
REVDECODE: Enhancing Binary Function Matching with Context-Aware

Graph Representations and Relevance Decoding

Tongwei Ren1, Ronghan Che1, Guin R. Gilman1, Lorenzo De Carli2, Robert J. Walls1

1Worcester Polytechnic Institute 2University of Calgary

{tren, rche, grgilman, rjwalls}@wpi.edu, lorenzo.decarli@ucalgary.ca

Abstract
Binary reverse engineering is important for security tasks,

including vulnerability discovery, malware analysis, and code

reuse detection. These tasks often involve analyzing bina-

ries without source code or debug symbols. A common yet

challenging step in this process is function matching, i.e.,

comparing functions in unknown binaries to known reference

corpora. Function matching becomes complicated due to vari-

ations introduced by differences in compilers, optimization

levels, and versions. Existing matching techniques primarily

focus on similarity but reverse engineers prioritize relevance—

whether a match provides meaningful insights.

We present REVDECODE, a context-aware framework de-

signed to improve function matching by leveraging interde-

pendencies within binaries through relevance decoding, a

technique that identifies meaningful matches based on contex-

tual information. REVDECODE represents binaries as directed

layered graphs and employs a Viterbi-inspired algorithm to de-

termine the most relevant matches. Additionally, we propose

GPU-optimized variants of REVDECODE which partition the

graph traversal workload into independent subsets, maximiz-

ing GPU resource utilization and enabling greater paralleliza-

tion. Experimental results demonstrate that REVDECODE

significantly enhances the performance of existing function

matchers, improving rankings for 56.3% to 98.8% of the eval-

uated functions across multiple datasets and matchers.

1 Introduction

A fundamental problem in reverse engineering is function

matching, which matches functions extracted from an un-

known binary to a reference corpus of known functions. This

task underpins critical workflows: identifying libraries in em-

bedded firmware [7], isolating vulnerable functions [11], and

understanding code reuse in proprietary codebases [15]. The

problem is complex due to variations introduced by compila-

tion settings, optimization levels, and version differences.

Solutions to the function matching problem use a variety of

techniques [2,11,25,44], including control flow structures and

gadgets [2, 11], instruction and function embeddings [25, 44],

and signature matching [19,29]. Ultimately, these approaches

generate abstract representations of functions and rely on

similarity measures to identify matches. However, reverse

engineers prioritize relevance—whether a match provides

meaningful insights—over mere structural similarity. Exist-

ing methods often misclassify functionally relevant but syn-

tactically different functions as dissimilar, creating gaps in

identification, particularly in evolving codebases or under

compiler-induced transformations. Moreover, current tech-

niques struggle to distinguish relevance within ambiguous

function groups that share abstract features. As discussed in

Section 2.2, these challenges cannot be fully addressed by

refining matching algorithms alone.

To tackle this issue, we propose relevance decoding from

context, which identifies function relevance by leveraging

surrounding contextual information. We enhance function

matching by incorporating context - such as interdependen-

cies and contextual relationships - from both individual func-

tions and their binary environment. Relevance decoding builds

on the observation that existing matchers overlook the sur-

rounding binary context—such as preceding and succeeding

code segments—which provides insights into function re-

lationships. Our prototype, REVDECODE, employs a graph

representation to capture these contextual signals and improve

matching accuracy. It is not a new function-matching tech-

nique but a framework designed to enhance the accuracy of

any underlying function matcher. It bridges the gap between

similarity and relevance, offering a more comprehensive solu-

tion to function matching challenges.

A first challenge in our work is that matching is highly

dependent on the corpus of known functions against which

matching is performed. In some cases, the corpus may lack a

function alltogether, or contain only an approximate match

(e.g., a similar function from a different version of the same

library). Thus, we forgo the goal of finding an exact match as

neither useful nor productive, replacing with the notion of a

set of ranked matches. In this approach, functions that bear

the closest relationship with the target function are likely to

rank higher than unrelated function.

Another challenge is that incorporating context—e.g., in-

formation about functions surrounding the target function—

introduces performance overhead, as it involves considering

sequences of candidate functions whose combinations grow

exponentially with corpus size. To address this, we propose a

domain-specific graph traversal approach inspired by Viterbi

decoding [40], and further enhance scalability through parallel

GPU-accelerated algorithms and cascaded matching.

A final challenge lies in constructing realistic datasets of

sufficient scale, particularly in domains such as firmware,

where publicly available open-source samples are limited. To

do so, we curate diverse datasets tailored to different analy-

sis needs. These include open-source software libraries, syn-

thetic yet representative frankenbinaries—composite binaries

formed by combining functions from various libraries—and

additional binaries derived from widely-used software suites.

Results show that REVDECODE is able to consistently

improve function matcher ranking quality in real-world sce-

narios and against incomplete reference corpora, improving

the rankings of 97.3% of the functions in the general-purpose

dataset and between 72.3%-98.8% of the functions in the

frankenbinaries dataset on average. Compared to a function

matcher using solely a similarity score to compute rank-

ings for candidate matches, REVDECODE’s introduction of a

context-aware direct weighted graph reduces ranking ambigu-

ities in up to 33% of the improved function rankings in the

real binaries dataset and over 50% of the improved rankings

from the frankenbinaries dataset. Overall, this paper makes

the following contributions:

• We introduce a context-aware ranking mechanism, inte-

grating information about dependencies and interactions

between functions. This mechanism significantly improves

the reliability and interpretability of function matchers.

• We design an efficient algorithm for translating function

matcher outputs into a graph with weighted edges, optimiz-

ing ranking by identifying maximum-weight paths.

• We propose GPU-optimized variants of REVDECODE

which divide the work of the graph traversal into indepen-

dent subsets, maximizing the utilization of GPU resources

for increased parallelization. These parallel algorithms can

scale to larger graph sizes while keeping end-to-end execu-

tion times under a minute.

• We evaluate our approach on an extensive dataset of bina-

ries, showing that incorporating context can significantly

improve the performance of pre-existing function matchers.

Finally, we note that REVDECODE is not designed to be

robust against active obfuscation. While the use of contextual

information is a double-edged sword in adversarial settings,

REVDECODE remains useful in many security-focused sce-

narios, including stripped binary analysis, vulnerable function

detection, and cross-binary comparison.

2 Background

Function matching compares functions extracted from an un-

known binary to a corpus of known functions to measure

similarities. The matcher’s output is a list of candidate func-

tions with similarity scores. This process enables reverse-

engineering by identifying known functionality, accelerating

analysis, and isolating unknown components for inspection.

Function matchers typically operate by extracting features

from an unknown function and comparing them to features

in the corpus. These tasks often lack the support of source

code, debugging information, or documentation, necessitating

effective and efficient automated techniques.

2.1 Measuring Function Similarity

Function matchers employ diverse techniques to measure

similarity. For each category we provide, if applicable, a few

examples; we review additional approaches in Section 8.

• Control Flow Analysis: Tools such as BSim [1] and dis-

covRE [11] analyze control flow structures to identify sim-

ilarities between functions. These approaches use graph-

based representations, such as Control Flow Graphs (CFGs),

and compute similarity using methods like Maximum Com-

mon Subgraph Isomorphism or feature vector comparisons.

• Machine Learning Techniques: SAFE [25] and Gem-

ini [44] use deep learning models to generate embeddings

for functions. These embeddings encode high-level seman-

tic and structural information, enabling similarity compar-

isons through vector operations such as cosine similarity.

• I/O Behavior and Signature-Based Matching: Pewny et

al. [28] derive signatures based on I/O behavior for bug iden-

tification. Similarly, BinHash [19] and related approaches

focus on input-output behaviors at the basic block level.

• Statistical and Heuristic Features: Although not com-

mon in literature, it is in principle possible to use simple

heuristics to reduce functions to sets of features, such as

instruction mnemonics or basic block behaviors. Similarity

can be computed using metrics like the Jaccard coefficient.

2.2 Challenges in Existing Function Matching

Similarity versus Relevance: Function matchers primarily

focus on measuring similarity between functions, typically

leveraging syntactic or structural features like control flow

graphs or instruction sequences. Nonetheless, similarity does

not necessarily imply relevance for reverse engineers, who

prioritize grasping the functional intent and operational con-

text of the code [41]. Low similarity scores do not always

indicate a lack of relevance, as functions may exhibit signifi-

cant changes in their implementation while retaining the same

functional purpose. For instance, consider a scenario where a

reverse engineer encounters an unknown function, which is

actually version 2.40 of foo, but only version 2.0 of foo is

known. Significant source code changes between these ver-

sions may add new logic or modify existing functions, which

could lead the function matcher to label the two versions of

foo as dissimilar. Nevertheless, the reverse engineer still needs

to recognize that the code corresponds to some iteration of foo

to track its evolution and assess its impact. Thus, the challenge

lies in bridging the gap between similarity-based approaches

and the relevance-driven needs of reverse engineers.

Handling Incomplete Corpora: Building a comprehensive

corpus of all possible functions is infeasible. Consider the libc

library: it has countless versions, each potentially compiled

for different target architectures, using varying compilers,

build options, applied patches, and so on. As a result, it is

almost certain that any given binary will contain variants of

known code rather than exact matches. This require the ability

to match in the presence of such differences, but also to avoid

returning a match when the uncertainty is too great.

Existing matchers are designed to be robust to some degree

of variation, but none of the tools we tested provide mecha-

nisms to label a function as uncertain. The quality of function

matching should not overly depend on the completeness of

the corpus, as building such a complete corpus is unrealistic.

Ambiguity in Matches: Ambiguous matches represent the

converse of the incomplete corpus issue. As the corpus grows,

the likelihood of encountering highly similar functions in-

creases. For instance, hardware abstraction layer (HAL) li-

braries across different platforms tend to share similar func-

tion structures, making them difficult to distinguish.

Existing matchers struggle to differentiate these functions

because they rely on features that are insufficient to discrim-

inate between such cases. This forces analysts to manually

resolve ambiguities, which significantly increases the time

and effort required for analysis.

2.3 Leveraging Contextual Information

Our insight is that existing function matchers underutilize con-

textual information from the corpus and binary. Contextual

information from the corpus includes the uniqueness of par-

ticular features. For example, matching a rare feature might

indicate a higher likelihood of a correct match.

Contextual information from the binary involves leveraging

strong matches in one part of the binary to inform the match-

ing process in others. If a strong match identifies a known

library in one section of the binary, this information can guide

matching for the surrounding functions.

3 Design Of REVDECODE

In this section, we propose a function-matching optimiza-

tion framework that attempts to address the issues outlined

in Section 2 by conceptualizing function matching across

an entire binary as a directed layered graph, where layers

represent unknown functions, nodes in the graph represent

candidate functions, and edges and weights on those edges

encode contextual relationships. We call our implementation

of this framework REVDECODE.

REVDECODE does not replace function matchers; rather,

it is a system that incorporates results from existing function

matchers. The input to REVDECODE is an unknown binary

and a reference corpus of functions. REVDECODE then con-

structs a graph (discussed in the following), using similarity

scores returned by the function matcher, as one component of

the weight of edges between function nodes. REVDECODE

then efficiently finds the maximum-weight path through the

constructed graph. The final ranking for each unknown func-

tion is based on the proximity of the candidates to that path.

REVDECODE consists of three primary phases. First is the

graph construction phase, which builds the graph based on the

unknown binary and the reference corpus. Second is the graph

traversal phase, where the system identifies the most relevant

paths based on edge weights and contextual relationships.

Third is the ranking phase, which creates a ranked list of

candidates for each function in the unknown binary.

3.1 Graph Construction

Candidate functions from the reference corpus are repre-

sented as nodes in a directed acyclic graph (DAG). Each

node corresponds to a potential match for an unknown func-

tion from the input binary. The nodes are arranged into layers,

with one layer dedicated to each unknown function. Thus,

given n unknown functions, each unknown function U j where

j ∈ {1,2, ...,n}, becomes a layer in the graph, consisting of

a set of candidate matches Mi where i ∈ {1,2, ...,m}, with m

being the total number of candidate matches for U j. Addi-

tionally, REVDECODE adds three special nodes types: start,

end, and uncertain nodes. The start and end nodes represent

the start and end points for path traversal, meaning there is

only one node of each of these types in the constructed graph.

The uncertain node type allows REVDECODE to be robust to

incomplete corpora, and there is one uncertain node included

per layer. We describe them further in Section 3.1.2 below.

REVDECODE constructs edges between nodes to represent

adjacency relationships between unknown functions in the in-

put binary. If two unknown functions are adjacent in memory

within the binary, they are modeled as adjacent layers within

the graph. Further, for every pair of consecutive unknown

functions U j and U j+1, an edge ei, j,k is added between every

candidate match Mi in layer U j and every candidate match

Mk in layer U j+1. This design leverages the observation that

the compilation process frequently places functions from the

same compilation unit contiguously in memory, encoding this

contextual information in the graph. Additionally, REVDE-

CODE places the start node before the first layer, containing

8

1 4

2 5

3 6

7

9

Start End

A CB

uncertain uncertain uncertain

foo

bar

baz

quux garply

waldo

qux

8

1 4

2 5

3 6

7

9

Start

2.49

2.27

3.09 3.09

2.39 2.09

3.14

2.39

2.31

3.01 3.01

2.31

2.36
2.38

2.09

3.16

3.06
3.08

2.092.39

End
2.37

corge

quux

A CB

0

0

0

2.22

2.22

2.24

2.22

2.22

2.31

2.362.39

2.23

2.23

2.23

2.23

2.09 2.38

2.31

0

(a) Constructed directed acyclic graph.

8

1 4

2 5

3 6

7

9

Start End

A CB

uncertain uncertain uncertain

foo

bar

baz

quux garply

waldo

qux

8

1 4

2 5

3 6

7

9

Start

2.49

2.27

5.36 8.47

4.88 6.97

5.51

4.76

4.8

5.38 8.52

7.19

4.85
7.26

7.6

8.67

5.33
8.46

7.474.66

End
2.37

corge

quux

A CB

4.71

4.59

2.24

4.49

4.46

4.55

4.64.63

6.94

7.61

7.74

7.11

6.8 7.09

7.02

7.6

8.67

8.52

7.74

(b) Graph after calculating the weight for each path. Bolded edges

denote the maximum incoming path of each dest. node.

8

1 4

2 5

3 6

7

9

Start End

A CB

uncertain uncertain uncertain

foo

bar

baz

quux garply

waldo

qux

82 5Start
5.51

(Rank-1)

4.85

(Rank-3)
7.26

(Rank-3)

8.67

(Rank-1)

5.33

(Rank-2)
8.46

(Rank-2)

End

corge

quux

A CB

4.63

(Rank-4)

7.09

(Rank-4)

7.6

(Rank-4)

8.67

(Rank-1)

8.52

(Rank-2)

7.74

(Rank-3)

(c) Graph after ranking. Bolded nodes are the nodes falling on

maximum-weight paths.

Figure 1: A simple example to show REVDECODE.

an outgoing edge to every node in that layer. Similarly, the

end node is placed after the last layer.

An example of a constructed graph can be seen in Figure 1.

Visually, the graph layers are arranged from left to right ac-

cording to the unknown functions’ offsets in memory. Each

layer corresponds to a single unknown function. A candidate

function from the corpus may correspond to multiple nodes

in the graph if those nodes are in separate layers.

We can represent the graph as G = (V,E), where V =
{vs,ve}∪{vi, j|i ∈ {1, ...,m+1}, j ∈ {1,n}}. Here, vs,ve are

respectively the start and end nodes, and the node vi, j rep-

resents the i− th candidate match for the j− th unknown

function in layer j. Each layer has an additional uncertain

node represented as vm+1, j.

The set of edges is defined as E = ES∪EL∪EE . ES repre-

sents the set of edges connecting node vs to all nodes in layer 1.

EE represents the set of edges connecting all nodes in layer n

to ve. EL = {(vi, j,vk, j+1)|i,k ∈ {1, ...,m+1}, j ∈ {1,n−1}}
is the set of directed edges between layers, where each edge

connects a candidate match node vi, j in layer j to a node

vk, j+1 in layer j+ 1, representing transitions between adja-

cent unknown functions in the binary.

3.1.1 Edge Weights

Each edge ei, j,k in E has an associated weight wi, j+1 which

are computed as the summation of four distinct scores, with

each score taking a value between 0 and 1. Higher values

indicate stronger potential matches.

Similarity Score. A measure of similarity between the un-

known function and the candidate at the destination node,

leveraging existing function-matching algorithms (e.g., BSim,

discoveRE, etc.). The choice of algorithm is configurable and

we evaluate the various options in Section 6. REVDECODE

normalizes the raw similarity scores using Sigmoid normaliza-

tion [6]. Sigmoid normalization emphasizes small differences

in scores near the center of the range while suppressing ex-

treme values, mitigating the impact of outliers.

Confidence Score. A metric quantifying how many features

are shared between an unknown function and a candidate at

the destination node, weighted by their uniqueness relative

to the corpus. It is derived from the Term Frequency-Inverse

Document Frequency (TF-IDF) statistical measure [20]. This

score highlights features that are common between the two

functions but rare across the entire corpus. The calculation

for this score is provided in Appendix 12.2.1. We again use

Sigmoid normalization to normalize confidence scores.

Adjacency Score. A value that quantifies the contextual re-

lationship between two candidate functions connected by an

edge. The score calculation is shown in Appendix 12.2.2. The

score increases if both candidates originate from the same

library, and is incrementally boosted if they also share the

same version and optimization level. Additionally, if the can-

didates are from the same compilation unit within that library,

the score is further increased.1 We set the baseline score (0.7)

using a dataset of 30 synthetic firmware samples and maxi-

mizing the cumulative Discounted Cumulative Gain (DCG).

Library Score. A measure of the uniqueness of a candidate’s

library based on its contribution to the overall corpus. The

calculation is shown in Appendix 12.2.3. Libraries with fewer

functions relative to the total corpus will have higher library.

Conversely, libraries with a higher proportion of functions

in the corpus will have lower library scores, reflecting their

broader prevalence and reduced specificity. Functions from

the same library receive the same library score.

3.1.2 Uncertain Nodes

REVDECODE adds a special node in each layer to encode a no-

tion of uncertainty. This uncertainty represents two key ideas.

First, the corpus may be incomplete, meaning it might not

contain a relevant match for the unknown function. Second,

candidates should have contextual support beyond the similar-

ity score to provide evidence they are relevant. In other words,

the uncertain nodes in each layer allow REVDECODE to re-

turn uncertain in the final rankings. Any candidates ranked

above uncertain have contextual evidence in the binary.

To set the edge weights for the uncertain nodes, REVDE-

CODE matches the similarity score of the uncertain node to

the maximum of the other candidates in the layer. The confi-

dence score is set to 85% (configurable) of the self-confidence

before normalization. Self-confidence refers to the confidence

score of an unknown function if it were matched against it-

self, i.e., every feature matched. The uniqueness score is set

empirically using a training set. We used a value of 0.8 in our

evaluation. The adjacency score is set to zero, as the uncertain

function is not related to any corpus candidate functions.

3.2 Graph Traversal: Weight Computation

The goal of the graph traversal phase is to find the maximum

weight path through the graph, which can then be used in the

next phase to create a set of rankings of candidate functions

for each unknown function, i.e., each layer in the graph. This

phase consists of a forward pass through the graph which can

be viewed as a variation of the Viterbi algorithm [40] with no-

table differences. REVDECODE employs a graph-based con-

struction rather than a hidden Markov model and computes

path weights instead of symbol emission and transition proba-

bilities, as described below. Also, in comparison to the Viterbi

backward pass, REVDECODE aims to identify all nodes that

lie on or in close proximity to at least one of the maximum

weight paths rather than identifying a specific path.

1In the current implementation, we approximate compilation unitis us-

ing DWARF information during corpus construction, treating functions as

belonging to the same unit if they come from the same source file.

The forward pass iteratively constructs a weight matrix,

starting from the start state and progressing through the lay-

ers. Every edge ei, j,k in the graph has an entry in the matrix

that represents the total weight of the maximum weight path

beginning at vstart and ending with ei, j,k. The weight ma-

trix computation follows an iterative dynamic programming

approach to solve the recurrence relation, which executes

in polynomial time. The best incoming cumulative weight

W (vi, j) for node vi, j is calculated as:

W (vi, j) = max
vk, j−1∈V

[W (vk, j−1)+w(vk, j−1,vi, j)], (1)

where W (vk, j−1) is the best cumulative weight for node vk, j−1

in previous layer j−1, and w(vk, j−1,vi, j) is the weight of the

edge from vk, j−1 to vi, j. For the nodes in layer 1, the best

cumulative weight is calculated as:

W (vi,1) =W (vstart)+w(vstart ,vi,1), (2)

where W (vstart) is initialized to 0. Finally, for the end node

vend , the best cumulative weight is calculated as:

W (vend) = max
vi,n∈V

[W (vi,n)+w(vi,n,vend)] (3)

3.3 Graph Traversal: Ranking

After the graph traversal phase generates the weight matrix

for the edges in the graph, the matrix is used to rank candidate

nodes at each layer based on their proximity to the maximum

weight path. This is accomplished by a backward pass through

the graph, starting at the end node and leveraging the weight

matrix to determine which nodes lie on one of the maximum

weight paths to the start node.

Starting from the end node, candidate nodes in the last

layer n are ranked by the cumulative weights of their out-

going edges to the end state: rank(vend) = sorted(W (vi,n)+
w(vi,n,vend)|vi,n ∈ V). This ranking represents the nodes’

proximity to the maximum weight path.

We then define the set of rank one nodes in layer n as

R(n). The node with the highest weight is ranked first and is

guaranteed to be on a maximum weight path; in cases where

multiple nodes are tied for the maximum cumulative weight,

they all receive rank one status. The rank one nodes from this

layer effectively become the new end states, and the ranking

process is repeated for all previous layers.

For each preceding layer j, we then collect the rankings

rank(vi, j+1) from each end state (rank one node) in the pre-

vious iteration, vi, j+1 ∈ R(j+ 1). Each ranking is therefore

a list of groups of nodes in layer j sorted by their cumula-

tive weights, as each of the rank one nodes from layer j+1

has a distinct set of incoming edges from the previous layer,

forming individual rankings per rank one node.

To derive the final ranking for a layer j, these individual

rankings are combined. For each rank r, the nodes within that

rank from each individual ranking are merged to form the

final ranking, with the highest rank achieved in any ranking

determining the final rank. Thus, the new set of rank one

nodes for layer j is given by the merged rank one nodes.

This process is repeated for all layers j = n,n− 1, ...,2.

This guarantees that all nodes on all maximum weight paths

are found, and that the nodes in each layer are ranked by their

proximity to the maximum weight paths. Furthermore, by

making the rank one nodes the new end states at each step,

we ensure that both that nodes which are not on a maximum-

weight path are excluded from the backtracking, and that all

nodes’ rankings are refined at each step based on the discovery

of each node in a maximum weight path.

The output of this step is a set of matches for each candidate

function, ranked by relevance as computed above.

3.4 Cascaded Matching

Function matching effectiveness improves as the reference

corpus grows, since larger corpora increase the chance of

including relevant candidate functions. However, we empiri-

cally observe that some matchers - particularly those based

on modern ML techniques [25, 44] - incur a significant com-

putational cost, with throughput below 1K matches/s even on

modern hardware (ref. Section 6.1.2). For those, computing

similarity score of each unknown function against the entire

corpus quickly becomes unpractical as the corpus grows.

To enable these computation-intensive matchers to scale

to realistic corpus sizes, REVDECODE leverages an optional

phase which we term cascaded matching. If cascaded match-

ing is enabled, REVDECODE first uses a fast matcher (typ-

ically one based on syntactic or heuristic matching, such

as BSim [1]) to pre-generate an initial ranking of the top-

250 candidate functions for each unknown function. Then,

the computation-intensive matcher is only applied to these

candidates, filtering out the remaining ones from the corpus.

REVDECODE then constructs the directed layered graph us-

ing similarity scores from the intensive matcher, followed by

the graph traversal and ranking phases.

A drawback of this approach is that it causes computation-

intensive matchers performance to partially depend on those

of a different matcher (the one used in the pre-filtering).

This issue is however mitigated by the fact that even a fast

matcher will typically rank highly relevant functions within

the top-250. Thus, in practice, we found the performance

impact to be minimal, as demonstated in our evaluation (Sec-

tion 6.1.2). On the other hand, pre-filtering enables ML-based

computationally-intensive techniques to be brought to bear on

the problem of binary function matching; thus, we consider

the trade-off to be acceptable.

4 GPU-Accelerated REVDECODE

We propose parallel algorithms for REVDECODE’s graph

traversal to overcome scalability challenges posed by large

binaries and candidate sets. These algorithms preserve the

semantics of the original ranking procedure while supporting

high-throughput matching. This section presents the paral-

lelization strategies and their GPU-based implementation.

4.1 Challenges in Parallelizing REVDECODE

Designing parallel versions of graph traversal and incorporat-

ing those into REVDECODE presents challenges:

Sequential Dependencies. The computation of each layer

depends on the results of the previous one, preventing naive

parallelization across layers.

Resource Utilization. GPUs divide work between thread

blocks, which each independently execute subsets of the work

in parallel; threads within each block perform the same set of

instructions on multiple pieces of data simlutaneously. In or-

der to take advantage of the large number of available threads,

the work for the forward pass phase must be divided effi-

ciently among thread blocks to maximize the amount of work

being done in parallel.

Memory Dependence. The relatively simple computations

and frequent accesses to the cumulative weight matrix create

potential memory bottlenecks. The memory access patterns

of the threads must be carefully designed to ensure that they

do not generate contention for memory resources that slows

down the runtime of the kernel.

To address these challenges, we propose two variants of

REVDECODE with parallelized traversal algorithms: fine-

grained traversal and segment-based estimation traversal.

These variants aim to optimize parallel execution of the for-

ward pass phase while minimizing memory contention across

GPU streaming multiprocessors (SMs). They differ primarily

in their approach to forward pass construction.

4.2 Fine-Grained Traversal

The key insight of fine-grained traversal is to add parallelism

by assigning each GPU thread a single edge transition be-

tween candidates across consecutive layers. Each candidate

node per layer is assigned a separate thread block, and each

thread within that block computes the weights for one incom-

ing edge. The graph is processed sequentially at the layer

level, yet within each layer, computations are parallelized.

The forward pass stage for fine-grained traversal goes layer

by layer, launching a set of thread blocks for each node within

the layer that each compute their weight calculations in paral-

lel. For each thread block, each thread computes the cumula-

tive weights for its assigned edge:

Initial Phase
...

Merging Phases
... ...

... ...

Figure 2: Illustration of segment-based estimation traversal.

The graph is initially divided into five segments, which are

merged pairwise in successive stages.

Ck,i =W (vk, j−1)+w(vk, j−1,vi, j) (4)

Then, threads within a block use a parallel sorting algo-

rithm, bitonic sort [5], to sort the cumulative weights Ck,i into

descending order. The bitonic sort is computed at this stage

instead of in a backward pass stage because the threads in

each thread block, having been assigned to one particular edge

in the graph, are perfectly positioned to perform the sorting

computations in parallel.

Thus, the thread with the highest cumuluative weight will

end up at the first position, C0,i, and this corresponds to the

maximum cumulative weight for vi, j, W (vi, j). The maximum

path is then given by the corresponding predecessor node, and

the rankings for vi, j are determined by the sorted order of the

cumulative weights.

4.3 Segment-Based Estimation Traversal

Segment-based estimation traversal employs an approxima-

tion strategy to boost scalability, sacrificing a bit of accuracy

for better performance with larger binaries. The fundamental

idea is to implement a divide-and-conquer approach, breaking

the graph into several segments, with each segment repre-

senting a series of consecutive layers within the graph. One

thread block is used for each segment, and these results are

then merged, as illustrated in Figure 2.

This approach is based on the assumption that the maxi-

mum weight paths calculated in each segment act as an ap-

proximation for the optimal paths of the entire graph. The

segment size is picked such that there is at least one thread

block per SM whenever possible, maximizing parallelization

and the utilization of GPU resources. The initial stage and

merging process are described in detail below.

4.3.1 Initial Stage

Each thread block processes its allocated segment of the state

transition graph independently and concurrently. Inside each

segment, threads within the block sequentially compute cumu-

lative weights for vk, j−1 for each previous layer j−1 within

the block’s segment:

Ck,i =W (vk, j−1)+w(vk, j−1,vi, j),∀vk, j−1 ∈Vblock (5)

Each thread then ranks the cumulative weights Ck,i by sort-

ing them in descending order, and then obtains the maximum

cumulative weight.

4.3.2 Merging Stage

In the following phases, adjacent segments are merged to

incorporate dependencies that span segment boundaries. Dur-

ing each merging phase, pairs of adjacent blocks merge their

boundary computations together, gradually integrating the cu-

mulative weight data for the graph and reducing the number

of layers and of active thread blocks at each step. For each pair

of adjacent blocks, we focus on boundary unknown functions,

ensuring that cumulative weights reflect transitions from prior

segments: the left boundary node is the last unknown function

U jL of the left block, while the right boundary node is the

first unknown function U jR of the right block.

There are then two distinct cases for merging boundary

nodes based on their adjacency in the original graph.

Adjacent Boundary Nodes. When U jL and U jR were ad-

jacent in the original graph, we perform full forward pass

computations, calculating the cumulative weights by consid-

ering all of the predecessor nodes in the left boundary of U jL,

and updating the ranking and maximum path selection.

Non-Adjacent Boundary Nodes. When not adjacent in the

graph, only the cumulative weight update is calculated by

combining weights from the left boundary:

W (vi, jR) =W (vi, jR)+Wle f t , (6)

where Wle f t represents the maximum cumulative weight from

the left boundary. The rankings and maximum paths are not

updated.

After each merging phase, GPU-wide synchronization en-

sures updates to cumulative weights and paths are fully prop-

agated and visible across segments.

4.4 Data Structures and Memory Layout

For both parallel variants, REVDECODE organizes the cumu-

lative weight matrix structure to align with the order in which

GPU thread warps will access it. Each weight w(vk, j−1,vi, j)
is modeled as a 3D tuple with entries for: Rows: The number

of candidates in the current unknown function U j. Columns:

The number of unknown functions, corresponding to the se-

quence of functions being matched. Depth: The number of

candidates in the preceding unknown function U j−1.

The transition weights between two consecutive unknown

functions are stored along the column (layer) dimension. The

weights are stored in depth-major order, meaning that for

each candidate in the current unknown function, REVDE-

CODE consecutively stores the weights of transitions from

all candidates in the previous unknown function. By arrang-

ing the weights in this way, REVDECODE enables coalesced

memory accesses during the forward pass computations. This

reduces the amount of memory congestion that would oth-

erwise be generated by the large number of accesses to the

cumulative weight array performed by the threads during that

phase of the calculations.

5 Evaluation Methodology

To evaluate the effectiveness of REVDECODE, we developed

a methodology that includes both real-world binaries and syn-

thetic firmware-like samples. Our evaluation focuses on rank-

ing quality using tie-aware NDCG as the primary metric. We

constructed two datasets: one consisting of general-purpose

binaries compiled from widely used open-source projects, and

another comprising synthetic embedded binaries designed to

model the structure and diversity of firmware. We generated

ground truth using debug information and manual verification,

selected four representative matchers to compute similarity

scores, and applied additional controls to address sources

of bias, such as function duplication in shared libraries. We

describe these components in detail below.

5.1 Dataset: General Purpose

To evaluate REVDECODE’s ranking performance across a

variety of real-world binaries, we assembled binaries from

three widely-used projects—GNU Binutils, BusyBox, and

OpenSSL—compiled across multiple Ubuntu releases and

versions. In all cases, we aimed to recreate each release’s

build environment so that the resulting binaries closely re-

semble those found in practice. We used debug symbols to

establish ground truth, though they were hidden from REVDE-

CODE during matching. We also employed manual verifica-

tion checks of the ground truth and simple data sanitization to

handle compiler-introduced changes, such as name mangling.

In total, the dataset consists of 132 binaries containing

262,486 functions, split between the reference corpus and

the evaluation set. The reference corpus includes 68 binaries

with 54,821 functions, while the evaluation set comprises 64

binaries with 207,665 functions. Together, these produce over

11 billion function pairs for evaluation.

GNU Binutils Suite. We collected all Binutils versions avail-

able in currently supported Ubuntu releases (14.04 through

24.10), spanning Binutils 2.24 up to 2.43.1. This includes

the core utilities (ld, as, objdump, etc.) as well as their as-

sociated libraries—most notably Libbfd, Libc (2.19–2.40),

and Libz. Each utility was compiled with the toolchain and

package versions appropriate to its Ubuntu release, using

link-time optimization (LTO) and static linking for evaluation

binaries. This setup allows us to assess ranking performance

on both program-specific functions (the standalone utilities)

and shared library functions embedded via static linking.

BusyBox. BusyBox combines dozens of standard Unix com-

mands into a single, compact executable, making it common

in embedded and low-footprint Linux systems. We built ten

BusyBox versions, from 1.23.3 through 1.37.0, each using its

the build environment from the corresponding Ubuntu release.

The single binary structure of BusyBox provides an interest-

ing case study for REVDECODE’s context encoding, as each

command’s functions originate from a shared binary image

but are conceptually separate.

OpenSSL. OpenSSL’s libssl and libcrypto libraries imple-

ment a suite of cryptographic primitives and protocols. Unlike

Binutils and BusyBox, OpenSSL libraries are not standalone

executables but are linked into other binaries. We included

four releases: 3.0.2, 3.0.8, 3.2.1, and 3.5.0.

Reference Corpus and Evaluation Set. For evaluation, we

divided the dataset into a reference corpus and an evalua-

tion set. The reference corpus includes Binutils binaries from

Ubuntu releases up to 20.04, along with their associated li-

braries; BusyBox versions 1.23.3, 1.26.2, and 1.32.1; and

OpenSSL version 3.0.2. The remaining binaries—i.e., those

not included in the reference corpus—served as the evaluation

set—served as the evaluation set. To better simulate challeng-

ing real-world scenarios, we compiled the Binutils evaluation

binaries as statically-linked files with link-time optimization

(LTO) enabled. Due to limitations in the BSim implementa-

tion provided by Ghidra, we were unable to obtain results for

13 binaries, as listed in Appendix ??. To maintain consistency

and fairness across all matchers, we excluded these binaries

from the evaluation set for every matcher.

5.2 Dataset: Frankenbinaries

To evaluate REVDECODE in the context of embedded systems,

we created a separate dataset of synthetic firmware samples.

While some public firmware datasets exist, they lack the detail

required to establish reliable ground truth. To address this, we

constructed custom binaries, referred to as frankenbinaries,

that simulate key structural properties of real firmware. These

include the number, type, and layout of libraries and functions

commonly found in embedded environments.

Each frankenbinary is composed according to a fixed set

of constraints. Functions and libraries are selected uniformly

at random, subject to the following rules: each function must

contain at least ten instructions; all functions from a given

library are laid out sequentially in memory; no library appears

more than once per binary; and each binary includes exactly

one hardware abstraction layer (HAL) library.

To populate the frankenbinaries, we curated a collection

of open-source libraries targeting the widespread ARMv6/7-

M architectures. The library set spans multiple applica-

tion domains and includes HAL libraries for STM32 mi-

crocontrollers, cryptographic libraries such as OpenSSL and

MbedTLS, networking components like Mosquitto, the FreeR-

TOS real-time operating system, and additional libraries such

as OpenCV, CycloneDDS, and Aubio. All libraries were com-

piled using GCC 9.2, under optimization levels ranging from

-O0 to -O3 and -Os, to introduce compiler-induced variation.

A complete list of libraries and versions is provided in Ap-

pendix 12.3. In total, this dataset included 168 libraries con-

taining 107,634 functions.

Reference Corpus and Evaluation Set. Rather than relying

on a single corpus for this dataset, we generated six sepa-

rate corpora to simulate different forms of incompleteness.

The all_versions_all_opts corpus includes every avail-

able binary variant for all libraries. In contrast, corpora with

names containing *O2_opt* restrict the corpus to library bi-

naries compiled with the -O2 optimization level. Similarly,

the latest_version* and oldest_version* corpora retain

only the most recent or earliest version of each library, respec-

tively. For the evaluation set, we synthesized 300 frankenbi-

naries comprising a total of 26,389 functions.

5.3 Measuring Ranking Quality

To assess the ranking quality of REVDECODE’s outputs, we

adopted tie-aware Normalized Discounted Cumulative Gain

(NDCG) as the primary evaluation metric. NDCG is well-

suited to the function matching problem because it accounts

for both the order and relevance of candidate functions.

We assigned relevance scores to candidate functions based

on their potential utility to a reverse engineer. An exact match

received the highest score of 15. Partial matches—such as the

same function compiled under different options or sourced

from a different version—were scored between 9 and 3, de-

pending on the degree of similarity. In cases where no appro-

priate candidate was present in the corpus, we assigned the

uncertain label a non-zero relevance score. The algorithm that

shows the specific assignment of relevance scores is provided

in Appendix 12.2.4.

Often, multiple candidates in the corpus carry a non-zero

relevance for a given unknown function. An ideal ranking

should place these candidates in strict order of their relevance

scores. We also note that REVDECODE operates without ac-

cess to these ground-truth scores.

5.4 Additional Considerations

Limitations of Other Datasets. We explored several alter-

native datasets, but found them to be insufficient for our

evaluation for various reasons. The dataset from Marcelli

et al. [24] lacks labels needed for identifying functions across

binaries. VarCorpus [27] lacks library-level context. The

FirmXRay [43], Shannon Firmware [3], and Fuzzware [35]

datasets lacked sufficient ground truth.

Matcher Implementations. We selected four existing match-

ers to provide similarity scores: BSim, discovRE, SAFE, and

Gemini [44]. For SAFE and Gemini, we used the implemen-

tations provided by Marcelli et al [24]. Since the source code

for discovRE was not publicly available, we reimplemented

it based on the design and heuristics described in the original

publication. For BSim, we used the implementation bundled

with Ghidra version 11.0.

Handling Function Duplication. A common challenge

in function matching evaluation is the duplication or over-

representation of functions, e.g., those originating from widely

used shared libraries [27]. This function duplication can ar-

tificially inflate performance metrics. To mitigate this effect,

we performed additional analyses that control for potential

duplication. These include evaluation subsets that exclude

functions from known shared libraries, as well as subsets

that consider only functions that have undergone significant

changes across versions.

Hardware. We ran CPU-based computations on a server with

two Intel Xeon Gold 5218 CPUs (32 logical cores, 503 GB

RAM) and GPU-based computations on an NVIDIA A100-

SXM4-80GB GPU (108 SMs, 2,048 threads per SM, 1,024-

thread block size).

6 Evaluation

We evaluate REVDECODE in terms of both runtime perfor-

mance and ranking effectiveness. The first subsection ana-

lyzes the system’s efficiency and scalability, while the second

examines how REVDECODE improves the quality of function

rankings by integrating contextual information.

6.1 Runtime Performance

We evaluate REVDECODE’s runtime performance along three

key dimensions: overall end-to-end performance, the impact

of cascaded matching on matcher scalability, and the effi-

ciency of the GPU-accelerated graph traversal algorithms.

These results demonstrate that REVDECODE delivers high-

quality rankings with runtimes that make it practical.

6.1.1 End-to-End Performance

Across the 12 utilities in GNU Binutils v2.34—drawn from

the evaluation set and comprising a total of 37,005 func-

tions (median: 3,099 per binary)—REVDECODE with GPU-

accelerated fine-grained graph traversal completed analysis

in an average of 7 minutes and 10 seconds per binary. These

function counts include both utility-specific code and stati-

cally linked library functions.

The most time-consuming phase was graph construction,

primarily due to the cost of computing similarity scores using

the BSim matcher. This phase took an average of 5 minutes

and 23 seconds per binary, making similarity computation the

dominant performance bottleneck. In contrast, the forward

and backward graph traversal phases combined took just 16

seconds per binary on average, highlighting the efficiency of

the proposed fine-grained parallel traversal algorithm. This

result aligns with expectations for binaries containing around

3,000 unknown functions and 251 candidates per function

(c.f., Sec. 6.1.3).

An additional 91 seconds per binary was spent on miscel-

laneous operations such as file I/O. Much of this overhead

reflects prototype-level logging and artifact generation, which

would be unnecessary in a production deployment.

The use of the more computationally intensive SAFE

matcher for computing similarity scores remains tractable

when paired with cascaded filtering, adding just 6 minutes

and 58 seconds per binary. Without this optimization, SAFE

would require an estimated 23 hours per binary.

Overall, these results demonstrate that REVDECODE’s ar-

chitecture enables timely and scalable analysis, with overall

performance primarily constrained by the efficiency of the

underlying similarity score computation.

6.1.2 Scalability and Cascaded Matching

REVDECODE’s optional cascaded matching phase enables the

use of computationally intensive matchers, such as SAFE and

Gemini, without incurring prohibitive runtime costs. When

used naively, computing similarity scores across all function

pairs in the general-purpose binary dataset would require

more than 79 days for SAFE and over 211 days for Gemini.

In contrast, REVDECODE’s cascaded matching reduces this

burden by introducing a fast, first-stage filter that narrows the

candidate set before invoking slower matchers.

By applying BSim as the initial filter, the number of func-

tion pairs was reduced by a factor of 200, resulting in a dra-

matic reduction in the total number of matches, from billions

down to 52 million. BSim was chosen for its high through-

put (540,000 matches per second) and competitive accuracy

relative to other fast matchers. For comparison, DiscovRE

processes approximately 250,000 matches per second, while

SAFE and Gemini process just 1,600 and 600 matches per

second, respectively.

This reduction translated directly into tractable runtimes.

Matching all function pairs with BSim alone required approx-

imately 10 hours; DiscovRE, evaluated without cascading,

took 22 hours. For SAFE and Gemini, the cascade approach

proved crucial: the BSim filtering stage took 10 hours, after

which SAFE completed second-stage matching in 9 hours

and Gemini in 23 hours. Without cascading, these matchers

would be impractical for large-scale analysis.

This performance gain comes with minimal impact on the

quality of the results. BSim included high-relevance matches

in 93% of the target functions after the first stage. Further

analysis revealed that the 7% without a high-relevance match

had only a minor impact on the final ranking performance in

the second stage. When we artificially added the missing high-

relevance matches to the candidate sets to compute an upper

bound on the impact, SAFE’s NDCG improved from 0.68

to just 0.69, and the percentage of functions with improved

rankings rose modestly from 88.0% to 89.3%. Gemini demon-

strated nearly identical performance under both conditions,

with 94.4% and 94.3% of improved rankings, respectively,

and an average NDCG of 0.73 in both cases.

6.1.3 Scalability and Graph Traversal

Figure 3 compares the execution times of three graph traver-

sal strategies—naive traversal, fine-grained traversal, and

segment-based estimation traversal—across progressively

larger graphs generated from our frankenbinaries. Naive

traversal serves as a baseline, launching a single GPU thread

block and walking the graph layer by layer, assigning one

thread to each candidate node in the current layer. Although

fully parallel within a layer, it performs no additional opti-

mizations and therefore reflects the upper bound on what a

straightforward GPU traversal algorithm can achieve.

Fine-grained traversal maintains a runtime below 50 sec-

onds for every tested graph size, delivering more than a 5x

speedup over naive traversal for the largest graphs (501 can-

didates per function) and an over 40x speedup relative to a

simple CPU implementation we profiled on the same inputs.

Segment-based estimation traversal is faster still: it cuts the

forward-pass time by an average of 3.77x compared with fine-

grained traversal, and reduces end-to-end traversal time by

1.39x. The modest improvement in total runtime is because

matrix initialization and transfer to global memory account

for over half of the total runtime.

The additional speed of segment-based estimation traver-

sal comes at almost no cost in ranking quality. On the

Binutils dataset, segment-based estimation traversal achieved

an NDCG of 0.719 versus 0.722 for fine-grained traversal.

Segment-based estimation traversal inherently trades off ac-

curacy for scalability with the number of segments, where a

larger number of segments will increase parallelizability at the

cost of requiring more estimations of optimal paths. However,

the amount of lost accuracy is dependent on both the available

hardware resources and the size of the graph, as these factors

together determine the segment size. The number of segments

is chosen to maximize the utilization of hardware resources.

In this case, there are 512 candidate matches (and threads)

per unknown function, and 432 segments (and thread blocks).

This allows for all SMs and all 2,048 threads per SM to be

occupied. As the Binutils utilities consist of thousands of

functions, each segment encompasses a large enough portion

of the graph that there was little impact on accuracy overall.

101 Candidates 251 Candidates 501 Candidates

250 500 1000 3000 250 500 1000 3000 250 500 1000 3000

0

50

100

150

200

250

Number of Target Functions

E
xe

c
u

ti
o

n
 T

im
e

 (
s
)

Naive

Fine−Grained

Segment−Based

Figure 3: Execution times of the naive, fine-grained, and segment-based estimation graph traversal algorithms.

Both optimised algorithms remain constrained by GPU re-

sources. Fine-grained traversal requires one thread per incom-

ing edge and segment-based estimation traversal one thread

per node, capping the maximum size at 1,024 candidates per

unknown function on GPUs that limit thread-block size to

1,024. Likewise, the weight matrix for all layers must fit in

global memory; larger graphs could be supported through

oversubscription techniques such as NVIDIA Unified Virtual

Memory, provided effective page-eviction and prefetching

policies are in place [4, 13].

These results demonstrate that REVDECODE’s parallel

traversal stage can analyze graphs with thousands of func-

tions and hundreds of candidates per function in seconds,

transforming traversal from a potential bottleneck into a neg-

ligible fraction of total runtime. The design scales gracefully

within current GPU limits, and modest hardware advances—

or careful memory management—promise even greater ca-

pacity without sacrificing accuracy.

6.2 Ranking Effectiveness

Below, we evaluate how REVDECODE refines matcher out-

puts to produce high-quality rankings. First, we present macro-

level improvements across two datasets. We then examine

scenarios where REVDECODE is especially effective, identify

its key limitations, and conclude with an ablation study that

highlights the contribution of each contextual signal.

6.2.1 Macro-Level Ranking Improvements

REVDECODE significantly improves the quality of func-

tion rankings produced by existing matchers across both the

general-purpose and frankenbinary datasets.

General-Purpose Dataset. As shown in Figure 4a, REVDE-

CODE offers substantial improvements in ranking quality

across all evaluated matchers. For BSim, 97.3% of the

207,665 rankings improved, resulting in an average NDCG

increase from 0.55 to 0.75. SAFE saw improvements in 88.0%

of rankings, with the average NDCG rising from 0.50 to 0.68.

Gemini improved 94.4% of rankings, raising the NDCG from

0.51 to 0.73. DiscovRE had 56.3% of rankings improved, and

NDCG rose from 0.43 to 0.49.

0.0 0.2 0.4 0.6 0.8 1.0
NDCG Scores

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
 Fu

nc
tio

ns

NDCG Type
Function Matcher
RevDecode

Function Matcher
BSim
discovRE
SAFE
Gemini

(a) All functions.

0.0 0.2 0.4 0.6 0.8 1.0
NDCG Scores

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
 Fu

nc
tio

ns

NDCG Type
Function Matcher
RevDecode

Function Matcher
BSim
discovRE
SAFE
Gemini

(b) Without shared libs.

Figure 4: NDCG scores of rankings derived from raw similar-

ity scores (dashed lines) versus rankings produced by REVDE-

CODE using the same matchers (solid lines), evaluated on the

general-purpose dataset.

General-Purpose Dataset (Excluding Shared Library

Functions). As shown in Figure 4b, REVDECODE contin-

ued to deliver marked improvements even after excluding

functions from shared libraries. Among the 87,837 remaining

functions, BSim rankings improved in 97.1% of cases, raising

average NDCG from 0.27 to 0.46. SAFE improved 93.9% of

rankings (NDCG from 0.27 to 0.45), Gemini 93.0% (from

0.27 to 0.45), and discovRE 94.5% (from 0.22 to 0.39).

Frankenbinary Dataset. As shown in Table 1, REVDECODE

also improves ranking performance on synthetic firmware

samples. Across all matchers, the percentage of improved

rankings ranges from 72.3% to 98.8%.

6.2.2 Strengths

REVDECODE demonstrates particular strength in two high-

impact scenarios: (1) recovering relevant matches that are

structurally dissimilar due to version or compilation differ-

ences, and (2) resolving ambiguity among functions that lack

distinctive features. In both cases, REVDECODE’s ability to in-

corporate contextual cues from the surrounding graph enables

it to recover high-quality rankings that standalone similarity

scores fail to identify.

Recovering Structurally Divergent Matches. Function

matchers often struggle when the target function has under-

gone significant structural changes compared to its counter-

parts in the corpus. This scenario arises frequently across

library versions and compiler configurations, leading to low

similarity scores and poor ranking performance for even

highly relevant matches. REVDECODE excels in these cases

by leveraging the graph structure and contextual signals from

nearby strong matches.

For example, consider the function custom_exts_copy

from libssl-3.5.0 in the general-purpose dataset. Dis-

covRE, operating on raw similarity scores, incorrectly

identifies elf32_arm_size_stubs from libbfd-2.30 as

the best match, while the actual high-relevance match—

custom_exts_copy from libssl-3.0.2—is buried at rank

197. REVDECODE successfully promotes this match to rank 1

by using neighboring high-relevance, high-similarity matches.

A similar case arises with BSim, which misiden-

tifies uncompress from libz (Ubuntu 20.04) as

get_absolute_expression from as-2.24. REVDE-

CODE again corrects the ranking, promoting the correct

high-relevance match from rank 187 to the top position.

To quantify this behavior, we analyzed a subset of 2,568

functions in the general-purpose dataset for which high-

relevance matches existed in the corpus but were missed by

BSim at rank 1 due to structural changes. REVDECODE im-

proved 1,994 of these cases. Of those, 900 involved promoting

a true high-relevance match, with 761 achieving the top rank.

The remaining 1,094 improvements were due to better ranking

of lower-relevance but still meaningful matches (e.g., same

library, different function).

Compiler-induced variation presents another form

of structural divergence. In the frankenbinaries dataset,

for instance, BSim fails to rank the most-relevant ver-

sion of get_zeros_padding from MbedTLS-2.15.1

(compiled with -Os) among the top candidates when

matching against a corpus compiled with -O2, assign-

ing it rank 114. However, surrounding functions like

ecp_double_jac, mbedtls_internal_aes_decrypt, and

mbedtls_cipher_write_tag are structurally similar to

their corpus versions. REVDECODE exploits this context to

elevate the correct match to rank 1.

Resolving Ambiguity Among Low-Signal Functions. A

second area where REVDECODE excels is in disambiguating

functions that exhibit weak or common feature sets. These

include short functions with few instructions as well as func-

tions composed of common code idioms. These cases typ-

ically lead matchers to produce high similarity scores for

candidates that are not relevant.

For example, generic_bignum_to_int64 from as-2.38

triggered 250 different rank-1 matches when using BSim.

This ambiguity stems from its short, undifferentiated struc-

ture. Prior work has often addressed this by excluding such

functions entirely; for instance, discovRE filters out any func-

tion with fewer than five basic blocks, and the SAFE and

Gemini implementations from Marcelli et al. [24] apply simi-

lar heuristics.

Rather than discarding these challenging cases, REVDE-

CODE leverages contextual relevance to recover meaning-

ful rankings. In the general-purpose dataset, 70,720 of the

202,058 improved BSim rankings (35%) fall into this cat-

egory. In the frankenbinaries dataset, nearly half of all im-

provements stem from resolving ambiguity in structurally

ambiguous functions, including many from embedded HAL

libraries that share common implementation patterns.

These results highlight REVDECODE’s ability to preserve

ranking quality in cases that typically confound existing

matchers, extending its utility beyond easy matches to pre-

cisely the cases where automated assistance is most needed.

6.2.3 Weaknesses

While REVDECODE substantially improves ranking quality

across a broad range of scenarios, its effectiveness is con-

strained by certain inherent limitations. In particular, two key

challenges remain: the absence of relevant matches in the cor-

pus and the persistence of residual ambiguity when contextual

signals are indistinguishable.

No Relevant Matches in the Corpus. REVDECODE, like

the underlying function matchers it relies on, cannot recover

a relevant match if one does not exist in the corpus. This

limitation is fundamental to similarity-based approaches in re-

verse engineering and arises when functions in the evaluation

set are entirely novel or structurally distinct from anything

previously seen.

Consider the function unw_decode_uleb128 from

readelf-2.38. This function does not appear in any earlier

version of readelf included in the corpus. As a result,

BSim’s top 250 candidates do not contain any relevant

matches. Instead, the rankings are dominated by structurally

similar functions from unrelated binaries, such as busybox

and objdump.

REVDECODE attempts to mitigate this limitation by intro-

ducing the uncertain label into the ranking. However, this

strategy is not foolproof. In this case, because unrelated

busybox and objdump functions also appear in the BSim

results for adjacent unknown functions, REVDECODE inter-

prets these as contextual support and elevates them in the

ranking for unw_decode_uleb128. This phenomenon, where

unrelated functions form reinforcing chains of incorrect con-

text, can lead to systematic ranking errors. We refer to this

effect as irrelevant context chains.

Residual Ambiguity in Indistinguishable Contexts. An-

other limitation arises when functions exhibit not only similar

features but also indistinguishable contextual relationships.

In such cases, REVDECODE cannot disambiguate candidates

any more effectively than the raw similarity score allows.

For example, the function cmd_SignatureAlgorithms from

libssl remains ambiguous even after applying REVDE-

CODE. Using discovRE as the matcher, there are four distinct

matches from libssl-3.0.2 at rank 1, each receiving the

0.0 0.2 0.4 0.6 0.8 1.0
NDCG Scores

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
 Fu

nc
tio

ns

RevDecode w/ A+C+L
RevDecode w/ A+C
RevDecode w/ A
BSim

(a) All functions.

0.0 0.2 0.4 0.6 0.8 1.0
NDCG Scores

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
 Fu

nc
tio

ns

RevDecode w/ A+C+L
RevDecode w/ A+C
RevDecode w/ A
BSim

(b) Without shared libs.

Figure 5: NDCG scores for REVDECODE variants with dif-

ferent scoring components. Rankings are derived using only

Adjacency (A), Confidence (C), and Library (L) scores, or

combinations thereof.

same contextual score due to identical similarity, adjacency,

and library scores.

Although these unresolved ambiguities represent a much

smaller fraction of the total compared to those observed when

using similarity scores alone, they highlight an inherent ceil-

ing on REVDECODE’s disambiguation capability when no

unique contextual signal is available.

The above limitations suggest directions for future work.

Addressing irrelevant context chains may require more sophis-

ticated weighting or confidence estimation of contextual sig-

nals. Meanwhile, resolving residual ambiguity could benefit

from additional sources of semantic or structural information

beyond what is currently encoded in the graph.

6.2.4 Ablation Study

Role of Contextual Signals. REVDECODE’s ability to pro-

duce high-quality rankings stems from the way it inte-

grates multiple contextual signals—similarity, adjacency, con-

fidence, and library affinity—into its graph-based reason-

ing. Each of these signals plays a role in shaping how rel-

evance propagates through the graph, and together they en-

able REVDECODE to recover meaningful matches even when

similarity alone falls short.

Figure 5 highlights the cumulative impact of these signals

on the general-purpose dataset. Even with only similarity and

adjacency information, REVDECODE lifts BSim’s average

NDCG from 0.55 to 0.72. Adding the confidence score offers

modest improvements, raising the NDCG to 0.73. Finally,

incorporating the library score increases NDCG to 0.75. For

the subset with shared library functions removed, shown in

Figure 5b, REVDECODE improves BSim’s NDCG from 0.27

to 0.42 with just similarity and adjacency, then to 0.44 with

confidence, and finally to 0.46 with library information.

Role of the Uncertain Node. REVDECODE’s uncertain node

plays an important role in mitigating irrelevant context chains.

When no strong candidate emerges in a given layer, the high-

est weight path will pass through the uncertain node, which,

by design, neither contributes nor receives contextual bonuses.

This halts further propagation of weak or spurious evidence,

preventing unrelated functions from reinforcing each other

across layers.

Adding the uncertain node led to a decrease in context-

chain-induced ranking errors: roughly 7% overall, and nearly

10% on the set without shared library functions. While the

uncertain node cannot recover a relevant match where none

exists, it helps ensure that poor evidence remains isolated.

7 Discussion

Opportunities and Challenges for Future Work. While

REVDECODE mitigates the challenges posed by incomplete

corpora, corpus quality remains a critical factor in function

matching performance. This work does not focus on corpus

construction; however, our evaluation provides valuable in-

sights that inform effective corpus design strategies.

Insights from handling compiler options suggest that cor-

pus construction should emphasize aggressive optimization

levels such as -O3, and -Os. These introduce significant struc-

tural changes, posing greater challenges for matchers.

Conversely, to improve scalability, the corpus should avoid

redundant functions that exhibit minimal differences from

existing versions. Eliminating such redundancy can help man-

age corpus growth more efficiently.

To further enhance scalability, adopting a hierarchical cor-

pus structure may prove beneficial. Matching could proceed

in successive passes through progressively detailed layers of

the hierarchy. Higher layers should be smaller, more diverse,

and optimized for triage, while lower layers can be larger and

tailored to specific binary types, such as a reference corpus

for STM32-based firmware libraries.

Broader Security Applications of Function Matching.

Numerous security workflows rely on the ability to identify se-

mantically equivalent functions across different binaries. This

capability is particularly critical when dealing with stripped

binaries, where symbols and debug information are absent. In

such scenarios, matching unknown functions to a database of

known ones can reduce reverse engineering effort, accelerat-

ing tasks such as vulnerability and malware analysis. Function

similarity also plays a vital role in identifying and patching

vulnerabilities in statically linked third-party libraries. Other

downstream applications include binary diffing, software lin-

eage analysis, and automated malware clustering.

The prevalence of these use cases is evidenced by the wide

body of research on binary function similarity across sys-

tems security, machine learning, and programming languages

communities. In many related works [24, 25, 29, 44], these

applications are highlighted as primary motivations for devel-

oping new matching algorithms. REVDECODE contributes

directly to the effectiveness of these security applications by

enhancing function matching performance.

Matcher Corpus Imp. Deg. Unch. Mean Orig. Med. Orig. Mean RevD. Med. RevD. Mean Imp. Med. Imp. Mean Deg. Med. Deg.

BSim corpus_all_Ver_all_Opt 23125 2959 305 0.93 0.94 0.97 0.98 0.06 0.04 -0.02 -0.02

BSim corpus_all_Ver_O2_Opt 19832 6440 117 0.89 0.94 0.95 0.98 0.10 0.06 -0.07 -0.06

BSim corpus_latest_Ver_all_Opt 21737 4164 488 0.93 0.96 0.99 0.99 0.07 0.04 -0.01 -0.00

BSim corpus_latest_Ver_O2_Opt 19099 6618 672 0.90 0.95 0.97 0.99 0.12 0.07 -0.06 -0.02

BSim corpus_oldest_Ver_all_Opt 21370 4928 91 0.92 0.96 0.97 0.99 0.08 0.04 -0.06 -0.04

BSim corpus_oldest_Ver_O2_Opt 19089 7226 74 0.89 0.95 0.95 0.99 0.12 0.06 -0.10 -0.10

SAFE corpus_all_Ver_all_Opt 25989 369 31 0.91 0.93 0.98 0.99 0.07 0.05 -0.11 -0.04

SAFE corpus_all_Ver_O2_Opt 22565 3785 39 0.87 0.93 0.92 0.99 0.08 0.05 -0.09 -0.03

SAFE corpus_latest_Ver_all_Opt 22067 3883 439 0.91 0.96 0.97 0.99 0.07 0.04 -0.04 -0.00

SAFE corpus_latest_Ver_O2_Opt 23216 2660 513 0.89 0.96 0.92 1.00 0.06 0.02 -0.14 -0.07

SAFE corpus_oldest_Ver_all_Opt 23425 2785 179 0.91 0.95 0.96 0.99 0.06 0.03 -0.08 -0.01

SAFE corpus_oldest_Ver_O2_Opt 23719 2640 30 0.89 0.95 0.93 1.00 0.06 0.03 -0.12 -0.07

discovRE corpus_all_Ver_all_Opt 26081 189 119 0.90 0.92 0.98 0.98 0.08 0.05 -0.13 -0.02

discovRE corpus_all_Ver_O2_Opt 21230 5119 40 0.83 0.91 0.87 0.98 0.09 0.06 -0.14 -0.09

discovRE corpus_latest_Ver_all_Opt 24606 1525 258 0.90 0.94 0.96 0.99 0.08 0.04 -0.13 -0.01

discovRE corpus_latest_Ver_O2_Opt 21981 4353 55 0.84 0.93 0.88 0.99 0.08 0.04 -0.17 -0.13

discovRE corpus_oldest_Ver_all_Opt 24562 1629 198 0.89 0.94 0.95 0.99 0.07 0.05 -0.16 -0.05

discovRE corpus_oldest_Ver_O2_Opt 22022 4350 17 0.84 0.92 0.89 1.00 0.09 0.05 -0.15 -0.11

Gemini corpus_all_Ver_all_Opt 25530 760 99 0.89 0.92 0.96 0.97 0.08 0.05 -0.13 -0.07

Gemini corpus_all_Ver_O2_Opt 21896 4441 52 0.83 0.91 0.86 0.97 0.07 0.04 -0.18 -0.13

Gemini corpus_latest_Ver_all_Opt 23565 2557 267 0.89 0.94 0.94 0.99 0.07 0.04 -0.13 -0.03

Gemini corpus_latest_Ver_O2_Opt 22413 3911 65 0.85 0.93 0.88 0.99 0.07 0.04 -0.19 -0.15

Gemini corpus_oldest_Ver_all_Opt 23984 2219 186 0.88 0.93 0.93 0.99 0.07 0.05 -0.17 -0.10

Gemini corpus_oldest_Ver_O2_Opt 23178 3186 25 0.85 0.92 0.90 1.00 0.09 0.06 -0.17 -0.12

Table 1: NDCG comparison on the frankenbinaries dataset: rankings derived from raw similarity scores vs. rankings produced

by REVDECODE. Imp., Deg., and Unch. indicate the number of rankings that improved, degraded, or remained unchanged.

Mean/Med. Orig. and Mean/Med. RevD. report NDCG scores before and after applying REVDECODE. Mean/Med. Imp. and

Mean/Med. Deg. show the average and median magnitude of NDCG improvements and degradations.

8 Related Work

Function Matching. We summarize additional function

matching techniques that we excluded from evaluation due

to incompatibility with REVDECODE’s model or inferior

performance. HALucinator’s LibMatch [7], for example, re-

turns only one match per function and cannot support ranked

retrieval. BinHunt [14] relies on graph isomorphism and

symbolic execution, making it prohibitively expensive for

large codebases. Pewny et al. [28] and BinHash [19] also

use control-flow-based features, which we already evaluate

through DiscovRE [11]. BinDNN [21] uses LSTMs for func-

tion matching. Genius [12] and the approach by Zuo et al. [45]

embed basic blocks using learned representations. These

embedding-based methods have been surpassed by SAFE

and Gemini in prior comparisons.

Binary Code Fingerprinting. Prior work has proposed finger-

printing techniques to trace malware provenance [18], detect

unauthorized code reuse in proprietary firmware [15], dis-

tinguish firmware from other binary artifacts [9], or identify

known vulnerabilities [10, 22]. These approaches typically

operate at the whole-binary level. In contrast, REVDECODE

focuses on matching individual functions within a binary. Sim-

ilar in spirit to REVDECODE, FirmUp [10] fingerprints known

vulnerable functions by taking into account their surrounding

context using model theory. However, FirmUp targets iden-

tification of specific known functions and does not scale to

matching across an entire binary. REVDECODE, by contrast,

leverages contextual information to support function-level

matching at scale.

Identification of Bugs. Another body of work [8, 30, 37]

use program analysis—including symbolic execution, taint

analysis, or custom static analyses—to identify previously

unknown security issues. While orthogonal to our focus, func-

tion matching could complement these efforts by recovering

semantically related functions.

Source-level code fingerprinting. A substantial body of work

addresses code clone detection at the source level [16, 17, 26,

36,38]. These approaches generally leverage program features

that are lost or obfuscated during compilation. While such

features could, in principle, be principle recovered via decom-

pilation, doing so is a fragile and error-prone process [23].

Forensic Triage. Our work is inspired partly by past work [39,

42] on forensic triage. However, their goals, design choices,

and application domains differ substantially from REVDE-

CODE. Whereas prior systems were tailored to tasks like

smartphone investigation and relied on manually guided anal-

yses, REVDECODE targets scalable function-level matching

for reverse engineering. It constructs a directed graph with

weighted edges derived from ranking data to encode contex-

tual information. Relevance scores are inferred automatically

based on ground truth, eliminating the need for investigator

input.

9 Conclusions

Existing approaches to function matching, which rely on struc-

tural similarity, often misclassify functionally relevant but

syntactically different functions, leading to incomplete identi-

fication in evolving codebases.

To address these limitations, we proposed REVDECODE, a

relevance decoding framework that enhances function match-

ing by integrating context within binaries to refine match

assessments, improving reliability and interpretability.

Evaluation demonstrates that REVDECODE significantly

enhances function matcher performance by reducing ambigu-

ities and improving ranking accuracy. In real-world scenarios,

it improves the rankings of 97.3% of functions in general-

purpose dataset and up to 98.8% in frankenbinary dataset. By

systematically applying relevance decoding, REVDECODE

bridges the gap between similarity and relevance, offering a

practical solution to the challenges of function matching.

10 Open science

In adherence to the USENIX Security open science policy, the

following artifacts are available to the public: an implementa-

tion of REVDECODE with sample binaries and instructions

for running the code [33]; the general purpose dataset used in

the evaluation, including the evaluation set and the reference

corpus set [31]; the 300 frankenbinaries along with the BSim

matching results [34]; and the NDCG scores used to draw

Figures 4a, 4b, 5a and 5b [32].

11 Ethics Considerations

This section explores ethical considerations in terms of respect

for persons, beneficience, and justice.

Based on common community definition, the work in this

paper does not constitute human subject research. In accor-

dance with this consideration, we did not identify any po-

tential immediate harm to individuals from our work, thus

respect for persons is not a concern.

As for beneficience, the broad purpose of our work lies in

improving capabilities of binary reverse engineering, which

is of benefit to software consumers, developers, and security

practitioners. We utilize a mix publicly available external

software datasets, and our own internally generated dataets.

As for evaluated function matchers, we use either publicly

available author-provided code, or our own reimplementation

based on publicly-available publications. This approach will

enable us to publicly release our code and datasets to foster

greater transparency and reproducibility in research.

Finally, concerning justice, our research did not involve

including or excluding entities based on attributes of a given

group of persons (as this is not relevant to our study).

Acknowledgments

We thank the anonymous reviewers and shepherd. We also

thank Heshan Perera, Joshua DeOliveira, and Daniel Reynolds

for their contributions to this project. This material is based

upon work supported by the National Science Foundation

under Award No. 2154415.

References

[1] Ghidra. https://ghidra-sre.org, 2019.

[2] Introduction to bsim. https://github.com/ NationalSe-

curityAgency/ghidra/blob/master/GhidraDocs/Ghidra-

Class/BSim/BSimTutorial_Intro.md, 2024.

[3] Shannonbaseband. https://github.com/grant-

h/ShannonBaseband, 2025.

[4] Tyler Allen and Rong Ge. In-depth analyses of unified

virtual memory system for gpu accelerated computing.

In Proceedings of the International Conference for High

Performance Computing, Networking, Storage and Anal-

ysis, SC ’21, New York, NY, USA, 2021. Association

for Computing Machinery.

[5] K. E. Batcher. Sorting networks and their applications.

IEEE Transactions on Computers, C-20(12):1465–1471,

1968.

[6] Christopher M. Bishop. Pattern Recognition and Ma-

chine Learning. Springer, 2006.

[7] Abraham A Clements, Eric Gustafson, Tobias

Scharnowski, Paul Grosen, David Fritz, Christopher

Kruegel, Giovanni Vigna, Saurabh Bagchi, and Mathias

Payer. Halucinator: Firmware re-hosting through

abstraction layer emulation. In 29th USENIX Security

Symposium (USENIX Security 20), pages 1201–1218.

USENIX Association, August 2020.

[8] Lucian Cojocar, Jonas Zaddach, Roel Verdult, Herbert

Bos, Aurélien Francillon, and Davide Balzarotti. Pie:

Parser identification in embedded systems. In Proceed-

ings of the 31st Annual Computer Security Applications

Conference.

[9] Andrei Costin, Apostolis Zarras, and Aurélien Francil-

lon. Towards automated classification of firmware im-

ages and identification of embedded devices. In ICT

Systems Security and Privacy Protection. Springer In-

ternational Publishing, 2017.

[10] Yaniv David, Nimrod Partush, and Eran Yahav. Firmup:

Precise static detection of common vulnerabilities in

firmware. In Proceedings of the Twenty-Third Inter-

national Conference on Architectural Support for Pro-

gramming Languages and Operating Systems, 2018.

[11] Sebastian Eschweiler, Khaled Yakdan, and Elmar

Gerhards-Padilla. discovre: Efficient cross-architecture

identification of bugs in binary code. 02 2016.

[12] Qian Feng, Rundong Zhou, Chengcheng Xu, Yao Cheng,

Brian Testa, and Heng Yin. Scalable graph-based bug

search for firmware images. In Proceedings of the 2016

ACM SIGSAC Conference on Computer and Communi-

cations Security, CCS ’16, page 480–491, New York,

NY, USA, 2016. Association for Computing Machinery.

[13] Debashis Ganguly, Ziyu Zhang, Jun Yang, and Rami

Melhem. Interplay between hardware prefetcher and

page eviction policy in cpu-gpu unified virtual memory.

In Proceedings of the 46th International Symposium

on Computer Architecture, ISCA ’19, page 224–235,

New York, NY, USA, 2019. Association for Computing

Machinery.

[14] Debin Gao, Michael K. Reiter, and Dawn Song. Binhunt:

Automatically finding semantic differences in binary

programs. In Liqun Chen, Mark D. Ryan, and Guilin

Wang, editors, Information and Communications Secu-

rity, pages 238–255, Berlin, Heidelberg, 2008. Springer

Berlin Heidelberg.

[15] Armijn Hemel, Karl Trygve Kalleberg, Rob Vermaas,

and Eelco Dolstra. Finding software license violations

through binary code clone detection. In IEEE Working

Conference on Mining Software Repositories, 2011.

[16] Takashi Ishio, Yusuke Sakaguchi, Kaoru Ito, and Kat-

suro Inoue. Source file set search for clone-and-own

reuse analysis. In 2017 IEEE/ACM 14th International

Conference on Mining Software Repositories (MSR),

pages 257–268, 2017.

[17] Lingxiao Jiang, Ghassan Misherghi, Zhendong Su, and

Stephane Glondu. DECKARD: Scalable and Accurate

Tree-Based Detection of Code Clones. In ICSE, pages

96–105, 2007.

[18] Steven Jilcott. Scalable malware forensics using phy-

logenetic analysis. In 2015 IEEE International Sym-

posium on Technologies for Homeland Security (HST),

2015.

[19] W. Jin, S. Chaki, C. Cohen, A. Gurfinkel, J. Havrilla,

C. Hines, and P. Narasimhan. Binary function cluster-

ing using semantic hashes. In 2012 11th International

Conference on Machine Learning and Applications, vol-

ume 1, pages 386–391, 2012.

[20] Karen Spärck Jones. A statistical interpretation of term

specificity and its application in retrieval. J. Documen-

tation, 60:493–502, 2021.

[21] Nathaniel Lageman, Eric D. Kilmer, Robert J. Walls, and

Patrick D. McDaniel. Bindnn: Resilient function match-

ing using deep learning. In Robert Deng, Jian Weng,

Kui Ren, and Vinod Yegneswaran, editors, Security and

Privacy in Communication Networks, pages 517–537,

Cham, 2017. Springer International Publishing.

[22] Qiang Li, Dawei Tan, Xin Ge, Haining Wang, Zhi Li,

and Jiqiang Liu. Understanding security risks of em-

bedded devices through fine-grained firmware finger-

printing. IEEE Transactions on Dependable and Secure

Computing, 19(6):4099–4112, 2022.

[23] Zhibo Liu and Shuai Wang. How far we have come:

testing decompilation correctness of c decompilers. In

Proceedings of the 29th ACM SIGSOFT International

Symposium on Software Testing and Analysis, 2020.

[24] Andrea Marcelli, Mariano Graziano, Xabier Ugarte-

Pedrero, Yanick Fratantonio, Mohamad Mansouri, and

Davide Balzarotti. How machine learning is solving

the binary function similarity problem. In 31st USENIX

Security Symposium (USENIX Security 22), pages 2099–

2116, Boston, MA, August 2022. USENIX Association.

[25] Luca Massarelli, Giuseppe Antonio Di Luna, Fabio

Petroni, Roberto Baldoni, and Leonardo Querzoni. Safe:

Self-attentive function embeddings for binary similar-

ity. Lecture Notes in Computer Science, page 309–329,

2019.

[26] Mathieu Nayrolles and Abdelwahab Hamou-Lhadj.

Clever: Combining code metrics with clone detection

for just-in-time fault prevention and resolution in large

industrial projects. In Proceedings of the 15th Inter-

national Conference on Mining Software Repositories,

MSR ’18, page 153–164, New York, NY, USA, 2018.

Association for Computing Machinery.

[27] Kuntal Kumar Pal, Ati Priya Bajaj, Pratyay Baner-

jee, Audrey Dutcher, Mutsumi Nakamura, Zion Leon-

ahenahe Basque, Himanshu Gupta, Saurabh Arjun

Sawant, Ujjwala Anantheswaran, Yan Shoshitaishvili,

Adam Doupé, Chitta Baral, and Ruoyu Wang. "len or

index or count, anything but v1": Predicting variable

names in decompilation output with transfer learning.

In 2024 IEEE Symposium on Security and Privacy (SP),

pages 4069–4087, 2024.

[28] J. Pewny, B. Garmany, R. Gawlik, C. Rossow, and

T. Holz. Cross-architecture bug search in binary ex-

ecutables. In 2015 IEEE Symposium on Security and

Privacy, pages 709–724, 2015.

[29] Jannik Pewny, Behrad Garmany, Robert Gawlik, Chris-

tian Rossow, and Thorsten Holz. Cross-architecture bug

search in binary executables. it - Information Technol-

ogy, 59, 01 2017.

[30] Nilo Redini, Aravind Machiry, Ruoyu Wang, Chad Spen-

sky, Andrea Continella, Yan Shoshitaishvili, Christopher

Kruegel, and Giovanni Vigna. Karonte: Detecting in-

secure multi-binary interactions in embedded firmware.

In IEEE Symposium on Security and Privacy, 2020.

[31] Tongwei Ren, Ronghan Che, Guinevere

Gilman, Lorenzo De Carli, and Robert J.

Walls. Revdecode : General purpose dataset.

https://doi.org/10.5281/zenodo.15579566, June 2025.

[32] Tongwei Ren, Ronghan Che, Guinevere Gilman,

Lorenzo De Carli, and Robert J. Walls. Revdecode :

Ndcg scores. https://doi.org/10.5281/zenodo.15580030,

June 2025.

[33] Tongwei Ren, Ronghan Che, Guinevere Gilman,

Lorenzo De Carli, and Robert J. Walls. Revdecode:

Code. https://doi.org/10.5281/zenodo.15588740, June

2025.

[34] Tongwei Ren, Ronghan Che, Guinevere Gilman,

Lorenzo De Carli, and Robert J. Walls.

Revdecode: Frankenbinary evaluation dataset.

https://doi.org/10.5281/zenodo.15581150, June 2025.

[35] Tobias Scharnowski, Nils Bars, Moritz Schloegel, Eric

Gustafson, Marius Muench, Giovanni Vigna, Christo-

pher Kruegel, Thorsten Holz, and Ali Abbasi. Fuzzware:

Using precise MMIO modeling for effective firmware

fuzzing. In USENIX Security, 2022.

[36] Saul Schleimer, Daniel S Wilkerson, and Alex Aiken.

Winnowing: Local Algorithms for Document Finger-

printing. In SIGMOD, page 10, 2003.

[37] Yan Shoshitaishvili, Ruoyu Wang, Christophe Hauser,

Christopher Krügel, and Giovanni Vigna. Firmalice -

automatic detection of authentication bypass vulnera-

bilities in binary firmware. In Network and Distributed

System Security Symposium, 2015.

[38] Randy Smith and Susan Horwitz. Detecting and Mea-

suring Similarity in Code Clones. In IWSC, page 7,

2009.

[39] Saksham Varma, Robert J. Walls, Brian Lynn, and

Brian Neil Levine. Efficient smart phone forensics based

on relevance feedback. In Proceedings of the 4th ACM

Workshop on Security and Privacy in Smartphones &

Mobile Devices, SPSM ’14, page 81–91, New York, NY,

USA, 2014. Association for Computing Machinery.

[40] A. Viterbi. Error bounds for convolutional codes and

an asymptotically optimum decoding algorithm. IEEE

Transactions on Information Theory, 13(2):260–269,

1967.

[41] Daniel Votipka, Seth Rabin, Cristopher Micinski, Jef-

frey S Foster, and Michelle L Mazurek. An observa-

tional investigation of reverse engineers’ processes. In

29th {USENIX} Security Symposium ({USENIX} Secu-

rity 20). USENIX Association, 2020.

[42] Robert J. Walls, Erik Learned-Miller, and Brian Neil

Levine. Forensic triage for mobile phones with dec0de.

In Proceedings of the 20th USENIX Conference on Secu-

rity, SEC’11, page 7, USA, 2011. USENIX Association.

[43] Haohuang Wen, Zhiqiang Lin, and Yinqian Zhang. Fir-

mxray: Detecting bluetooth link layer vulnerabilities

from bare-metal firmware. In Proceedings of the 2020

ACM SIGSAC Conference on Computer and Communi-

cations Security, CCS ’20, page 167–180, New York,

NY, USA, 2020. Association for Computing Machinery.

[44] Xiaojun Xu, Chang Liu, Qian Feng, Heng Yin, Le Song,

and Dawn Song. Neural network-based graph embed-

ding for cross-platform binary code similarity detection.

In Proceedings of the 2017 ACM SIGSAC Conference

on Computer and Communications Security, CCS ’17,

page 363–376, New York, NY, USA, 2017. Association

for Computing Machinery.

[45] Fei Zuo, Xiaopeng Li, Patrick Young, Lannan Luo,

Qiang Zeng, and Zhexin Zhang. Neural machine transla-

tion inspired binary code similarity comparison beyond

function pairs. In Proceedings of the 2019 Network and

Distributed Systems Security Symposium (NDSS), 2019.

12 Appendix

12.1 Graph Size

As described in Section 3.1, REVDECODE constructs a di-

rected graph where each layer corresponds to an unknown

function and each node represents a candidate match. As the

number of candidates increases, the graph grows larger, lead-

ing to higher computational costs. To reduce the number of

candidates in each layer, REVDECODE applies an initial fil-

tering phase. Only the top candidate matches with the highest

similarity scores are retained. A candidate match from the

corpus may correspond to multiple nodes in the graph, pro-

vided they belong to separate layers corresponding to distinct

unknown functions.

When REVDECODE retains only the top m candidate

matches, the size of V will be n(m+ 1)+ 2, including one

uncertain node per layer and the start and end nodes. The total

number of edges in the graph will be 2(m+1)+(n−1)(m+
1)2 to account for both the start and end nodes’ edges as well

as all of the edges between nodes within each layer. There-

fore, the graph has a polynomial spatial complexity, with the

vertices being O(nm) and the edges being O(nm2).

12.2 Scores Calculation

Section 3.1.1 explains how REVDECODE encodes contextual

information by assigning weights to edges in the constructed

graph. The final function rankings are determined by com-

puting the maximum-weight path through the graph. Each

edge weight is a composite of four components: similarity, ad-

jacency, confidence, and library scores. The similarity score

is obtained directly from the underlying function matcher.

This subsection details how the remaining three scores are

calculated, along with the relevance score used to evaluate

ranking quality, as introduced in Section 5.

12.2.1 Confidence Score Calculation

The confidence score calculation is derived from the Term

Frequency-Inverse Document Frequency (TF-IDF) statistical

measure [20], and the calculation for matching one function

with another is calculated as:

conf_score= ∑
f∈Fcommon

TF-IDF(f)− ∑
f∈Funique

TF-IDF(f) (7)

Here, Fcommon represents the set of common features between

the two functions, and Funique represents the set of features

unique to one of the functions.

12.2.2 Adjacency Score Calculation

As described in Section 3.1.1, the adjacency score is a measure

of how similar the source and destination nodes are in terms

of their library name, version, optimization level, and compile

unit. Algorithm 1 shows the calculation of the adjacency

score.

Algorithm 1: Adjacency Score Calculation

Data: source_node, dest_node

Result: Value of ad j_score for given nodes

1 if source_node.lib_name = dest_node.lib_name then

2 ad j_score← ad j_score+0.7;

3 if source_node.lib_ver = dest_node.lib_ver then

4 ad j_score← ad j_score+0.03;

5 if source_node.lib_opt_level =

dest_node.lib_opt_level then

6 ad j_score← ad j_score+0.02;

7 if source_node.compile_unit =

dest_node.compile_unit then

8 ad j_score← ad j_score+0.05;

12.2.3 Library Score Calculation

The library score is a measure of uniqueness of the candidate’s

library in the context of the corpus. It is calculated as:

lib_score = 1−
n flib

n fcorpus

(8)

where n flib is the total number of functions in the candidate’s

library and n fcorpus is the number of functions in the corpus.

12.2.4 Relevance Score Calculation

Following the methodology outlined in Section 5, we adopt

tie-aware NDCG as the primary evaluation metric. Relevance

scores are assigned to candidate functions to reflect their

potential utility to a reverse engineer, based on their degree

of similarity to the ground truth function. These scores range

from 0 to 15. A special case arises when both the candidate

and the ground truth function belong to the HAL library, due

to their high code similarity; in this case, the relevance score

is set to 3. Algorithm 2 shows the specific assignment of

relevance scores.

Algorithm 2: Relevance Score Calculation

Data: Ground_Truth, candidate_function

Result: Relevance score of candidate_function

1 relevance_score← 0;

2 if candidate_function.library_name =

Ground_Truth.library_name then

3 relevance_score← relevance_score+4;

4 if candidate_function.function_name =

Ground_Truth.function_name then

5 relevance_score← relevance_score+3;

6 if candi-

date_function.library_optimization_level =

Ground_Truth.library_optimization_level

then

7 relevance_score← relevance_score+1;

8 if candidate_function.library_version =

Ground_Truth.library_version then

9 relevance_score← relevance_score+2;

10 else if candidate_function.library_name = HAL and

Ground_Truth.library_name = HAL then

11 relevance_score← relevance_score+3;

12 if relevance_score = 10 then

13 relevance_score← 15;

12.3 Embedded Libraries

Table 2 summarizes the libraries used in our Frankenbinaries

construction. For each version of each library, we applied

optimization levels -O0 through -O3 and -Os.

12.4 Excluded Binaries in General Purpose

Evaluation Set

Table 3 lists the binaries that were excluded from the general

purpose evaluation dataset due to limitations in the BSim im-

plementation provided by Ghidra. Although this only appears

in the BSim, we excluded these binaries from the evaluation

set for every matcher to ensure consistency and fairness across

all matchers.

Library Description Versions

FreeRTOS Real-time operating system

kernel for embedded devices

7.2.0, 8.0.0,

9.0.0, 10.0.0

STM32F0 HAL Hardware abstract libraries for

STM32 F0 series

1.5.0

MbedTLS open-source TLS library 2.15.1

AWS Mqtt Implementation of Mqtt proto-

col

1.1.3

STM32F1 HAL Hardware abstraction libraries

for STM32 F1 series

1.0.0, 1.8.0

STM32F4 HAL Hardware abstraction libraries

for STM32 F4 series

1.25.0

STM32L4 HAL Hardware abstraction libraries

for STM32 L4 series

1.7.0, 1.15.0

STM32F7 HAL Hardware abstraction libraries

for STM32 F7 series

1.16.0

STMUSB Library USB driver for STM32 1.2.0

UGUI open source graphic library for

embedded systems

2.15.1

libopencm3-F1 open-source firmware library

for STM32-F1

0.8.0

OpenSSL open-source Toolkit for the

TLS, DTLS and QUIC proto-

cols

1.1.1, 3.0.8,

3.1.0

OpenCV open-source computer vision

library

3.4.15,

4.5.1, 4.7.0

Mosquitto open-source server implemen-

tation for MQTT protocol

1.5.11,

1.6.15,

2.0.15

MbedTLS library for cryptography and

SSL/TLS protocols

2.15.1

CycloneDDS open-source implementation

of the OMG DDS specification

0.8.2, 0.9.1,

0.10.3

Aubio a library to label music and

sounds

0.4.7, 0.4.8,

0.4.9

Stunnel open-source SSL encryption

proxy

5.00, 5.50,

5.69

STM Peripheral Drivers Peripheral drivers for STM32

L1 series

1.1.1

Table 2: Summary of Corpus Libraries

Binary Versions

as 2.42, 2.43

ld 2.38, 2.42, 2.43

ld.bfd 2.38, 2.42, 2.43

objdump 2.42, 2.43

libcrypto 3.0.8, 3.2.1, 3.5.0

Table 3: Binaries Excluded from General Purpose Evaluation

Set

	Introduction
	Background
	Measuring Function Similarity
	Challenges in Existing Function Matching
	Leveraging Contextual Information

	Design Of RevDecode
	Graph Construction
	Edge Weights
	Uncertain Nodes

	Graph Traversal: Weight Computation
	Graph Traversal: Ranking
	Cascaded Matching

	GPU-Accelerated RevDecode
	Challenges in Parallelizing RevDecode
	Fine-Grained Traversal
	Segment-Based Estimation Traversal
	Initial Stage
	Merging Stage

	Data Structures and Memory Layout

	Evaluation Methodology
	Dataset: General Purpose
	Dataset: Frankenbinaries
	Measuring Ranking Quality
	Additional Considerations

	Evaluation
	Runtime Performance
	End-to-End Performance
	Scalability and Cascaded Matching
	Scalability and Graph Traversal

	Ranking Effectiveness
	Macro-Level Ranking Improvements
	Strengths
	Weaknesses
	Ablation Study

	Discussion
	Related Work
	Conclusions
	Open science
	Ethics Considerations
	Appendix
	Graph Size
	Scores Calculation
	Confidence Score Calculation
	Adjacency Score Calculation
	Library Score Calculation
	Relevance Score Calculation

	Embedded Libraries
	Excluded Binaries in General Purpose Evaluation Set

