typosquatting Defenses: Ecosystem main-
tainers implemented several measures to mitigate the threat of
typosquatting, such as PyPI disallowing packages to occupy
a name that only replaces underscores with dashes. Several
recent works have also attempted to characterize [38, 64] or
prevent [58, 61] typosquatting, intended as limited forms of
package confusion such as typos. As stated in Section 1, our
work is designed to expand upon these limited protections.

Cognitive Models: Moving beyond basic lexical similarity,
previous work has examined several cognitive aspects of name
similarity as they relate to several areas outside of security.
One such area is drug prescribing errors due to drug names
being too similar [41, 42]. This research described the "look-
alike/sound-alike" model (LASA). For the original model,
techniques including n-grams, longest common subsequence,
and Levenshtein edit distance were employed to detect "look-
alike" instances while techniques including Soundex, Phonex,
Editex, tapered edit distance, omission key, and skeleton key
were utilized in the detection of "sound-alike" instances. Our
research utilizes some of these cognitive models in package
names to understand package name confusion in developers.

9 Conclusion

In this work, we expand upon the study of package confusion
attacks, proposing categories that captures historical examples
of such attacks. We show that these categories also represent
credible means of misleading users of language-based ecosys-
tems. We propose several heuristics, based on these categories,
for automatically identifying examples of package confusion
in the wild. We show that there are numerous such instances in
the npm repository, and encourage future work in the domain.

Ackowledgments

We thank the anonymous reviewers and our shepherd for their
insightful feed- back, that greatly aided us in improving this
work. We also thank Ann Barcomb for her help with the
survey design, and Sirshendu Ganguly and James Kajon for
their help with the package analysis process. This work was
partially supported by a generous gift from the Google Open
Source Security Team, and by funding from the Worcester
Polytechnic Institute Computer Science department.

References

[1] Microsoft OSS Gadget.
https://github.com/microsoft/OSSGadget/tree/main/src/oss-
find-squats-lib.

[2] RubyGems: Guide. https://guides.rubygems.org/, last
accessed October 2022.

[3] Soundex System. https://www.archives.gov/research/
census/soundex, August 2016.

[4] Executive Order on Improving the Nation’s Cy-
bersecurity. https://www.whitehouse.gov/briefing-
room/presidential-actions/2021/05/12/executive-
order-on-improving-the-nations-cybersecurity/, May
2021.

[5] CVE - CVE. https://cve.mitre.org/index.html, October
2022.

[6] fastText. https://fasttext.cc/index.html, oct 2022.

[7] GitHub Advisory Database.
https://github.com/advisories, October 2022.

[8] NLTK :: Natural Language Toolkit.
https://www.nltk.org/, oct 2022.

[9] npm advisories. https://github.com/advisories?query=type
%3Areviewed+ecosystem%3Anpm, oct 2022.

[10] Python Packaging Advisory Database.
https://github.com/pypa/advisory-database, September
2022.

[11] Registries - The Cargo Book. https://doc.rust-
lang.org/cargo/reference/registries.html, October 2022.

[12] Ruby Advisory Database.
https://github.com/rubysec/ruby-advisory-db, Oc-
tober 2022.

[13] Snyk Open Source Advisor. https://snyk.io/advisor, Oc-
tober 2022.

[14] Mustafa Al-Bassam and Sarah Meiklejohn. Contour:
A practical system for binary transparency. CoRR,
abs/1712.08427, 2017.

[15] Mahmoud Alfadel, Diego Elias Costa, and Emad Shihab.
Empirical analysis of security vulnerabilities in python
packages. In SANER, 2021.

[16] Andrey Polkovnychenko and Shachar Menashe. Ma-
licious Packages in npm Targeting Azure Developers.
https://jfrog.com/blog/large-scale-npm-attack-targets-
azure-developers-with-malicious-packages/, March
2022.

[17] Ax Sharma. PyPI removes ’mitm-
proxy2’ over code execution concerns.
https://www.bleepingcomputer.com/news/security/pypi-
removes-mitmproxy2-over-code-execution-concerns/,
October 2021.

[18] Stefan Axelsson. The base-rate fallacy and its implica-
tions for the difficulty of intrusion detection. In ACM
CCS, 1999.

[19] Virginia Braun and Victoria Clarke. Using thematic anal-
ysis in psychology. Qualitative Research in Psychology,
3(2):77–101, 2006.

[20] Jennifer Burt, Kimberley McFarlane, Sarah Kelly,
Michael Humphreys, Kimberlee Weatherall, and Robert
Burrell. Brand name confusion: Subjective and objec-
tive measures of orthographic similarity. Journal of
Experimental Psychology: Applied, 23, 02 2017.

[21] Rainer Böhme and Jens Grossklags. The security cost
of cheap user interaction. In NSPW, 2011.

[22] Catalin Cimpanu. Ten Malicious Libraries
Found on PyPI - Python Package Index .
https://www.bleepingcomputer.com/news/security/ten-
malicious-libraries-found-on-pypi-python-package-
index/, 2017.

[23] Catalin Cimpanu. Twelve malicious Python
libraries found and removed from PyPI.
https://www.zdnet.com/article/twelve-malicious-
python-libraries-found-and-removed-from-pypi/,
October 2018.

[24] Catalin Cimpanu. Malicious Python packages
caught stealing Discord tokens, installing shells.
https://therecord.media/malicious-python-packages-
caught-stealing-discord-tokens-installing-shells/,
November 2021.

[25] Juliet Corbin and Anselm Strauss. Basics of qualitative
research: Techniques and procedures for developing
grounded theory. Sage publications, 2014.

[26] Ruian Duan, Omar Alrawi, Ranjita Pai Kasturi, Ryan El-
der, Brendan Saltaformaggio, and Wenke Lee. Towards
measuring supply chain attacks on package managers
for interpreted languages. In IS NDSS, 2021.

[27] Ceryn Evans and Jamie Lewis. Analysing semi-
structured interviews using thematic analysis: Exploring
voluntary civic participation among adults. Sage Re-
search Methods Datasets Part 1, 2018.

[28] Dan Geer, Bentz Tozer, and John Speed Meyers. Count-
ing broken links: A quant’s view of software supply
chain security. For Good Measure, 2019.

[29] GitHub. Mailicious Package in erquest.
https://github.com/advisories/GHSA-4pmg-jgm5-
3jg6, 2020.

[30] GitHub. Malicious Package in bufffdr-xor.
https://github.com/advisories/GHSA-8549-p68h-
m9mc, 2020.

[31] GitHub. Malicious Package in koa-body-parse.
https://github.com/advisories/GHSA-wqgq-mfvj-6qxp,
2020.

[32] Dan Goodin. Actors behind pypi supply
chain attack have been active since late
2021. https://arstechnica.com/information-
technology/2022/09/actors-behind-pypi-supply-chain-
attack-have-been-active-since-late-2021/, September
2022.

[33] Grant Jenks. Python Word Segmenta-
tion — Word Segment 1.3.1 documentation.
https://grantjenks.com/docs/wordsegment/, 2017.

[34] Trey Herr. Breaking trust – shades of crisis across
an insecure software supply chain, 2021. USENIX
ENIGMA.

[35] Yangyu Hu, Haoyu Wang, Ren He, Li Li, Gareth Tyson,
Ignacio Castro, Yao Guo, Lei Wu, and Guoai Xu. Mobile
app squatting. In WWW, 2020.

[36] Ivan Akulov. Malicious packages in npm. Here’s
what to do. https://iamakulov.com/notes/npm-malicious-
packages/, 2017.

[37] Danielle Jacobs and Troy McDaniel. A survey of user
experience in usable security and privacy research. In
HCII, 2022.

[38] Berkay Kaplan and Jingyu Qian. A survey on common
threats in npm and pypi registries. In MLHat Workshop,
2021.

[39] Trishank Karthik Kuppusamy, Santiago Torres-Arias,
Vladimir Diaz, and Justin Cappos. Diplomat: Using
delegations to protect community repositories. In NSDI,
2016.

[40] Piergiorgio Ladisa, Henrik Plate, Matias Martinez, and
Olivier Barais. Taxonomy of attacks on open-source
software supply chains. CoRR, abs/2204.04008, 2022.

[41] Bruce L Lambert, William Galanter, King Lup Liu,
Suzanne Falck, Gordon Schiff, Christine Rash-Foanio,
Kelly Schmidt, Neeha Shrestha, Allen J Vaida, and
Michael J Gaunt. Automated detection of wrong-drug
prescribing errors. BMJ Quality & Safety, 28(11):908–
915, 2019.

[42] Bruce L. Lambert, Swu-Jane Lin, Ken-Yu Chang, and
Sanjay K. Gandhi. Similarity as a risk factor in drug-
name confusion errors: The look-alike (orthographic)
and sound-alike (phonetic) model. Medical Care,
37(12):1214–1225, 1999.

[43] Lawrence Philips. Hanging on the metaphone. Com-
puter Language Magazine, 7(12):39–44, December
1990.

[44] Markus Lennartsson, Joakim Kävrestad, and Marcus
Nohlberg. Exploring the meaning of usable security–a
literature review. Information & Computer Security,
29(4):647–663, 2021.

[45] Tomislav Maljic. Mining for malicious Ruby
gems. https://blog.reversinglabs.com/blog/mining-for-
malicious-ruby-gems, April 2020.

[46] Robert Alan Martin. Visibility & control: addressing
supply chain challenges to trustworthy software-enabled
things. In IEEE SSS, 2020.

[47] Tomas Mikolov, Edouard Grave, Piotr Bojanowski,
Christian Puhrsch, and Armand Joulin. Advances in
pre-training distributed word representations. In Pro-
ceedings of the International Conference on Language
Resources and Evaluation (LREC 2018), 2018.

[48] Abdallah Moubayed, MohammadNoor Injadat, Abdal-
lah Shami, and Hanan Lutfiyya. Dns typo-squatting
domain detection: A data analytics & machine learning
based approach. In IEEE GLOBECOM, 2018.

[49] Éamonn Ó Muirí. Framing software component trans-
parency: Establishing a common software bill of mate-
rial (sbom). 2019.

[50] Kirill Nikitin, Eleftherios Kokoris-Kogias, Philipp Jo-
vanovic, Nicolas Gailly, Linus Gasser, Ismail Khoffi,
Justin Cappos, and Bryan Ford. CHAINIAC: Proactive
Software-Update transparency via collectively signed
skipchains and verified builds. In USENIX Security,
2017.

[51] Marc Ohm, Henrik Plate, Arnold Sykosch, and Michael
Meier. Backstabber’s knife collection: A review of open
source software supply chain attacks. In Clémentine
Maurice, Leyla Bilge, Gianluca Stringhini, and Nuno
Neves, editors, Detection of Intrusions and Malware,
and Vulnerability Assessment, pages 23–43, Cham, 2020.
Springer International Publishing.

[52] Chinenye Okafor, Taylor R. Schorlemmer, Santiago
Torres-Arias, and James C. Davis. Sok: Analysis of
software supply chain security by establishing secure
design properties. In ACM SCORED Workshop, 2022.

[53] Simone Scalco, Ranindya Paramitha, Duc-Ly Vu, and
Fabio Massacci. On the feasibility of detecting injec-
tions in malicious npm packages. In ARES, 2022.

[54] Adriana Sejfia and Max Schäfer. Practical automated
detection of malicious npm packages. In IEEE/ACM
ICSE, 2022.

[55] Ax Sharma. Sonatype Catches New PyPI Cryptomining
Malware. https://blog.sonatype.com/sonatype-catches-
new-pypi-cryptomining-malware-via-automated-
detection, June 2021.

[56] SonaType. State of the Softwarw Supply Chain. Tech-
nical report, 2021.

[57] Sidra Taha. Can a code snippet portal contribute to
greater learning outcomes in other fields of science and
technology? Master’s thesis, UiT Norges arktiske uni-
versitet, 2021.

[58] Matthew Taylor, Ruturaj Vaidya, Drew Davidson,
Lorenzo De Carli, and Vaibhav Rastogi. Defending
Against Package Typosquatting. In NSS, 2020.

[59] Gareth Terry, Nikki Hayfield, Victoria Clarke, and Vir-
ginia Braun. Thematic analysis. The SAGE handbook
of qualitative research in psychology, 2:17–37, 2017.

[60] Santiago Torres-Arias, Hammad Afzali, Tris-
hank Karthik Kuppusamy, Reza Curtmola, and
Justin Cappos. in-toto: Providing farm-to-table
guarantees for bits and bytes. In USENIX Security,
2019.

[61] Ruturaj K. Vaidya, Lorenzo De Carli, Drew Davidson,
and Vaibhav Rastogi. Security issues in language-based
sofware ecosystems. CoRR, abs/1903.02613, 2019.

[62] Duc-Ly Vu, Fabio Massacci, Ivan Pashchenko, Henrik
Plate, and Antonino Sabetta. Lastpymile: identifying
the discrepancy between sources and packages. In ACM
ESEC/FSE, 2021.

[63] Duc Ly Vu, Ivan Pashchenko, Fabio Massacci, Henrik
Plate, and Antonino Sabetta. Towards using source code
repositories to identify software supply chain attacks. In
ACM CCS, 2020.

[64] Duc-Ly Vu, Ivan Pashchenko, Fabio Massacci, Henrik
Plate, and Antonino Sabetta. Typosquatting and com-
bosquatting attacks on the python ecosystem. In 2020
IEEE European Symposium on Security and Privacy
Workshops (EuroS&PW), pages 509–514. IEEE, 2020.

[65] Zachary Williams, Jason E Lueg, and Stephen A LeMay.
Supply chain security: an overview and research agenda.
The International Journal of Logistics Management,
2008.

[66] Elizabeth Wyss, Lorenzo De Carli, and Drew Davidson.
What the fork?: Finding hidden code clones in npm. In
IEEE/ACM ICSE, 2022.

[67] Feng Xiao, Jianwei Huang, Yichang Xiong, Guangliang
Yang, Hong Hu, Guofei Gu, and Wenke Lee. Abusing
hidden properties to attack the node.js ecosystem. In
USENIX Security, 2021.

[68] Nusrat Zahan, Thomas Zimmermann, Patrice Gode-
froid, Brendan Murphy, Chandra Maddila, and Laurie
Williams. What are weak links in the npm supply chain?
In IEEE/ACM ICSE-SEIP, 2022.

[69] Ahmed Zerouali, Tom Mens, Alexandre Decan, and
Coen De Roover. On the impact of security vulnerabil-
ities in the npm and rubygems dependency networks.
Empirical Softw. Engg., 27(5), sep 2022.

[70] Markus Zimmermann, Cristian-Alexandru Staicu, and
Michael Pradel. Small World with High Risks: A Study
of Security Threats in the npm Ecosystem. In USENIX
Security, 2019.

	Introduction
	Background
	Supply-chain Security
	Package Confusion Attacks

	Datasets
	Package Confusion Attacks Dataset
	Package Dataset

	Categorizing Package Confusion Attacks
	Methodology
	Coding and Results
	Discussion
	Nature of attacks

	Detecting Package Confusion
	Design process and evaluation
	The Language of Package Names
	Delimiterless Tokenization

	Detection Rules

	Measuring Package Confusion in the Wild
	Package confusion instances in npm
	Methodology
	Results

	Confusability Analysis of Matches
	Methodology
	Results
	Review of results

	Comparison to State-of-the-art detectors
	Methodology
	Results

	Security analysis of packages
	Disclosure
	Data/Artifact Release

	Discussion
	Related Work
	Conclusion

